1
|
Rabel M, Warncke P, Thürmer M, Grüttner C, Bergemann C, Kurland HD, Müller FA, Koeberle A, Fischer D. The differences of the impact of a lipid and protein corona on the colloidal stability, toxicity, and degradation behavior of iron oxide nanoparticles. NANOSCALE 2021; 13:9415-9435. [PMID: 34002735 DOI: 10.1039/d0nr09053k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
AIM In this study, the influence of a serum albumin (SA) and human plasma (HP) derived protein- and lipid molecule corona on the toxicity and biodegradability of different iron oxide nanoparticles (IONP) was investigated. METHODS IONP were synthesized and physicochemically characterized regarding size, charge, and colloidal stability. The adsorbed proteins were quantified and separated by gel electrophoresis. Adsorbed lipids were profiled by ultraperformance liquid chromatography-ESI-tandem mass spectrometry. The biocompatibility was investigated using isolated erythrocytes and a shell-less hen's egg model. The biodegradability was assessed by iron release studies in artificial body fluids. RESULTS The adsorption patterns of proteins and lipids varied depending on the surface characteristics of the IONP like charge and hydrophobicity. The biomolecule corona modified IONP displayed favorable colloidal stability and toxicological profile compared to IONP without biomolecule coronas, reducing erythrocyte aggregation and hemolysis in vitro as well as the corresponding effects ex ovo/in vivo. The coronas decreased the degradation speed of all tested IONP compared to bare particles, but, whereas all IONP degraded at the same rate for the SA corona, substantial differences were evident for IONP with HP-derived corona depending on the lipid adsorption profile. CONCLUSION In this study the impact of the proteins and lipids in the biomolecule corona on the entire IONP application cycle from the injection process to the degradation was demonstrated.
Collapse
Affiliation(s)
- Martin Rabel
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Paul Warncke
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Maria Thürmer
- Department of Pharmaceutical and Medical Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Cordula Grüttner
- micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | | | - Heinz-Dieter Kurland
- Otto Schott Institute of Materials Research (OSIM), Friedrich-Schiller-University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Frank A Müller
- Otto Schott Institute of Materials Research (OSIM), Friedrich-Schiller-University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical and Medical Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany and Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Mitterweg 24, 6020 Innsbruck, Austria
| | - Dagmar Fischer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Dragar Č, Kralj S, Kocbek P. Bioevaluation methods for iron-oxide-based magnetic nanoparticles. Int J Pharm 2021; 597:120348. [DOI: 10.1016/j.ijpharm.2021.120348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
|
3
|
Matuszak J, Lutz B, Sekita A, Zaloga J, Alexiou C, Lyer S, Cicha I. Drug delivery to atherosclerotic plaques using superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2018; 13:8443-8460. [PMID: 30587970 PMCID: PMC6294059 DOI: 10.2147/ijn.s179273] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Magnetic drug targeting utilizes superparamagnetic iron oxide nanoparticles (SPIONs) to accumulate drugs in specified vasculature regions. METHODS We produced SPIONs conjugated with dexamethasone phosphate (SPION-DEXA). The efficacy of magnetic drug targeting was investigated in a rabbit model of atherosclerosis induced by balloon injury and high cholesterol diet. RESULTS In vitro, SPION-DEXA were well-tolerated by endothelial cells. SPION-DEXA were internalized by human peripheral blood mononuclear cells and induced CD163 expression comparable with the free drug. In vivo, magnetic targeting of SPIONs to abdominal aorta was confirmed by histology. Upon vascular injury followed by high-cholesterol diet, early administration of SPION-DEXA enhanced the inflammatory burden in the plaques. Increased macrophage content and larger intima- media thickness were observed in animals treated with SPION-DEXA compared with controls. In advanced atherosclerosis, no beneficial effect of local glucocorticoid therapy was detectable. CONCLUSION Magnetic drug targeting represents an efficient platform to deliver drugs to diseased arteries in vivo. However, targeting of vascular injury in the lipid-rich environment using dexamethasone-conjugated SPIONs may cause accelerated inflammatory response.
Collapse
Affiliation(s)
- Jasmin Matuszak
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| | - Barbara Lutz
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| | - Aleksander Sekita
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| | - Jan Zaloga
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| | - Christoph Alexiou
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| | - Stefan Lyer
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| | - Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| |
Collapse
|
4
|
Taneja G, Sud A, Pendse N, Panigrahi B, Kumar A, Sharma AK. Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies. Cardiovasc Toxicol 2018; 19:1-12. [DOI: 10.1007/s12012-018-9491-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Neutral red separation property of ultrasmall-gluconic acid capped superparamagnetic iron oxide nanoclusters coprecipitated with goethite and hematite. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
|
7
|
Amin FU, Hoshiar AK, Do TD, Noh Y, Shah SA, Khan MS, Yoon J, Kim MO. Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer's disease. NANOSCALE 2017; 9:10619-10632. [PMID: 28534925 DOI: 10.1039/c7nr00772h] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregated amyloid beta (Aβ) in the brain. Here, we describe for the first time the development of a new, pioneering nanotechnology-based drug delivery approach for potential therapies for neurodegenerative diseases, particularly AD. We demonstrated the delivery of fluorescent carboxyl magnetic Nile Red particles (FMNPs) to the brains of normal mice using a functionalized magnetic field (FMF) composed of positive- and negative-pulsed magnetic fields generated by electromagnetic coils. The FMNPs successfully reached the brain in a few minutes and showed evidence of blood-brain barrier (BBB) crossing. Moreover, the best FMF conditions were found for inducing the FMNPs to reach the cortex and hippocampus regions. Under the same FMF conditions, dextran-coated Fe3O4 magnetic nanoparticles (MNPs) loaded with osmotin (OMNP) were transported to the brains of Aβ1-42-treated mice. Compared with native osmotin, the OMNP potently attenuates Aβ1-42-induced synaptic deficits, Aβ accumulation, BACE-1 expression and tau hyperphosphorylation. This magnetic drug delivery approach can be extended to preclinical and clinical use and may advance the chances of success in the treatment of neurological disorders like AD in the future.
Collapse
Affiliation(s)
- Faiz Ul Amin
- Division of Life Science (BK 21), College of Natural Sciences, Gyeongsang National University (GNU), Jinju, 660-701, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Melanoma is the most aggressive type of skin cancer and has very high rates of mortality. An early stage melanoma can be surgically removed, with a survival rate of 99%. This literature review intends to elucidate the possibilities to treat melanoma skin cancer using hybrid nanofibers developed by advanced electrospinning process. In this review we have shown that the enhanced permeability and retention is the basis for using nanotechnology, aiming topical drug delivery. The importance of the detection of skin cancer in the early stages is directly related to non-metastatic effects and survival rates of melanoma cells. Inhibitors of protein kinase are already available in the market for melanoma treatment and are approved by the FDA; these agents are cobimetinib, dabrafenib, ipilimumab, nivolumab, trametinib, and vemurafenib. We also report a case study involving two different approaches for targeting melanoma skin cancer therapy, namely, magnetic-based core–shell particles and electrospun mats.
Collapse
|
9
|
A novel human artery model to assess the magnetic accumulation of SPIONs under flow conditions. Sci Rep 2017; 7:42314. [PMID: 28176885 PMCID: PMC5296745 DOI: 10.1038/srep42314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022] Open
Abstract
Magnetic targeting utilises the properties of superparamagnetic iron oxide nanoparticles (SPIONs) to accumulate particles in specified vasculature regions under an external magnetic field. As the behaviour of circulating particles varies depending on nanoparticle characteristics, magnetic field strength and flow dynamics, we established an improved ex vivo model in order to estimate the magnetic capture of SPIONs in physiological-like settings. We describe here a new, easy to handle ex vivo model of human umbilical artery. Using this model, the magnetic targeting of different types of SPIONs under various external magnetic field gradients and flow conditions was investigated by atomic emission spectroscopy and histology. Among tested particles, SPION-1 with lauric acid shell had the largest capacity to accumulate at the specific artery segment. SPION-2 (lauric acid/albumin-coated) were also successfully targeted, although the observed peak in the iron content under the tip of the magnet was smaller than for SPION-1. In contrast, we did not achieve magnetic accumulation of dextran-coated SPION-3. Taken together, the umbilical artery model constitutes a time- and cost-efficient, 3R-compliant tool to assess magnetic targeting of SPIONs under flow. Our results further imply the possibility of an efficient in vivo targeting of certain types of SPIONs to superficial arteries.
Collapse
|
10
|
Cicha I. Strategies to enhance nanoparticle-endothelial interactions under flow. ACTA ACUST UNITED AC 2016. [DOI: 10.3233/jcb-15020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Mattingly SJ, O'Toole MG, James KT, Clark GJ, Nantz MH. Magnetic nanoparticle-supported lipid bilayers for drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3326-3332. [PMID: 25714501 DOI: 10.1021/la504830z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetic nanoparticle-supported lipid bilayers (SLBs) constructed around core-shell Fe3O4-SiO2 nanoparticles (SNPs) were prepared and evaluated as potential drug carriers. We describe how an oxime ether lipid can be mixed with SNPs to produce lipid-particle assemblies with highly positive ζ potential. To demonstrate the potential of the resultant cationic SLBs, the particles were loaded with either the anticancer drug doxorubicin or an amphiphilic analogue, prepared to facilitate integration into the supported lipid bilayer, and then examined in studies against MCF-7 breast cancer cells. The assemblies were rapidly internalized and exhibited higher toxicity than treatments with doxorubicin alone. The magnetic SLBs were also shown to increase the efficacy of unmodified doxorubicin.
Collapse
Affiliation(s)
- Stephanie J Mattingly
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Martin G O'Toole
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Kurtis T James
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Geoffrey J Clark
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Michael H Nantz
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
12
|
A survey on "Trojan Horse" peptides: opportunities, issues and controlled entry to "Troy". J Control Release 2014; 194:53-70. [PMID: 25151981 DOI: 10.1016/j.jconrel.2014.08.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022]
Abstract
Cell-penetrating peptides (CPPs), often vividly termed as the "Trojan Horse" peptides, have attracted considerable interest for the intracellular delivery of a wide range of cargoes, such as small molecules, peptides, proteins, nucleic acids, contrast agents, nanocarriers and so on. Some preclinical and clinical developments of CPP conjugates demonstrate their promise as therapeutic agents for drug discovery. There is increasing evidence to suggest that CPPs have the potential to cross several bio-barriers (e.g., blood-brain barriers, intestinal mucosa, nasal mucosa and skin barriers). Despite revolutionary process in many aspects, there are a lot of basic issues unclear for these entities, such as internalization mechanisms, translocation efficiency, translocation kinetics, metabolic degradation, toxicity, side effect, distribution and non-specificity. Among them, non-specificity remains a major drawback for the in vivo application of CPPs in the targeted delivery of cargoes. So far, diverse organelle-specific CPPs or controlled delivery strategies have emerged and improved their specificity. In this review, we will look at the opportunities of CPPs in clinical development, bio-barriers penetration and nanocarriers delivery. Then, a series of basic problems of CPPs will be discussed. Finally, this paper will highlight the use of various controlled strategies in the organelle-specific delivery and targeted delivery of CPPs. The purpose of this review will be to emphasize most influential advance in this field and present a fundamental understanding for challenges and utilizations of CPPs. This will accelerate their translation as efficient vectors from the in vitro setting into the clinic arena, and retrieve the entry art to "Troy".
Collapse
|
13
|
Machida-Sano I, Hirakawa M, Matsumoto H, Kamada M, Ogawa S, Satoh N, Namiki H. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels. Biomed Mater 2014; 9:025007. [PMID: 24496019 DOI: 10.1088/1748-6041/9/2/025007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe(3+), Al(3+), Ca(2+), Ba(2+) and Sr(2+))-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology.
Collapse
Affiliation(s)
- Ikuko Machida-Sano
- Department of Biology, School of Education, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Jiang L, Zhou Q, Mu K, Xie H, Zhu Y, Zhu W, Zhao Y, Xu H, Yang X. pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials 2013; 34:7418-28. [DOI: 10.1016/j.biomaterials.2013.05.078] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/30/2013] [Indexed: 11/16/2022]
|
16
|
Laurencin M, Cam N, Georgelin T, Clément O, Autret G, Siaugue JM, Ménager C. Human erythrocytes covered with magnetic core-shell nanoparticles for multimodal imaging. Adv Healthc Mater 2013; 2:1209-12. [PMID: 23568859 DOI: 10.1002/adhm.201200384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/14/2012] [Indexed: 11/11/2022]
Abstract
Surface functionalization of human red blood cells (hRBCs) with fluorescent and magnetic silica core-shell nanoparticles is used to design a carrier suitable for multimodal imaging with a long circulating time. The coated magnetic hRBCs show no hemolytic activity, while the advantage of the affinity of proteins for silica allows a further coating.
Collapse
Affiliation(s)
- Mathieu Laurencin
- Université Pierre et Marie Curie UPMC-CNRS, Laboratoire Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques PECSA UMR 7195, 4 place Jussieu, 75252 Paris, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Tu SJ, Yang PY, Hong JH, Lo CJ. Quantitative dosimetric assessment for effect of gold nanoparticles as contrast media on radiotherapy planning. Radiat Phys Chem Oxf Engl 1993 2013. [DOI: 10.1016/j.radphyschem.2013.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Wadajkar AS, Bhavsar Z, Ko CY, Koppolu B, Cui W, Tang L, Nguyen KT. Multifunctional particles for melanoma-targeted drug delivery. Acta Biomater 2012; 8:2996-3004. [PMID: 22561668 DOI: 10.1016/j.actbio.2012.04.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/27/2012] [Accepted: 04/26/2012] [Indexed: 11/26/2022]
Abstract
New magnetic-based core-shell particles (MBCSPs) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSPs consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSPs were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the α(5)β(3) receptors of melanoma cells. MBCSPs consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSPs have an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 μg ml(-1). Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSPs were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in the presence of a magnet. Results indicate great potential of MBCSPs as a platform technology to target, treat and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents.
Collapse
|
19
|
Li YF, Chen C. Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2965-80. [PMID: 21932238 DOI: 10.1002/smll.201101059] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Indexed: 05/09/2023]
Abstract
It is important to obtain a better understanding of the uptake, trafficking, pharmacokinetics, clearance, and role of nanomaterials in biological systems, so that their possible undesirable effects can be avoided. A number of metallic or metal-containing nanomaterials, such as gold nanoparticles and nanorods, quantum dots, iron oxides nanoparticles, and endohedral metallofullerenes, have already been or will soon become very promising for biomedical applications. This review presents a summary of currently available data on the fate and toxicity of these metallic or metal-containing nanoparticles based on animal studies. Several issues regarding the nanotoxicity assessment and future directions on the study of the fate of these nanoparticles are also proposed.
Collapse
Affiliation(s)
- Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, China
| | | |
Collapse
|
20
|
Mahmoudi M, Serpooshan V, Laurent S. Engineered nanoparticles for biomolecular imaging. NANOSCALE 2011; 3:3007-26. [PMID: 21717012 DOI: 10.1039/c1nr10326a] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In recent years, the production of nanoparticles (NPs) and exploration of their unusual properties have attracted the attention of physicists, chemists, biologists and engineers. Interest in NPs arises from the fact that the mechanical, chemical, electrical, optical, magnetic, electro-optical and magneto-optical properties of these particles are different from their bulk properties and depend on the particle size. There are numerous areas where nanoparticulate systems are of scientific and technological interest, particularly in biomedicine where the emergence of NPs with specific properties (e.g. magnetic and fluorescence) for contrast agents can lead to advancing the understanding of biological processes at the biomolecular level. This review will cover a full description of the physics of various imaging methods, including MRI, optical techniques, X-rays and CT. In addition, the effect of NPs on the improvement of the mentioned non-invasive imaging methods will be discussed together with their advantages and disadvantages. A detailed discussion will also be provided on the recent advances in imaging agents, such as fluorescent dye-doped silica NPs, quantum dots, gold- and engineered polymeric-NPs, superparamagnetic iron oxide NPs (SPIONs), and multimodal NPs (i.e. nanomaterials that are active in both MRI and optical methods), which are employed to overcome many of the limitations of conventional contrast agents (e.g. gadolinium).
Collapse
Affiliation(s)
- Morteza Mahmoudi
- National Cell Bank, Pasteur Institute of Iran, Tehran, 11365-8639, Iran
| | | | | |
Collapse
|
21
|
Kempe M, Kempe H, Snowball I, Wallén R, Arza CR, Götberg M, Olsson T. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials 2010; 31:9499-510. [PMID: 20732712 DOI: 10.1016/j.biomaterials.2010.07.107] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/30/2010] [Indexed: 11/19/2022]
Abstract
Implant-assisted targeting of magnetic particles under the influence of an external magnetic field has previously been verified through mathematical modeling, in vitro studies, and in vivo studies on rat carotid arteries as a feasible method for localized drug delivery. The present study focuses on the development of nanoparticles for the treatment of in-stent thrombosis. Magnetic nanoparticles in the size-range 10-30 nm were synthesized in a one-pot procedure by precipitation of ferrous hydroxide followed by oxidation to magnetite. The nanoparticles were silanized with tetraethyl orthosilicate in the presence of triethylene glycol and/or polyethylene glycol. The surface coated magnetite nanoparticles were activated with either N-hydroxysulfosuccinimide or tresyl chloride for covalent immobilization of tissue plasminogen activator (tPA). Hysteresis loops showed saturation magnetizations of 55.8, 44.1, and 43.0 emu/g for the naked nanoparticles, the surface coated nanoparticles, and the tPA-nanoparticle conjugates, respectively. The hemolytic activity of the nanoparticles in blood was negligible. An initial in vivo biocompatibility test in pig, carried out by intravascular injection of the nanoparticles in a stented brachial artery, showed no short-term adverse effects. In vitro evaluation in a flow-through model proved that the nanoparticles were captured efficiently to the surface of a ferromagnetic coiled wire at the fluid velocities typical for human arteries. A preliminary test of the tPA-nanoparticle conjugates in a pig model suggested that the conjugates may be used for treatment of in-stent thrombosis in coronary arteries.
Collapse
Affiliation(s)
- Maria Kempe
- Biomedical Polymer Technology, Department of Experimental Medical Science, Lund University, BMC D11, SE-22184 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Chorny M, Hood E, Levy RJ, Muzykantov VR. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. J Control Release 2010; 146:144-51. [PMID: 20483366 DOI: 10.1016/j.jconrel.2010.05.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/23/2010] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
Abstract
Antioxidant enzymes have shown promise as a therapy for pathological conditions involving increased production of reactive oxygen species (ROS). However the efficiency of their use for combating oxidative stress is dependent on the ability to achieve therapeutically adequate levels of active enzymes at the site of ROS-mediated injury. Thus, the implementation of antioxidant enzyme therapy requires a strategy enabling both guided delivery to the target site and effective protection of the protein in its active form. To address these requirements we developed magnetically responsive nanoparticles (MNP) formed by precipitation of calcium oleate in the presence of magnetite-based ferrofluid (controlled aggregation/precipitation) as a carrier for magnetically guided delivery of therapeutic proteins. We hypothesized that antioxidant enzymes, catalase and superoxide dismutase (SOD), can be protected from proteolytic inactivation by encapsulation in MNP. We also hypothesized that catalase-loaded MNP applied with a high-gradient magnetic field can rescue endothelial cells from hydrogen peroxide toxicity in culture. To test these hypotheses, a family of enzyme-loaded MNP formulations were prepared and characterized with respect to their magnetic properties, enzyme entrapment yields and protection capacity. SOD- and catalase-loaded MNP were formed with average sizes ranging from 300 to 400 nm, and a protein loading efficiency of 20-33%. MNP were strongly magnetically responsive (magnetic moment at saturation of 14.3 emu/g) in the absence of magnetic remanence, and exhibited a protracted release of their cargo protein in plasma. Catalase stably associated with MNP was protected from proteolysis and retained 20% of its initial enzymatic activity after 24h of exposure to pronase. Under magnetic guidance catalase-loaded MNP were rapidly taken up by cultured endothelial cells providing increased resistance to oxidative stress (62+/-12% cells rescued from hydrogen peroxide induced cell death vs. 10+/-4% under non-magnetic conditions). We conclude that non-polymeric MNP formed using the controlled aggregation/precipitation strategy are a promising carrier for targeted antioxidant enzyme therapy, and in combination with magnetic guidance can be applied to protect endothelial cells from oxidative stress mediated damage. This protective effect of magnetically targeted MNP impregnated with antioxidant enzymes can be highly relevant for the treatment of cardiovascular disease and should be further investigated in animal models.
Collapse
Affiliation(s)
- Michael Chorny
- Department of Pediatrics, The Children's Hospital of Philadelphia, Abramson Research Bldg., Ste. 702, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
23
|
Hernández R, Sacristán J, Mijangos C. Sol/Gel Transition of Aqueous Alginate Solutions Induced by Fe2+ Cations. MACROMOL CHEM PHYS 2010. [DOI: 10.1002/macp.200900691] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
A novel harvesting method for cultured cells using iron-cross-linked alginate films as culture substrates. Biotechnol Appl Biochem 2009; 55:1-8. [DOI: 10.1042/ba20090215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 2009; 61:467-77. [PMID: 19389434 DOI: 10.1016/j.addr.2009.03.007] [Citation(s) in RCA: 600] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 03/30/2009] [Indexed: 12/11/2022]
Abstract
Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative therapeutic and diagnostic (i.e., theragnostic) applications have emerged with MNP use, such as MRI-guided cell replacement therapy or MRI-based imaging of cancer-specific gene delivery. However, mounting evidence suggests that certain properties of nanoparticles (e.g., enhanced reactive area, ability to cross cell and tissue barriers, resistance to biodegradation) amplify their cytotoxic potential relative to molecular or bulk counterparts. Oxidative stress, a 3-tier paradigm of nanotoxicity, manifests in activation of reactive oxygen species (ROS) (tier I), followed by a proinflammatory response (tier II) and DNA damage leading to cellular apoptosis and mutagenesis (tier III). Invivo administered MNPs are quickly challenged by macrophages of the reticuloendothelial system (RES), resulting in not only neutralization of potential MNP toxicity but also reduced circulation time necessary for MNP efficacy. We discuss the role of MNP size, composition and surface chemistry in their intracellular uptake, biodistribution, macrophage recognition and cytotoxicity, and review current studies on MNP toxicity, caveats of nanotoxicity assessments and engineering strategies to optimize MNPs for biomedical use.
Collapse
Affiliation(s)
- Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093-0629, USA.
| | | | | |
Collapse
|
26
|
Machida-Sano I, Matsuda Y, Namiki H. In vitro
adhesion of human dermal fibroblasts on iron cross-linked alginate films. Biomed Mater 2009; 4:025008. [DOI: 10.1088/1748-6041/4/2/025008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Ma HL, Xu YF, Qi XR, Maitani Y, Nagai T. Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm 2007; 354:217-26. [PMID: 18191350 DOI: 10.1016/j.ijpharm.2007.11.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 11/18/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
Abstract
The objectives of this study were to describe the pharmacokinetics and tissue distribution of superparamagnetic iron oxide nanoparticle (SPIO) stabilized with alginate (SPIO-alginate), and investigate its potential in detecting liver cancers as a newly developed magnetic resonance (MR) contrast agent. Pharmacokinetics and tissue distribution of SPIO-alginate were investigated in Sprague-Dawley rats. The results showed that SPIO-alginate was eliminated rapidly from serum with the half-life of 0.27 h at 109.5 micromol Fe/kg and accumulated dominantly in liver and spleen with a total percentage of more than 90% of dose after intravenous injection. The studies of pharmacokinetics and distribution of SPIO-alginate in rats indicated the MR contrast agent, based on SPIO, mainly accumulating in targeting organs that contain phagocytosing cells, i.e. liver and spleen. The efficacies in detecting hepatocellular carcinoma (HCC) of rat with primary liver cancer and xenograft liver cancers of rabbit were investigated before and after injection of SPIO-alginate. The signal intensity of liver parenchyma in rabbit with VX2 tumor after injection of SPIO-alginate was reduced sharply resulting in a significant contrast between liver parenchyma and tumor. Detection of the HCC in rat model was also demonstrated. The present study provides evidence that SPIO-alginate might have the ability to improve the detection of liver tumors as an MR contrast agent, and the efficacy is associated with the SPIO specifically located in Kupffer cells in hepatic sinusoid.
Collapse
Affiliation(s)
- Hui Li Ma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | | | | | | | | |
Collapse
|