1
|
Bao T, Ren J, Wu Y, Cao Y, Pan H, Deng C. Study on porous coral scaffolds containing a hydroxyapatite layer doped with selenium and their properties. J Mater Chem B 2024. [PMID: 39415608 DOI: 10.1039/d4tb01112k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The repair of bone defects caused by osteosarcoma is still a significant clinical issue, and new scaffolds need to be developed to solve this problem. The ocean is a treasure trove for developing new biomedical materials, and coral is widely thought to be suitable as a scaffold for bone implant materials due to its porous structure and mechanical properties. Selenium is known for its antioxidant and antitumor effects, inducing tumor cell cycle arrest. In this study, we hydrothermally transformed corals to grow a hydroxyapatite layer on the scaffold surface (CHAp) and combined it with selenium to obtain selenium-doped scaffolds (Se-CHAp) without affecting the porous structure of the coral. The research successfully validates their biocompatibility and the antitumor efficacy against 143B osteosarcoma cells. The results indicate that the Se-CHAp scaffolds yielded an obvious inhibitory effect on the proliferation of osteosarcoma cells, highlighting that they have huge prospects for application in biomedical technology.
Collapse
Affiliation(s)
- Tianjing Bao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Jian Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Yiyuan Wu
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yang Cao
- Qiongtai Normal University, Haikou, Hainan 571127, P. R. China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, P. R. China.
| | - Chunlin Deng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Noukrati H, Hamdan Y, Marsan O, El Fatimy R, Cazalbou S, Rey C, Barroug A, Combes C. Sodium fusidate loaded apatitic calcium phosphates: Adsorption behavior, release kinetics, antibacterial efficacy, and cytotoxicity assessment. Int J Pharm 2024; 660:124331. [PMID: 38866083 DOI: 10.1016/j.ijpharm.2024.124331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
The present work reports the adsorption, release, antibacterial properties, and in vitro cytotoxicity of sodium fusidate (SF) associated with a carbonated calcium phosphate bone cement. The adsorption study of SF on cement powder compared to stoichiometric hydroxyapatite and nanocrystalline carbonated apatite was investigated to understand the interaction between this antibiotic and the calcium phosphate phases involved in the cement formulation and setting reaction. The adsorption data revealed a fast kinetic process. However, the evolution of the amount of adsorbed SF was well described by a Freundlich-type isotherm characterized by a low adsorption capacity of the materials toward the SF molecule. The in vitro release results indicated a prolonged and controlled SF release for up to 34 days. The SF amounts eluted daily were at a therapeutic level (0.5-2 mg/L) and close to the antibiotic minimum inhibitory concentration (0.1-0.9 mg/L). Furthermore, the release data fitting and modeling suggested that the drug release occurred mainly by a diffusion mechanism. The antibacterial activity showed the effectiveness of SF released from the formulated cements against Staphylococcus aureus. Furthermore, the biological in vitro study demonstrated that the tested cements didn't show any cytotoxicity towards human peripheral blood mononuclear cells and did not significantly induce inflammation markers like IL-8.
Collapse
Affiliation(s)
- Hassan Noukrati
- Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco; CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France; Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.
| | - Yousra Hamdan
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Olivier Marsan
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France
| | - Rachid El Fatimy
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Sophie Cazalbou
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christian Rey
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France
| | - Allal Barroug
- Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco; Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France
| |
Collapse
|
3
|
Gentili C, Palamà MEF, Sexton G, Maybury S, Shanahan M, Omowunmi-Kayode YY, Martin J, Johnson M, Thompson K, Clarkin O, Coleman CM. Sustainably cultured coral scaffold supports human bone marrow mesenchymal stromal cell osteogenesis. Regen Ther 2024; 26:366-381. [PMID: 39050552 PMCID: PMC11267040 DOI: 10.1016/j.reth.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
The current gold standard grafting material is autologous bone due to its osteoinductive and osteoconductive properties. Autograft harvesting results in donors site morbidity. Coral scaffolds offer a natural autograft alternative, sharing the density and porosity of human bone. This study investigated the biocompatibility and osteogenic potential of a novel, sustainably grown Pocillopora scaffold with human bone marrow-derived mesenchymal stromal cells (MSCs). The coral-derived scaffold displays a highly textured topography, with concavities of uniform size and a high calcium carbonate content. Large scaffold samples exhibit compressive and diametral tensile strengths in the range of trabecular bone, with strengths likely increasing for smaller particulate samples. Following the in vitro seeding of MSCs adjacent to the scaffold, the MSCs remained viable, continued proliferating and metabolising, demonstrating biocompatibility. The seeded MSCs densely covered the coral scaffold with organized, aligned cultures with a fibroblastic morphology. In vivo coral scaffolds with MSCs supported earlier bone and blood vessel formation as compared to control constructs containing TCP-HA and MSCs. This work characterized a novel, sustainably grown coral scaffold that was biocompatible with MSCs and supports their in vivo osteogenic differentiation, advancing the current repertoire of biomaterials for bone grafting.
Collapse
Affiliation(s)
- Chiara Gentili
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | | | - Gillian Sexton
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Sophie Maybury
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Megan Shanahan
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Yeyetunde Yvonne Omowunmi-Kayode
- DCU Biomaterials Research Group, Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - James Martin
- Zoan Nuáil Teoranta T/A Zoan BioMed, The Hatchery Building, Cloonacarton, Recess, Galway, Ireland
| | - Martin Johnson
- Zoan Nuáil Teoranta T/A Zoan BioMed, The Hatchery Building, Cloonacarton, Recess, Galway, Ireland
- Ecodiversity Ltd, Derryconnell, Schull, Co. Cork, Ireland
| | - Kerry Thompson
- College of Medicine, Nursing and Health Science, School of Medicine, Anatomy Imaging and Microscopy Facility, University of Galway, Galway, Ireland
| | - Owen Clarkin
- DCU Biomaterials Research Group, Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Cynthia M. Coleman
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Belaid H, Barou C, Collart-Dutilleul PY, Desoutter A, Kajdan M, Bernex F, Tétreau R, Cuisinier F, Barés J, Huon V, Teyssier C, Cornu D, Cavaillès V, Bechelany M. Fabrication of Radio-Opaque and Macroporous Injectable Calcium Phosphate Cement. ACS APPLIED BIO MATERIALS 2022; 5:3075-3085. [PMID: 35584545 DOI: 10.1021/acsabm.2c00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this work was the development of injectable radio-opaque and macroporous calcium phosphate cement (CPC) to be used as a bone substitute for the treatment of pathologic vertebral fractures. A CPC was first rendered radio-opaque by the incorporation of zirconium dioxide (ZrO2). In order to create macroporosity, poly lactic-co-glycolic acid (PLGA) microspheres around 100 μm were homogeneously incorporated into the CPC as observed by scanning electron microscopy. Physicochemical analyses by X-ray diffraction and Fourier transform infrared spectroscopy confirmed the brushite phase of the cement. The mechanical properties of the CPC/PLGA cement containing 30% PLGA (wt/wt) were characterized by a compressive strength of 2 MPa and a Young's modulus of 1 GPa. The CPC/PLGA exhibited initial and final setting times of 7 and 12 min, respectively. Although the incorporation of PLGA microspheres increased the force necessary to inject the cement and decreased the percentage of injected mass as a function of time, the CPC/PLGA appeared fully injectable at 4 min. Moreover, in comparison with CPC, CPC/PLGA showed a full degradation in 6 weeks (with 100% mass loss), and this was associated with an acidification of the medium containing the CPC/PLGA sample (pH of 3.5 after 6 weeks). A cell viability test validated CPC/PLGA biocompatibility, and in vivo analyses using a bone defect assay in the caudal vertebrae of Wistar rats showed the good opacity of the CPC through the tail and a significant increased degradation of the CPC/PLGA cement a month after implantation. In conclusion, this injectable CPC scaffold appears to be an interesting material for bone substitution.
Collapse
Affiliation(s)
- Habib Belaid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Carole Barou
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France.,Biologics 4 Life, 84120 Pertuis, France
| | | | - Alban Desoutter
- Laboratoire de Bioingénierie et Nanosciences, EA4203, Université de Montpellier, 34193 Montpellier, France
| | - Marilyn Kajdan
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Florence Bernex
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS UAR3426, INSERM, F-34298 Montpellier, France
| | - Raphaël Tétreau
- Service d'Imagerie, Institut Régional du Cancer Montpellier, Montpellier F-34298, France
| | - Frédéric Cuisinier
- Laboratoire de Bioingénierie et Nanosciences, EA4203, Université de Montpellier, 34193 Montpellier, France
| | - Jonathan Barés
- Laboratoire de Mécanique et Génie Civil, Univ Montpellier, CNRS, Montpellier 34090, France
| | - Vincent Huon
- Laboratoire de Mécanique et Génie Civil, Univ Montpellier, CNRS, Montpellier 34090, France
| | - Catherine Teyssier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
5
|
Petrova LS, Yaminzoda ZA, Odintsova OI, Vladimirtseva EL, Solov'eva AA, Smirnova AS. Promising Methods of Antibacterial Finishing of Textile Materials. RUSS J GEN CHEM+ 2022; 91:2758-2767. [PMID: 35068917 PMCID: PMC8763362 DOI: 10.1134/s1070363221120549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022]
Abstract
A review article, containing information on the options, possibilities, and prospects for the development of antibacterial finishing of textile materials, is presented. A wide range of products designed to impart antibacterial, antimicrobial, and antiviral properties to textile materials is considered. The main factors determining the appropriate decision on the technological and functional choice of the protective composition are presented, including the nature of the fiber-forming polymer, the tasks that the resulting material is designed to solve, and its application options. Compositions providing the required effect of destruction of the pathogenic flora and their application technologies are described. Special attention is paid to antimicrobial agents based on silver nanoparticles. Nanoparticles of this metal have a detrimental effect on antibiotic-resistant strains of bacteria; their effectiveness is higher as compared to a number of well-known antibiotics, for example, penicillin and its analogues. Silver nanoparticles are harmless to the human body. Acting as an inhibitor, they limit the activity of the enzyme responsible for oxygen consumption by single-cell bacteria, viruses, and fungi. In this case, silver ions bind to the outer and inner proteins of the bacterial cell membranes, blocking cellular respiration and reproduction. Various options to apply microencapsulation methods for the implementation of antibacterial finishing are considered, including: phase separation, suspension crosslinking, simple and complex coacervation, spray drying, crystallization from the melt, evaporation of the solvent, co-extrusion, layering, fluidized bed spraying, deposition, emulsion and interphase polymerization, layer-by-layer electrostatic self-assembly etc. All presented technologies are at various development stages-from the laboratory stage to production tests, they all have certain advantages and disadvantages. The accelerated development and implementation of the described methods in production of textile materials is relevant and is related to the existing complex epidemiological situation in the world.
Collapse
Affiliation(s)
- L S Petrova
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - Z A Yaminzoda
- Tajikistan University of Technology, 734061 Dushanbe, Tajikistan
| | - O I Odintsova
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - E L Vladimirtseva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - A A Solov'eva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - A S Smirnova
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| |
Collapse
|
6
|
Activated Carbon Fiber Cloth/Biomimetic Apatite: A Dual Drug Delivery System. Int J Mol Sci 2021; 22:ijms222212247. [PMID: 34830128 PMCID: PMC8624510 DOI: 10.3390/ijms222212247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
A biomaterial that is both bioactive and capable of controlled drug release is highly attractive for bone regeneration. In previous works, we demonstrated the possibility of combining activated carbon fiber cloth (ACC) and biomimetic apatite (such as calcium-deficient hydroxyapatite (CDA)) to develop an efficient material for bone regeneration. The aim to use the adsorption properties of an activated carbon/biomimetic apatite composite to synthetize a biomaterial to be used as a controlled drug release system after implantation. The adsorption and desorption of tetracycline and aspirin were first investigated in the ACC and CDA components and then on ACC/CDA composite. The results showed that drug adsorption and release are dependent on the adsorbent material and the drug polarity/hydrophilicity, leading to two distinct modes of drug adsorption and release. Consequently, a double adsorption approach was successfully performed, leading to a multifunctional and innovative ACC-aspirin/CDA-tetracycline implantable biomaterial. In a second step, in vitro tests emphasized a better affinity of the drug (tetracycline or aspirin)-loaded ACC/CDA materials towards human primary osteoblast viability and proliferation. Then, in vivo experiments on a large cortical bone defect in rats was carried out to test biocompatibility and bone regeneration ability. Data clearly highlighted a significant acceleration of bone reconstruction in the presence of the ACC/CDA patch. The ability of the aspirin-loaded ACC/CDA material to release the drug in situ for improving bone healing was also underlined, as a proof of concept. This work highlights the possibility of bone patches with controlled (multi)drug release features being used for bone tissue repair.
Collapse
|
7
|
Biomaterials and osteoradionecrosis of the jaw: Review of the literature according to the SWiM methodology. Eur Ann Otorhinolaryngol Head Neck Dis 2021; 139:208-215. [PMID: 34210630 DOI: 10.1016/j.anorl.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To systematically present and interpret the current literature on research and treatment perspectives for mandibular osteoradionecrosis (mORN) in the field of biomaterials. MATERIAL AND METHODS A systematic review of the literature using the "Synthesis without meta-analysis" (SWiM) methodology was performed on PubMed, Embase and Cochrane, focusing on the implantation of synthetic biomaterials for bone reconstruction in mORN in humans and/or animal models. The primary endpoints were the composition, efficacy on mORN and tolerance of the implanted synthetic biomaterials. RESULTS Forty-seven references were obtained and evaluated in full-text by two assessors. Ten (8 in humans and 2 in animal models) met the eligibility criteria and were included for analysis. Materials most often comprised support plates or metal mesh (5 of 10 cases) in combination with grafts or synthetic materials (phosphocalcic ceramics, glutaraldehyde). Other ceramic/polymer composites were also implanted. In half of the selected reports, active compounds (molecules, growth factors, lysates) and/or cells were associated with the reconstruction material. The number of articles referring to implantation of biomaterials for the treatment of mORN was small, and the properties of the implanted biomaterials were generally poorly described, thus limiting a thorough understanding of their role. CONCLUSION In preventing the morbidity associated with some reconstructive surgeries, basic research has benefitted from recent advances in tissue engineering and biomaterials to repair limited bone loss.
Collapse
|
8
|
Development of Multifunctional Coating of Textile Materials Using Silver Microencapsulated Compositions. COATINGS 2021. [DOI: 10.3390/coatings11020159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The efficiency of the method for the synthesis of silver nanoparticles using a system containing oxalic dialdehyde as a reducing agent, and polyguanidine as a stabilizer is shown. An analysis of the data of photon correlation spectroscopy characterizing the sizes of the formed particles in the Ag-polyelectrolyte system is presented. It has been established that the synthesized silver nanoparticles have a stable biocidal effect. The system of biodegradable polyelectrolytes chitosan-xanthan gum for the synthesis of the capsule shell including silver nanoparticles is selected. This will allow the formation of stable polyelectrolyte capsule shells containing oyster mushroom mycelium extract. A protocol for the synthesis of microcapsules by the method of sequential adsorption of chitosan polyelectrolytes and xanthan gum on calcium carbonate templates was developed. Silver nanoparticles are included in the capsule shell, and a biologically active drug (oyster mushroom mycelium extract) is included in the core. The technological mode of complex capsules immobilization on a textile material by the layer-by-layer method is described. The immobilization of multilayer microcapsules on a fibrous substrate is provided by a system of polyelectrolytes: positively charged chitosan and negatively charged xanthan gum. The developed multifunctional coatings make it possible to impart multifunctional properties to textile materials: antibacterial, antimycotic, high hygroscopic properties.
Collapse
|
9
|
Gómez-Morales J, Fernández-Penas R, Romero-Castillo I, Verdugo-Escamilla C, Choquesillo-Lazarte D, D’Urso A, Prat M, Fernández-Sánchez JF. Crystallization, Luminescence and Cytocompatibility of Hexagonal Calcium Doped Terbium Phosphate Hydrate Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:322. [PMID: 33513811 PMCID: PMC7910970 DOI: 10.3390/nano11020322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/26/2022]
Abstract
Luminescent lanthanide-containing biocompatible nanosystems represent promising candidates as nanoplatforms for bioimaging applications. Herein, citrate-functionalized calcium-doped terbium phosphate hydrate nanophosphors of the rhabdophane type were prepared at different synthesis times and different Ca2+/Tb3+ ratios by a bioinspired crystallization method consisting of thermal decomplexing of Ca2+/Tb3+/citrate/phosphate/carbonate solutions. Nanoparticles were characterized by XRD, TEM, SEM, HR-TEM, FTIR, Raman, Thermogravimetry, inductively coupled plasma spectroscopy, thermoanalysis, dynamic light scattering, electrophoretic mobility, and fluorescence spectroscopy. They displayed ill-defined isometric morphologies with sizes ≤50 nm, hydration number n ~ 0.9, tailored Ca2+ content (0.42-8.11 wt%), and long luminescent lifetimes (800-2600 µs). Their relative luminescence intensities in solid state are neither affected by Ca2+, citrate content, nor by maturation time for Ca2+ doping concentration in solution below 0.07 M Ca2+. Only at this doping concentration does the maturation time strongly affect this property, decreasing it. In aqueous suspensions, neither pH nor ionic strength nor temperature affect their luminescence properties. All the nanoparticles displayed high cytocompatibility on two human carcinoma cell lines and cell viability correlated positively with the amount of doping Ca2+. Thus, these nanocrystals represent promising new luminescent nanoprobes for potential biomedical applications and, if coupled with targeting and therapeutic moieties, they could be effective tools for theranostics.
Collapse
Affiliation(s)
- Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Raquel Fernández-Penas
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Ismael Romero-Castillo
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Cristóbal Verdugo-Escamilla
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Annarita D’Urso
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy;
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy;
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Via Solaroli 17, 28100 Novara, Italy
- Consorzio Interuniversitario per Biotecnologie (CIB), Località Padriciano 99, 34149 Area di Ricerca, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 28100 Novara, Italy
| | | |
Collapse
|
10
|
Sun R, Åhlén M, Tai CW, Bajnóczi ÉG, de Kleijne F, Ferraz N, Persson I, Strømme M, Cheung O. Highly Porous Amorphous Calcium Phosphate for Drug Delivery and Bio-Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E20. [PMID: 31861727 PMCID: PMC7022897 DOI: 10.3390/nano10010020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
Amorphous calcium phosphate (ACP) has shown significant effects on the biomineralization and promising applications in bio-medicine. However, the limited stability and porosity of ACP material restrict its practical applications. A storage stable highly porous ACP with Brunauer-Emmett-Teller surface area of over 400 m2/g was synthesized by introducing phosphoric acid to a methanol suspension containing amorphous calcium carbonate nanoparticles. Electron microscopy revealed that the porous ACP was constructed with aggregated ACP nanoparticles with dimensions of several nanometers. Large angle X-ray scattering revealed a short-range atomic order of <20 Å in the ACP nanoparticles. The synthesized ACP demonstrated long-term stability and did not crystallize even after storage for over 14 months in air. The stability of the ACP in water and an α-MEM cell culture medium were also examined. The stability of ACP could be tuned by adjusting its chemical composition. The ACP synthesized in this work was cytocompatible and acted as drug carriers for the bisphosphonate drug alendronate (AL) in vitro. AL-loaded ACP released ~25% of the loaded AL in the first 22 days. These properties make ACP a promising candidate material for potential application in biomedical fields such as drug delivery and bone healing.
Collapse
Affiliation(s)
- Rui Sun
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Éva G. Bajnóczi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (É.G.B.); (I.P.)
| | - Fenne de Kleijne
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Natalia Ferraz
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (É.G.B.); (I.P.)
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| |
Collapse
|
11
|
Bioinspired crystallization, sensitized luminescence and cytocompatibility of citrate-functionalized Ca-substituted europium phosphate monohydrate nanophosphors. J Colloid Interface Sci 2019; 538:174-186. [PMID: 30504057 DOI: 10.1016/j.jcis.2018.11.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 01/31/2023]
Abstract
Biocompatible nanosystems exhibiting long-lifetime (∼millisecond) luminescence features are particularly relevant in the field of bioimaging. In this study, citrate-functionalized calcium-doped europium phosphates nanophosphors of the rhabdophane type were prepared at different synthesis times by a bioinspired crystallization route, consisting in thermal decomplexing of Ca2+/Eu3+ /citrate/phosphate/carbonate solutions. The general formula of this material is CaαEu1-α(PO4)1-α(HPO4)α·nH2O, with α ranging from 0 to 0.58 and n ∼ 1. A thorough characterization of the nanoparticles has been carried out by XRD (including data processing with Topas 6.0), HR-TEM, TEM, FTIR, TG/DTA, ICP, dynamic light scattering (DLS), electrophoretic mobility, and fluorescence spectroscopy. Based on these results a crystallization mechanism involving the filling of cationic sites with Ca2+ions associated to a concomitant adjustment of the PO4/HPO4 ratio was proposed. Upon calcium doping, the aspect ratio of the nanoparticles as well as of the crystalline domains decreased and the relative luminescence intensity (R.L.I.) could be modulated. Neither the pH nor the ionic strength, nor the temperature (from 25 to 37 °C) affected significantly the R.L.I. of particles after resuspension in water, leading to rather steady luminescence features usable in a large domain of conditions. This new class of luminescent compounds has been proved to be fully cytocompatible relative to GTL-16 human carcinoma cells and showed an improved cytocompatibility as the Ca2+ content increased when contacted with the more sensitive m17. ASC murine mesenchymal stem cells. These biocompatible nanoparticles thus appear as promising new tailorable tools for biomedical applications as luminescent nanoprobes.
Collapse
|
12
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Zima A, Czechowska J, Siek D, Olkowski R, Noga M, Lewandowska-Szumieł M, Ślósarczyk A. How calcite and modified hydroxyapatite influence physicochemical properties and cytocompatibility of alpha-TCP based bone cements. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:117. [PMID: 28681217 PMCID: PMC5498620 DOI: 10.1007/s10856-017-5934-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Nowadays successful regeneration of damaged bone tissue is a major problem of the reconstructive medicine and tissue engineering. Recently a great deal of attention has been focused on calcium phosphate cements (CPCs) as the effective bone fillers. Despite a number of studies regarding CPCs, only a few compare the physicochemical and biological properties of α-TCP based materials of various phase compositions. In our study we compared the effect of several components (calcite, hydroxyapatite doped with Mg2+, CO32- or Ag+ ions, alginate, chitosan and methylcellulose) on the physicochemical and biological properties of α-TCP-based bone cements. The influence of materials composition on their setting times, microstructure and biochemical stability in simulated body fluid was determined. A number of in vitro laboratory methods, including ICP-OES, metabolic activity test, time-lapse microscopic observation and SEM observations were performed in order to assess biocompatibility of the studied biomaterials. The positive outcome of XTT tests for ceramic extracts demonstrated that all investigated cement-type composites may be considered cytocompatible according to ISO 10993-5 standard. Results of our research indicate that multiphase cements containing MgCHA, AgHA and calcite combined with αTCP enhanced cell viability in comparison to material based only on αTCP. Furthermore materials containing chitosan and methylcellulose possessed higher cytocompatibility than those with alginate.
Collapse
Affiliation(s)
- Aneta Zima
- Faculty of Material Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059, Krakow, Poland.
| | - Joanna Czechowska
- Faculty of Material Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059, Krakow, Poland
| | - Dominika Siek
- Faculty of Material Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059, Krakow, Poland
| | - Radosław Olkowski
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 5 Chałubińskiego St., 02-004, Warsaw, Poland
- Department of Pathology, Medical University of Warsaw, 5 Chałubińskiego St., 02-004, Warsaw, Poland
- Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha St., 02-097, Warsaw, Poland
| | - Magdalena Noga
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 5 Chałubińskiego St., 02-004, Warsaw, Poland
| | - Małgorzata Lewandowska-Szumieł
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 5 Chałubińskiego St., 02-004, Warsaw, Poland
- Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha St., 02-097, Warsaw, Poland
| | - Anna Ślósarczyk
- Faculty of Material Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059, Krakow, Poland
| |
Collapse
|
14
|
Evaluation of the osseointegration of dental implants coated with calcium carbonate: an animal study. Int J Oral Sci 2017; 9:133-138. [PMID: 28452375 PMCID: PMC5709541 DOI: 10.1038/ijos.2017.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
In an attempt to overcome the limitations of titanium in dental and orthopaedic clinical applications, a new method has been developed to prepare calcium carbonate coatings on sandblasted and acid-etched (SA) titanium implants. The purpose of this study was to investigate the effect of calcium carbonate-SA (CC-SA) implants on osseointegration in vivo. The surfaces of SA and CC-SA implants were characterised for surface morphology and surface chemistry. Subsequently, these two kinds of implants were implanted in the femoral condyles of rabbits. The implants were retrieved and prepared for histological and histomorphometric evaluation 1, 2, 4, 8 and 12 weeks after implantation. Significantly higher values of bone-to-implant contact of the entire implant except the gap area (BIC_ALL) and the bone-to-implant contact of the gap area (BIC_GAP) were found in animals with the CC-SA implants than in those with the SA implants at 4 weeks. Higher values of total gap bone were found in those with the CC-SA implants than in those with the SA implants at 1, 2 and 4 weeks. In conclusion, the current findings demonstrate that the calcium carbonate coating can improve and accelerate the early ingrowth of bone and osseointegration at the early healing phase. This may reduce clinical healing times and thus improve implant success rates.
Collapse
|
15
|
Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells. Int J Mol Sci 2016; 17:ijms17050639. [PMID: 27164090 PMCID: PMC4881465 DOI: 10.3390/ijms17050639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 11/22/2022] Open
Abstract
Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.
Collapse
|
16
|
Svenskaya Y, Fattah H, Zakharevich A, Gorin D, Sukhorukov G, Parakhonskiy B. Ultrasonically assisted fabrication of vaterite submicron-sized carriers. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Injectability, microstructure and release properties of sodium fusidate-loaded apatitic cement as a local drug-delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:177-184. [DOI: 10.1016/j.msec.2015.09.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/28/2015] [Accepted: 09/16/2015] [Indexed: 11/22/2022]
|
18
|
Cahyanto A, Maruta M, Tsuru K, Matsuya S, Ishikawa K. Fabrication of bone cement that fully transforms to carbonate apatite. Dent Mater J 2015; 34:394-401. [PMID: 25948145 DOI: 10.4012/dmj.2014-328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of this study was to fabricate a type of bone cement that could fully transform to carbonate apatite (CO3Ap) in physiological conditions. A combination of calcium carbonate (CaCO3) and dicalcium phosphate anhydrous was chosen as the powder phase and mixed with one of three kinds of sodium phosphate solutions: NaH2PO4, Na2HPO4, or Na3PO4. The cement that fully transformed to CO3Ap was fabricated using vaterite, instead of calcite, as a CaCO3 source. Their stability in aqueous solutions was different, regardless of the type of sodium phosphate solution. Rate of transformation to CO3Ap in descending order was Na3PO4>Na2HPO4>NaH2PO4. Transformation rate could be affected by the pH of solution. Results of this study showed that it was advantageous to use vaterite to fabricate CO3Ap-forming cement.
Collapse
Affiliation(s)
- Arief Cahyanto
- Department of Biomaterials, Faculty of Dental Science, Kyushu University
| | | | | | | | | |
Collapse
|
19
|
Maleki Dizaj S, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1475-81. [PMID: 25950955 DOI: 10.3109/21691401.2015.1042108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this research was to prepare and optimize calcium carbonate (CaCO3) nanoparticles as carriers for gentamicin sulfate. A chemical precipitation method was used to prepare the gentamicin sulfate-loaded CaCO3 nanoparticles. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure, with the molar ratio of CaCl2: Na2CO3 (X1), the concentration of drug (X2), and the speed of homogenization (X3) as the independent variables. The particle size and entrapment efficiency were considered as response variables. Mathematical equations and response surface plots were used, along with the counter plots, to relate the dependent and independent variables. The results indicated that the speed of homogenization was the main variable contributing to particle size and entrapment efficiency. The combined effect of all three independent variables was also evaluated. Using the response optimization design, the optimized Xl-X3 levels were predicted. An optimized formulation was then prepared according to these levels, resulting in a particle size of 80.23 nm and an entrapment efficiency of 30.80%. It was concluded that the chemical precipitation technique, together with the Box-Behnken experimental design methodology, could be successfully used to optimize the formulation of drug-incorporated calcium carbonate nanoparticles.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- a Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science , Tabriz , Iran.,b Student Research Committee, Tabriz University of Medical Science , Tabriz , Iran
| | - Farzaneh Lotfipour
- c Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Barzegar-Jalali
- d Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad-Hossein Zarrintan
- d Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Khosro Adibkia
- d Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
20
|
Dewi AH, Ana ID, Wolke J, Jansen J. Behavior of POP-calcium carbonate hydrogel as bone substitute with controlled release capability: A study in rat. J Biomed Mater Res A 2015; 103:3273-83. [DOI: 10.1002/jbm.a.35460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/17/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Anne Handrini Dewi
- Department of Dental Biomedical Sciences; Faculty of Dentistry; GadjahMada University; Yogyakarta 55281 Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences; Faculty of Dentistry; GadjahMada University; Yogyakarta 55281 Indonesia
| | - Joop Wolke
- Department of Biomaterials; Radboud University Medical Center; Nijmegen 6500 HB The Netherlands
| | - John Jansen
- Department of Biomaterials; Radboud University Medical Center; Nijmegen 6500 HB The Netherlands
| |
Collapse
|
21
|
Cheng C, Alt V, Pan L, Thormann U, Schnettler R, Strauss LG, Schumacher M, Gelinsky M, Dimitrakopoulou-Strauss A. Preliminary evaluation of different biomaterials for defect healing in an experimental osteoporotic rat model with dynamic PET-CT (dPET-CT) using F-18-sodium fluoride (NaF). Injury 2014; 45:501-5. [PMID: 24332163 DOI: 10.1016/j.injury.2013.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/14/2013] [Accepted: 11/17/2013] [Indexed: 02/02/2023]
Abstract
UNLABELLED The aim of the current study was to measure and compare the effect of calcium phosphate cement (CPC) and CPC enriched with strontium (SrCPC) for the healing of osteoporotic bone defects in the rat femur using (18)F-Sodium Fluoride dPET-CT. METHODS Osteoporosis was induced by ovariectomy and a calcium restricted diet. After three months, rats were operated to create a 4 mm defect in the distal metaphyseal femur with internal fixation. 7 Rats have been treated either with CPC (Group 2) or with SrCPC (Group 3) for bone replacement and defect healing. Furthermore, a control group of 7 rats without any biomaterial (Group 1) was used for reference. 18 weeks after osteoporosis induction and 6 weeks following femoral surgery, dPET-CT studies scan were performed with (18)F-Sodium Fluoride. SUVs and a 2-tissue compartmental learning-machine model (K1-k4, VB, influx) were used for quantitative analysis. RESULTS VB, reflecting the fractional blood volume and k3, reflecting the formation of fluoroapatite were the most sensitive parameters for the characterisation of healing process and revealed the best differentiation for the control group and the CPC group (Group 2) as well as for the CPC with strontium carbonate group (Group 3) (p<0.05). VB was decreased by the order of Group 1, Group 2 and Group 3, while k3 was increased by the same order. Therefore, the data direct to a decreased fractional blood volume and increased fixation of fluoride in rats with these biomaterials. CONCLUSION We found PET scanning using (18)F-Sodium Fluoride to be a sensitive and useful method for evaluation of bone healing after replacement with CPC or SrCPC.
Collapse
Affiliation(s)
- Caixia Cheng
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany.
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Giessen, Germany
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Ulrich Thormann
- Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Giessen, Germany
| | - Reinhard Schnettler
- Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Giessen, Germany
| | - Ludwig G Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Schumacher
- Technische Universität Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michael Gelinsky
- Technische Universität Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Dresden, Germany
| | | |
Collapse
|
22
|
Fatnassi M, Jacquart S, Brouillet F, Rey C, Combes C, Girod Fullana S. Optimization of spray-dried hyaluronic acid microspheres to formulate drug-loaded bone substitute materials. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2013.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Yin J, Qin C, An H, Veeraragavan A, Feng B. Influence of Hydration by Steam/Superheating on the CO2 Capture Performance and Physical Properties of CaO-Based Particles. Ind Eng Chem Res 2013. [DOI: 10.1021/ie403080c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junjun Yin
- School of Mechanical & Mining Engineering, the University of Queensland, St Lucia QLD 4072, Australia
| | - Changlei Qin
- School of Mechanical & Mining Engineering, the University of Queensland, St Lucia QLD 4072, Australia
| | - Hui An
- School of Chemical Engineering, the University of Queensland, St Lucia QLD 4072, Australia
| | | | - Bo Feng
- School of Mechanical & Mining Engineering, the University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
24
|
Jacquart S, Siadous R, Henocq-Pigasse C, Bareille R, Roques C, Rey C, Combes C. Composition and properties of silver-containing calcium carbonate-calcium phosphate bone cement. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2665-2675. [PMID: 23892487 DOI: 10.1007/s10856-013-5014-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
The introduction of silver, either in the liquid phase (as silver nitrate solution: Ag(L)) or in the solid phase (as silver phosphate salt: Ag(S)) of calcium carbonate-calcium phosphate (CaCO3-CaP) bone cement, its influence on the composition of the set cement (C-Ag(L) and C-Ag(S) cements with a Ca/Ag atomic ratio equal to 10.3) and its biological properties were investigated. The fine characterisation of the chemical setting of silver-doped and reference cements was performed using FTIR spectroscopy. We showed that the formation of apatite was enhanced from the first hours of maturation of C-Ag(L) cement in comparison with the reference cement, whereas a longer period of maturation (about 10 h) was required to observe this increase for C-Ag(S) cement, although in both cases, silver was present in the set cements mainly as silver phosphate. The role of silver nitrate on the setting chemical reaction is discussed and a chemical scheme is proposed. Antibacterial activity tests (S. aureus and S. epidermidis) and in vitro cytotoxicity tests (human bone marrow stromal cells (HBMSC)) showed that silver-loaded CaCO3-CaP cements had antibacterial properties (anti-adhesion and anti-biofilm formation) without a toxic effect on HBMSC cells, making C-Ag(S) cement a promising candidate for the prevention of bone implant-associated infections.
Collapse
Affiliation(s)
- Sylvaine Jacquart
- CIRIMAT, UPS-INPT-CNRS, ENSIACET, Université de Toulouse, 4, allée Emile Monso, BP 44362, 31030, Toulouse Cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Fu K, Xu Q, Czernuszka J, Triffitt JT, Xia Z. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Biomed Mater 2013; 8:065007. [PMID: 24288015 DOI: 10.1088/1748-6041/8/6/065007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A partially converted, biodegradable coralline hydroxyapatite/calcium carbonate (CHACC) composite comprising a coral calcium carbonate scaffold enveloped by a thin layer of hydroxyapatite was used in the present study. The CHACC was characterized using powder x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. The ability of the CHACC to promote conductive osteogenesis was assessed in vitro using human mesenchymal stem cells (hMSCs) and in vivo using an immunodeficient mouse model. The clinical performance of CHACC as a bone substitute to fill voids caused by excision of bone tumours was also observed in 16 patients. The CHACC was found to consist of two overlapping layers both morphologically and chemically. Hydroxyapatite formed a thin layer of nanocrystals on the surface and a thick rough crystal layer of around 30 µm in thickness enveloping the rock-like core calcium carbonate exoskeletal architecture. hMSCs cultured on CHACC in osteogenic medium demonstrated significant osteogenic differentiation. After subcutaneous implantation of CHACC incorporating osteogenically differentiated hMSCs and an anti-resorptive agent, risedronate, into an immunodeficient mouse model, bone formation was observed on the surface of the implants. Clinical application of CHACC alone in 16 patients for bone augmentation after tumour removal showed that after implantation, visible callus formation was observed at one month and clinical bone healing achieved at four months. The majority of the implanted CHACC was degraded in 18-24 months. In conclusion, CHACC appears to be an excellent biodegradable bone graft material. It biointegrates with the host, is osteoconductive, biodegradable and can be an attractive alternative to autogenous grafts.
Collapse
Affiliation(s)
- Kun Fu
- Department of Orthopaedic Surgery, Affiliated Hospital, Hainan Medical College, #33 Longhua Road, Haikou, Hainan Province, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater 2013; 4:209-311. [PMID: 24956191 PMCID: PMC4030932 DOI: 10.3390/jfb4040209] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.
Collapse
|
27
|
|
28
|
Puvaneswary S, Balaji Raghavendran HR, Ibrahim NS, Murali MR, Merican AM, Kamarul T. A comparative study on morphochemical properties and osteogenic cell differentiation within bone graft and coral graft culture systems. Int J Med Sci 2013; 10:1608-14. [PMID: 24151432 PMCID: PMC3804786 DOI: 10.7150/ijms.6496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/30/2013] [Indexed: 11/05/2022] Open
Abstract
The objective of this study was to compare the morphological and chemical composition of bone graft (BG) and coral graft (CG) as well as their osteogenic differentiation potential using rabbit mesenchymal stem cells (rMSCs) in vitro. SEM analysis of BG and CG revealed that the pores in these grafts were interconnected, and their micro-CT confirmed pore sizes in the range of 107-315 µm and 103-514 µm with a total porosity of 92% and 94%, respectively. EDS analysis indicated that the level of calcium in CG was relatively higher than that in BG. FTIR of BG and CG confirmed the presence of functional groups corresponding to carbonyl, aromatic, alkyl, and alkane groups. XRD results revealed that the phase content of the inorganic layer comprised highly crystalline form of calcium carbonate and carbon. Atomic force microscopy analysis showed CG had better surface roughness compared to BG. In addition, significantly higher levels of osteogenic differentiation markers, namely, alkaline phosphatase (ALP), Osteocalcin (OC) levels, and Osteonectin and Runx2, Integrin gene expression were detected in the CG cultures, when compared with those in the BG cultures. In conclusion, our results demonstrate that the osteogenic differentiation of rMSCs is relatively superior in coral graft than in bone graft culture system.
Collapse
Affiliation(s)
- Subramaniam Puvaneswary
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, NOCERAL, Faculty of Medicine, University of Malaya, Kuala Lumpur-50603, Malaysia
| | | | | | | | | | | |
Collapse
|
29
|
Sariibrahimoglu K, Leeuwenburgh SCG, Wolke JGC, Yubao L, Jansen JA. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements. J Biomed Mater Res A 2011; 100:712-9. [DOI: 10.1002/jbm.a.34009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/18/2011] [Accepted: 11/01/2011] [Indexed: 11/08/2022]
|
30
|
Tadier S, Bareille R, Siadous R, Marsan O, Charvillat C, Cazalbou S, Amédée J, Rey C, Combes C. Strontium-loaded mineral bone cements as sustained release systems: Compositions, release properties, and effects on human osteoprogenitor cells. J Biomed Mater Res B Appl Biomater 2011; 100:378-90. [DOI: 10.1002/jbm.b.31959] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/04/2011] [Accepted: 08/14/2011] [Indexed: 11/06/2022]
|
31
|
Tadier S, Bolay NL, Fullana SG, Cazalbou S, Charvillat C, Labarrère M, Boitel D, Rey C, Combes C. Cogrinding significance for calcium carbonate-calcium phosphate mixed cement. II. Effect on cement properties. J Biomed Mater Res B Appl Biomater 2011; 99:302-12. [DOI: 10.1002/jbm.b.31899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/02/2011] [Accepted: 05/08/2011] [Indexed: 11/06/2022]
|
32
|
Lewis G. Viscoelastic properties of injectable bone cements for orthopaedic applications: State-of-the-art review. J Biomed Mater Res B Appl Biomater 2011; 98:171-91. [DOI: 10.1002/jbm.b.31835] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/08/2010] [Accepted: 02/10/2011] [Indexed: 02/05/2023]
|
33
|
Tadier S, Le Bolay N, Rey C, Combes C. Co-grinding significance for calcium carbonate-calcium phosphate mixed cement. Part I: effect of particle size and mixing on solid phase reactivity. Acta Biomater 2011; 7:1817-26. [PMID: 21147278 DOI: 10.1016/j.actbio.2010.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/11/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
In part I of this study we aim to evaluate and control the characteristics of the powders constituting the solid phase of a vaterite CaCO(3)-dicalcium phosphate dihydrate cement using a co-grinding process and to determine their impact on cement setting ability. An original methodology involving complementary analytical techniques was implemented to thoroughly investigate the grinding mechanism of separated or mixed reactive powders and the effects on solid phase reactivity. We showed that the association of both reactive powders during co-grinding improves the efficiency of this process in terms of the particle size decrease, thus making co-grinding adaptable to industrial development of the cement. For the first time the usefulness of horizontal attenuated total reflection Fourier transform infrared spectroscopy to follow the chemical setting reaction at 37°C in real time has been demonstrated. We point out the antagonist effects that co-grinding can have on cement setting: the setting time is halved; however, progress of the chemical reaction involving dissolution-reprecipitation is delayed by 30 min, probably due to the increased contact area between the reactive powders, limiting their hydration. More generally, we can take advantage of the co-grinding process to control powder mixing, size and reactivity and this original analytical methodology to better understand its effect on the phenomena involved during powder processing and cement setting, which is decisive for the development of multi-component cements.
Collapse
|
34
|
López A, Persson C, Hilborn J, Engqvist H. Synthesis and characterization of injectable composites of poly[D,L-lactide-co-(ε-caprolactone)] reinforced with β-TCP and CaCO3 for intervertebral disk augmentation. J Biomed Mater Res B Appl Biomater 2010; 95:75-83. [DOI: 10.1002/jbm.b.31685] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Rheological properties of calcium carbonate self-setting injectable paste. Acta Biomater 2010; 6:920-7. [PMID: 19716448 DOI: 10.1016/j.actbio.2009.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 11/21/2022]
Abstract
With the development of minimally invasive surgical techniques, there is growing interest in the research and development of injectable biomaterials with controlled rheological properties. In this context, the rheological properties and injectability characteristics of an original CaCO(3) self-setting paste have been investigated. Two complementary rheometrical procedures have been established using a controlled stress rheometer to follow the structure build-up at rest or during gentle mixing and/or handling on the one hand, and the likely shear-induced breakdown of this structure at 25 or 35 degrees Celsius on the other. The data obtained clearly show the influence of temperature on the development of a cement microstructure during setting, in all cases leading to a microporous cement made of an entangled network of aragonite-CaCO(3) needle-like crystals. Linear viscoelastic measurements arriving from an oscillatory shear at low deformation showed a progressive increase in the viscous modulus (G'') during paste setting, which is enhanced by an increase in temperature. In addition, steady shear measurements revealed the shear-thinning behaviour of this self-setting paste over an extended period after paste preparation and its ability to re-build through progressive paste setting at rest. The shear-thinning behaviour of this self-setting system was confirmed using the injectability system and a procedure we designed. The force needed to extrude a homogeneous and continuous column of paste decreases strongly upon injection and reaches a weight level to apply on the syringe piston around 2.5 kg, revealing the ease of injection of this CaCO(3) self-setting paste.
Collapse
|
36
|
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.
Collapse
|
37
|
Control of the Injectability of Calcium Carbonate-Calcium Phosphate Mixed Cements for Bone Reconstruction. ACTA ACUST UNITED AC 2008. [DOI: 10.4028/www.scientific.net/kem.396-398.225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to improve injectability and cohesiveness of original calcium carbonate-calcium phosphate mixed (CaCO3-CaP) self-setting paste for bone filling and repair. With this aim in view dry co-grinding was implemented on the solid phase (vaterite and dicalcium phosphate dihydrate) of this cement. A protocol designed to quantify paste injectability has been established and pointed out the synergistic positive effects of solid phase co-grinding treatment on injectability, cohesiveness and setting time of the paste. The improvement of these properties are related to close and homogeneous association of reactive powders and to the decrease of specific surface area favoring the powders hydration process enhancing setting reaction rate. In addition, the particle size decrease and morphology modification improved flowability of the paste which results in a low and constant (320 g) force level to extrude the paste.
Collapse
|
38
|
Bryce DL, Bultz EB, Aebi D. Calcium-43 Chemical Shift Tensors as Probes of Calcium Binding Environments. Insight into the Structure of the Vaterite CaCO3 Polymorph by 43Ca Solid-State NMR Spectroscopy. J Am Chem Soc 2008; 130:9282-92. [DOI: 10.1021/ja8017253] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David L. Bryce
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Elijah B. Bultz
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Dominic Aebi
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
39
|
Dorozhkin SV. Calcium orthophosphate cements for biomedical application. JOURNAL OF MATERIALS SCIENCE 2008; 43:3028-3057. [DOI: 10.1007/s10853-008-2527-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|