1
|
Abreu H, Lallukka M, Miola M, Spriano S, Vernè E, Raineri D, Leigheb M, Ronga M, Cappellano G, Chiocchetti A. Human T-Cell Responses to Metallic Ion-Doped Bioactive Glasses. Int J Mol Sci 2024; 25:4501. [PMID: 38674086 PMCID: PMC11050560 DOI: 10.3390/ijms25084501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Biomaterials are extensively used as replacements for damaged tissue with bioactive glasses standing out as bone substitutes for their intrinsic osteogenic properties. However, biomaterial implantation has the following risks: the development of implant-associated infections and adverse immune responses. Thus, incorporating metallic ions with known antimicrobial properties can prevent infection, but should also modulate the immune response. Therefore, we selected silver, copper and tellurium as doping for bioactive glasses and evaluated the immunophenotype and cytokine profile of human T-cells cultured on top of these discs. Results showed that silver significantly decreased cell viability, copper increased the T helper (Th)-1 cell percentage while decreasing that of Th17, while tellurium did not affect either cell viability or immune response, as evaluated via multiparametric flow cytometry. Multiplex cytokines assay showed that IL-5 levels were decreased in the copper-doped discs, compared with its undoped control, while IL-10 tended to be lower in the doped glass, compared with the control (plastic) while undoped condition showed lower expression of IL-13 and increased MCP-1 and MIP-1β secretion. Overall, we hypothesized that the Th1/Th17 shift, and specific cytokine expression indicated that T-cells might cross-activate other cell types, potentially macrophages and eosinophils, in response to the scaffolds.
Collapse
Affiliation(s)
- Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mari Lallukka
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy; (M.L.); (M.M.); (S.S.); (E.V.)
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy; (M.L.); (M.M.); (S.S.); (E.V.)
| | - Silvia Spriano
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy; (M.L.); (M.M.); (S.S.); (E.V.)
| | - Enrica Vernè
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy; (M.L.); (M.M.); (S.S.); (E.V.)
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Massimiliano Leigheb
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Mario Ronga
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
2
|
Kołodziejska M, Jankowska K, Klak M, Wszoła M. Chitosan as an Underrated Polymer in Modern Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3019. [PMID: 34835782 PMCID: PMC8625597 DOI: 10.3390/nano11113019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most well-known and characterized materials applied in tissue engineering. Due to its unique chemical, biological and physical properties chitosan is frequently used as the main component in a variety of biomaterials such as membranes, scaffolds, drug carriers, hydrogels and, lastly, as a component of bio-ink dedicated to medical applications. Chitosan's chemical structure and presence of active chemical groups allow for modification for tailoring material to meet specific requirements according to intended use such as adequate endurance, mechanical properties or biodegradability time. Chitosan can be blended with natural (gelatin, hyaluronic acid, collagen, silk, alginate, agarose, starch, cellulose, carbon nanotubes, natural rubber latex, κ-carrageenan) and synthetic (PVA, PEO, PVP, PNIPPAm PCL, PLA, PLLA, PAA) polymers as well as with other promising materials such as aloe vera, silica, MMt and many more. Chitosan has several derivates: carboxymethylated, acylated, quaternary ammonium, thiolated, and grafted chitosan. Its versatility and comprehensiveness are confirming by further chitosan utilization as a leading constituent of innovative bio-inks applied for tissue engineering. This review examines all the aspects described above, as well as is focusing on a novel application of chitosan and its modifications, including the 3D bioprinting technique which shows great potential among other techniques applied to biomaterials fabrication.
Collapse
Affiliation(s)
- Marta Kołodziejska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
| | - Kamila Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
- Polbionica Ltd., 01-793 Warsaw, Poland
| |
Collapse
|
3
|
Mantripragada VP, Jayasuriya AC. Bone regeneration using injectable BMP-7 loaded chitosan microparticles in rat femoral defect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:596-608. [PMID: 27040255 PMCID: PMC4839977 DOI: 10.1016/j.msec.2016.02.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2016] [Accepted: 02/24/2016] [Indexed: 01/20/2023]
Abstract
Injectable chitosan microparticles were prepared using a simple coacervation method under physiologically friendly conditions by eliminating oil or toxic chemical, and employing low temperature and pressure for growth factor stability. Amount of 200 ng of bone morphogenetic protein-7 (BMP-7) was incorporated in the chitosan microparticles by two methods: encapsulating and coating techniques. These microparticles were tested in vivo to determine the biological response in a rat femoral bone defect at 6 and 12 weeks. Four groups (n=10) were tested which include two groups for BMP-7 incorporated microparticles (by two techniques), microparticles without BMP-7, and defect itself (negative control). Healthy bone formation was observed around the microparticles, which were only confined to the defect site and did not disperse. Histology indicated minor inflammatory response around the microparticles at 6 weeks, which reduced by 12 weeks. Micro-CT analysis of bone surface density and porosity was found to be significantly more (p<0.05) for microparticles containing groups, in comparison with controls, which suggests that the new bone formed in the presence of microparticles is more interconnected and porous. Collagen fibrils analysis conducted using multiphoton microscopy showed significant improvement in the formation of bundled collagen area (%) in microparticles containing groups in comparison with controls, indicating higher cross-linking between the fibrils. Microparticles were biocompatible and did not degrade in the 12 week implant period.
Collapse
Affiliation(s)
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807, USA; Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614-5807, USA.
| |
Collapse
|
4
|
Modglin VC, Brown RF, Jung SB, Day DE. Cytotoxicity assessment of modified bioactive glasses with MLO-A5 osteogenic cells in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1191-1199. [PMID: 23392968 DOI: 10.1007/s10856-013-4875-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
The primary objective of this study was to evaluate in vitro responses of MLO-A5 osteogenic cells to two modifications of the bioactive glass 13-93. The modified glasses, which were designed for use as cell support scaffolds and contained added boron to form the glasses 13-93 B1 and 13-93 B3, were made to accelerate formation of a bioactive hydroxyapatite surface layer and possibly enhance tissue growth. Quantitative MTT cytotoxicity tests revealed no inhibition of growth of MLO-A5 cells incubated with 13-93 glass extracts up to 10 mg/ml, moderate inhibition of growth with 13-93 B1 glass extracts, and noticeable inhibition of growth with 13-93 B3 glass extracts. A morphology-based biocompatibility test was also performed and yielded qualitative assessments of the relative biocompatibilities of glass extracts that agree with those obtained by the quantitative MTT test. However, as a proof of concept experiment, when MLO-A5 cells were seeded onto 13-93 B3 scaffolds in a dynamic in vitro environment, cell proliferation occurred as evidenced by qualitative and quantitative MTT labeling of scaffolds. Together these results demonstrate the in vitro toxicity of released borate ion in static experiments; however borate ion release can be mitigated in a dynamic environment similar to the human body where microvasculature is present. Here we argue that despite toxicity in static environments, boron-containing 13-93 compositions may warrant further study for use in tissue engineering applications.
Collapse
Affiliation(s)
- Vernon C Modglin
- Department of Biological Sciences, Center for Bone and Tissue Repair and Regeneration, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | | | | | | |
Collapse
|
5
|
Hsu SH, Kuo WC, Chen YT, Yen CT, Chen YF, Chen KS, Huang WC, Cheng H. New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomater 2013; 9:6606-15. [PMID: 23376237 DOI: 10.1016/j.actbio.2013.01.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 01/07/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
Nerve regeneration remains a difficult challenge due to the lack of safe and efficient matrix support. We designed a laminin (LN)-modified chitosan multi-walled nerve conduit combined with bone marrow stem cell (BMSC) grating to bridge a 10 mm long gap in the sciatic nerve of Sprague-Dawley rats. The repair outcome was monitored during 16 weeks after surgery. Successful grafting of LN onto the chitosan film, confirmed by immunolocalization, significantly improved cell adhesion. In vivo study showed that newly formed nerve cells covered the interior of the conduit to connect the nerve gap successfully in all groups. The rats implanted with the conduit combined with BMSCs showed the best results, in terms of nerve regrowth, muscle mass of gastrocnemius, function recovery and tract tracing. Neuroanatomical horseradish peroxidase tracer analysis of motor neurons in the lumbar spinal cord indicated that the amount and signal intensity were significantly improved. Furthermore, BMSCs suppressed neuronal cell death and promoted regeneration by suppressing the inflammatory and fibrotic response induced by chitosan after long-term implantation. In summary, this study suggests that LN-modified chitosan multi-walled nerve conduit combined with BMSCs is an efficient and safe conduit matrix for nerve regeneration.
Collapse
|
6
|
Spin-Neto R, Coletti FL, Freitas RMD, Pavone C, Campana-Filho SP, Marcantonio RAC. Chitosan-based biomaterials used in critical-size bone defects: radiographic study in rat's calvaria. REVISTA DE ODONTOLOGIA DA UNESP 2012. [DOI: 10.1590/s1807-25772012000500003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE: This study evaluated, using digital radiographic images, the action of chitosan and chitosan hydrochloride biomaterials, with both low and high molecular weight, used in the correction of critical-size bone defects (CSBD's) in rat's calvaria. MATERIAL AND METHOD: CSBD's with 8 mm in diameter were surgically created in the calvaria of 50 Holtzman rats and these were filled with a blood clot (Control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride and high molecular weight chitosan hydrochloride, for a total of 10 animals, which were divided into two experimental periods (15 and 60 days), for each biomaterial. The radiographic evaluation was made using two digital radiographs of the animal's skull: one taken right after the bone defect was created and the other at the moment of the sacrifice, providing the initial and the final radiographic bone density in the area of the defect, which were compared. RESULT: Analysis of radiographic bone density indicated that the increase in the radiographic bone density of the CSBD's treated with the proposed biomaterials, in either molecular weight, in both observed periods, where similar to those found in control group. CONCLUSION: Tested chitosan-based biomaterials were not able to enhance the radiographic density in the CSBD's made in rat's calvaria.
Collapse
|
7
|
Jiang T, Nukavarapu SP, Deng M, Jabbarzadeh E, Kofron MD, Doty SB, Abdel-Fattah WI, Laurencin CT. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Acta Biomater 2010; 6:3457-70. [PMID: 20307694 DOI: 10.1016/j.actbio.2010.03.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/19/2010] [Accepted: 03/17/2010] [Indexed: 01/08/2023]
Abstract
Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated. The chitosan/PLAGA scaffold showed slower degradation than the PLAGA scaffold in vitro. Although chitosan/PLAGA scaffold showed a gradual decrease in compressive properties during the 12-week degradation period, the compressive strength and compressive modulus remained in the range of human trabecular bone. Chitosan/PLAGA-based scaffolds were able to guide bone formation in a rabbit ulnar critical-sized-defect model. Microcomputed tomography analysis demonstrated that successful bridging of the critical-sized defect on the sides both adjacent to and away from the radius occurred using chitosan/PLAGA-based scaffolds. Immobilization of heparin and recombinant human bone morphogenetic protein-2 on the chitosan/PLAGA scaffold surface promoted early bone formation as evidenced by complete bridging of the defect along the radius and significantly enhanced mechanical properties when compared to the chitosan/PLAGA scaffold. Furthermore, histological analysis suggested that chitosan/PLAGA-based scaffolds supported normal bone formation via intramembranous formation.
Collapse
|
8
|
Spin-Neto R, de Freitas RM, Pavone C, Cardoso MB, Campana-Filho SP, Marcantonio RAC, Marcantonio E. Histological evaluation of chitosan-based biomaterials used for the correction of critical size defects in rat's calvaria. J Biomed Mater Res A 2009; 93:107-14. [DOI: 10.1002/jbm.a.32491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|