1
|
Boone K, Cloyd AK, Derakovic E, Spencer P, Tamerler C. Designing Collagen-Binding Peptide with Enhanced Properties Using Hydropathic Free Energy Predictions. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:3342. [PMID: 38037603 PMCID: PMC10686322 DOI: 10.3390/app13053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Collagen is fundamental to a vast diversity of health functions and potential therapeutics. Short peptides targeting collagen are attractive for designing modular systems for site-specific delivery of bioactive agents. Characterization of peptide-protein binding involves a larger number of potential interactions that require screening methods to target physiological conditions. We build a hydropathy-based free energy estimation tool which allows quick evaluation of peptides binding to collagen. Previous studies showed that pH plays a significant role in collagen structure and stability. Our design tool enables probing peptides for their collagen-binding property across multiple pH conditions. We explored binding features of currently known collagen-binding peptides, collagen type I alpha chain 2 sense peptide (TKKTLRT) and decorin LRR-10 (LRELHLNNN). Based on these analyzes, we engineered a collagen-binding peptide with enhanced properties across a large pH range in contrast to LRR-10 pH dependence. To validate our predictions, we used a quantum-dots-based binding assay to compare the coverage of the peptides on type I collagen. The predicted peptide resulted in improved collagen binding. Hydropathy of the peptide-protein pair is a promising approach to finding compatible pairings with minimal use of computational resources, and our method allows for quick evaluation of peptides for binding to other proteins. Overall, the free-energy-based tool provides an alternative computational screening approach that impacts protein interaction search methods.
Collapse
Affiliation(s)
- Kyle Boone
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
| | - Aya Kirahm Cloyd
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1132 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
| | - Emina Derakovic
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1132 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1132 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
| |
Collapse
|
2
|
Chen J, Huang D, Wang L, Hou J, Zhang H, Li Y, Zhong S, Wang Y, Wu Y, Huang W. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. J Colloid Interface Sci 2020; 574:162-173. [DOI: 10.1016/j.jcis.2020.04.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
|
3
|
Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020; 161-162:22-41. [PMID: 32745497 DOI: 10.1016/j.addr.2020.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Wound repair is a fascinatingly complex process, with overlapping events in both space and time needed to pave a pathway to successful healing. This additional complexity presents challenges when developing methods for the controlled delivery of therapeutics for wound repair and tissue engineering. Unlike more traditional applications, where biomaterial-based depots increase drug solubility and stability in vivo, enhance circulation times, and improve retention in the target tissue, when aiming to modulate wound healing, there is a desire to enable localised, spatiotemporal control of multiple therapeutics. Furthermore, many therapeutics of interest in the context of wound repair are sensitive biologics (e.g. growth factors), which present unique challenges when designing biomaterial-based delivery systems. Here, we review the diverse approaches taken by the biomaterials community for creating stimuli-responsive materials that are beginning to enable spatiotemporal control over the delivery of therapeutics for applications in tissue engineering and regenerative medicine.
Collapse
|
4
|
Terzi A, Gallo N, Bettini S, Sibillano T, Altamura D, Madaghiele M, De Caro L, Valli L, Salvatore L, Sannino A, Giannini C. Sub‐ and Supramolecular X‐Ray Characterization of Engineered Tissues from Equine Tendon, Bovine Dermis, and Fish Skin Type‐I Collagen. Macromol Biosci 2020; 20:e2000017. [DOI: 10.1002/mabi.202000017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alberta Terzi
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Nunzia Gallo
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Simona Bettini
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Davide Altamura
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Marta Madaghiele
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Liberato De Caro
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce 73100 Italy
| | - Luca Salvatore
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Alessandro Sannino
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| |
Collapse
|
5
|
Bayat A, Ramazani S. A. A. Biocompatible conductive alginate/polyaniline-graphene neural conduits fabricated using a facile solution extrusion technique. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1725764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Arman Bayat
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ahmad Ramazani S. A.
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Hu JG, Pi JK, Jiang YL, Liu XF, Li-Ling J, Xie HQ. Collagen Hydrogel Functionalized with Collagen-Targeting IFNA2b Shows Apoptotic Activity in Nude Mice with Xenografted Tumors. ACS Biomater Sci Eng 2018; 5:272-282. [PMID: 33405860 DOI: 10.1021/acsbiomaterials.8b00490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, Keyuan Fourth Road, Chengdu, Sichuan 610041, P. R. China
| | - Jin-Kui Pi
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, Keyuan Fourth Road, Chengdu, Sichuan 610041, P. R. China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, Keyuan Fourth Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiao-Fan Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Third Section, People’s South Road, Chengdu, Sichuan 610041, P. R. China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, Keyuan Fourth Road, Chengdu, Sichuan 610041, P. R. China
- Institute of Genetic Medicine, School of Life Science, Sichuan University, No. 17, Third Section, People’s South Road, Chengdu, Sichuan 610041, P. R. China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, Keyuan Fourth Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
7
|
Zhang Y, Wang Z, Wang Y, Li L, Wu Z, Ito Y, Yang X, Zhang P. A Novel Approach via Surface Modification of Degradable Polymers With Adhesive DOPA-IGF-1 for Neural Tissue Engineering. J Pharm Sci 2018; 108:551-562. [PMID: 30321547 DOI: 10.1016/j.xphs.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
The highly damaging state of spinal cord injuries has provided much inspiration for the design of surface modification of the implants that can promote nerve regeneration and functional reconstruction. DOPA-IGF-1, a new recombinant protein designed in our previous study, exhibited strong binding affinity to titanium and significantly enhanced the growth of NIH3T3 cells on the surface of titanium with the same biological activity as IGF-1. In this article, surface modification of poly(lactide-co-glycolide) (PLGA) films with recombinant DOPA-IGF-1 was performed to promote the paracrine activity of human umbilical cord mesenchymal stem cells (hUCMSCs) by secreting neurotrophic factors. DOPA-IGF-1 exhibited the strongest binding ability to PLGA films than commercial IGF-1 and nonhydroxylated YKYKY-IGF-1. In vitro cultures of hUCMSCs on the modified PLGA films showed that DOPA-IGF-1@PLGA substrates significantly improved the proliferation, adhesion, and neurotrophic factors secretion of hUCMSCs, especially for nerve growth factor, as confirmed by qRT-PCR and western blot analysis. Subsequently, the acquired neurotrophic factors secreted by the hUCMSCs cultured on the DOPA-IGF-1@PLGA films obviously enhanced neurite outgrowth of PC12 cells. Taken together, PLGA substrates with DOPA-IGF-1 immobilization is a promising platform for neural tissue engineering via neurotrophic factors secretion from MSCs and should be further tested in vivo.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhenxu Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
| | - Xiaoyu Yang
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun 130041, PR China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
8
|
Sun X, Wang Y, Guo Z, Xiao B, Sun Z, Yin H, Meng H, Sui X, Zhao Q, Guo Q, Wang A, Xu W, Liu S, Li Y, Lu S, Peng J. Acellular Cauda Equina Allograft as Main Material Combined with Biodegradable Chitin Conduit for Regeneration of Long-Distance Sciatic Nerve Defect in Rats. Adv Healthc Mater 2018; 7:e1800276. [PMID: 30044554 DOI: 10.1002/adhm.201800276] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/18/2018] [Indexed: 11/10/2022]
Abstract
Autologous nerve grafting (ANG), the gold standard treatment for peripheral nerve defects, still has many restrictions. In this study, the acellular cauda equina allograft (ACEA), which consists of biodegradable chitin conduit and acellular cauda equina, is developed. The cauda equina is able to complete decellularization more quickly and efficiently than sciatic nerves under the same conditions, and it is able to reserve more basal lamina tube. In vitro, ACEA shows superior guidance capacity for the regeneration of axons and migration of Schwann cells compared to acellular sciatic nerve allograft (ASNA) in dorsal root ganglion culture. In vivo, ACEA is used to bridge 15 mm long-distance defects in rat sciatic nerves. On day 21 after transplantation, the regenerative distance of neurofilaments in the grafting segment is not significantly different between the ACEA and ANG groups. At week 12, ACEA group shows better sciatic nerve repair than chitin conduit only and ASNA groups, and the effect is similar to that in the ANG group as determined by gait analysis, neural electrophysiological, and histological analyses. The above results suggest that the ACEA has the potential to become a new biological material as a replacement for autografting in the treatment of long-distance nerve defects.
Collapse
Affiliation(s)
- Xun Sun
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
- School of Medicine; Nankai University; No. 94 Weijin Road Tianjin 300071 P. R. China
| | - Yu Wang
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong Jiangsu Province 226007 P. R. China
| | - Zhiyuan Guo
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Bo Xiao
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Zhen Sun
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Heyong Yin
- Department of Surgery; Ludwig-Maximilians-University (LMU); Nussbaumstr. 20 Munich 80336 Germany
| | - Haoye Meng
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Xiang Sui
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Qing Zhao
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong Jiangsu Province 226007 P. R. China
| | - Quanyi Guo
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Aiyuan Wang
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Wenjing Xu
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Shuyun Liu
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Yaojun Li
- Department of Otolaryngology; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; No. 314 An Shan Xi Road Tianjin 300192 P. R. China
| | - Shibi Lu
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
| | - Jiang Peng
- Institute of Orthopedics; Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA; No. 28 Fuxing Road Beijing 100853 P. R. China
- Co-innovation Center of Neuroregeneration; Nantong University; Nantong Jiangsu Province 226007 P. R. China
| |
Collapse
|
9
|
Park SH, Uzawa T, Hattori F, Ogino S, Morimoto N, Tsuneda S, Ito Y. “All-in-one” in vitro selection of collagen-binding vascular endothelial growth factor. Biomaterials 2018; 161:270-278. [DOI: 10.1016/j.biomaterials.2018.01.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
|
10
|
Mohamadi F, Ebrahimi-Barough S, Nourani MR, Ahmadi A, Ai J. Use new poly (ε-caprolactone/collagen/NBG) nerve conduits along with NGF for promoting peripheral (sciatic) nerve regeneration in a rat. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:34-45. [PMID: 29557195 DOI: 10.1080/21691401.2018.1451339] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Regeneration of peripheral nerve defects remained a remarkable clinical challenge. Engineered nerve conduits represent a promising strategy to improve functional recovery in peripheral nerve injury repair. However, nerve conduits require additional factors such as neurotrophic factors to create a more conducive microenvironment for nerve regeneration. Neurotrophic factors have well-demonstrated abilities to improve neurite outgrowth, making them great candidates for repairing of defected nerves. To this end, we examined the beneficial effects of repairing the transected rat sciatic nerve by loading of nerve growth factor (NGF) in nerve conduits. The PCL/Collagen/NBG conduits were interposed into the 10 mm right sciatic nerve defects. Twenty-four rats were randomly allocated into four groups: 1- nerve autograft group, 2- a nongrafted group with gap 10-mm, 3- conduit group and 4- the conduits loaded with NGF. Motor and sensory functional recovery, the evoked muscle action potential, and motor distal latency showed significant improvement in rats treated with NGF. The histology and immunohistochemistry studies revealed less fibrosis and a high level of expression of CD31 and NF-200 protein at the crush site in the Conduit + NGF group. In conclusion, the PCL/Collagen/NBG conduit loaded with NGF, which exhibited nanometer-scale features, neurotrophic activity, favorable mechanical properties and biocompatibility could improve sciatic nerve regeneration in rats.
Collapse
Affiliation(s)
- Forouzan Mohamadi
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Somayeh Ebrahimi-Barough
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Nourani
- b Nano Biotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Akbar Ahmadi
- c School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Jafar Ai
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
11
|
Guo Q, Liu C, Hai B, Ma T, Zhang W, Tan J, Fu X, Wang H, Xu Y, Song C. Chitosan conduits filled with simvastatin/Pluronic F-127 hydrogel promote peripheral nerve regeneration in rats. J Biomed Mater Res B Appl Biomater 2017; 106:787-799. [PMID: 28371231 DOI: 10.1002/jbm.b.33890] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/23/2017] [Accepted: 03/18/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Qi Guo
- Department of Neurology; Peking University Third Hospital; Beijing 100191 China
| | - Can Liu
- Department of Orthopedics; Peking University Third Hospital; Beijing 100191 China
| | - Bao Hai
- Department of Orthopedics; Peking University Third Hospital; Beijing 100191 China
| | - Teng Ma
- Department of Orthopedics; Peking University Third Hospital; Beijing 100191 China
| | - Wen Zhang
- Department of Orthopedics; Peking University Third Hospital; Beijing 100191 China
| | - Jie Tan
- Department of Orthopedics; Peking University Third Hospital; Beijing 100191 China
| | - Xin Fu
- Department of Orthopedics; Peking University Third Hospital; Beijing 100191 China
| | - Hong Wang
- Beijing Key Laboratory of Spinal Diseases; Beijing 100191 China
| | - Yingsheng Xu
- Department of Neurology; Peking University Third Hospital; Beijing 100191 China
| | - Chunli Song
- Department of Orthopedics; Peking University Third Hospital; Beijing 100191 China
- Beijing Key Laboratory of Spinal Diseases; Beijing 100191 China
| |
Collapse
|
12
|
Zhang K, Huang D, Yan Z, Wang C. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. J Biomed Mater Res A 2017; 105:1900-1910. [PMID: 28256802 DOI: 10.1002/jbm.a.36053] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 11/06/2022]
Abstract
Biomimicing topological structure of natural nerve tissue to direct axon growth and controlling sustained release of moderate neurotrophic factors are extremely propitious to the functional recovery of damaged nervous systems. In this study, the heparin/collagen encapsulating nerve growth factor (NGF) multilayers were coated onto the aligned poly-L-lactide (PLLA) nanofibrous scaffolds via a layer-by-layer (LbL) self-assembly technique to combine biomolecular signals, and physical guidance cues for peripheral nerve regeneration. Scanning electronic microscopy (SEM) revealed that the surface of aligned PLLA nanofibrous scaffolds coated with heparin/collagen multilayers became rougher and appeared some net-like filaments and protuberances in comparison with PLLA nanofibrous scaffolds. The heparin/collagen multilayers did not destroy the alignment of nanofibers. X-ray photoelectron spectroscopy and water contact angles displayed that heparin and collagen were successfully coated onto the aligned PLLA nanofibrous scaffolds and improved its hydrophilicity. Three-dimensional (3 D) confocal microscopy images further demonstrated that collagen, heparin, and NGF were not only coated onto the surface of aligned PLLA nanofibrous scaffolds but also permeated into the inner of scaffolds. Moreover, NGF presented a sustained release for 2 weeks from aligned nanofibrous scaffolds coated with 5.5 bilayers or above and remained good bioactivity. The heparin/collagen encapsulating NGF multilayers coated aligned nanofibrous scaffolds, in particular 5.5 bilayers or above, was more beneficial to Schwann cells (SCs) proliferation and PC12 cells differentiation as well as the SC cytoskeleton and neurite growth along the direction of nanofibrous alignment compared to the aligned PLLA nanofibrous scaffolds. This novel scaffolds combining sustained release of bioactive NGF and aligned nanofibrous topography presented an excellent potential in peripheral nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1900-1910, 2017.
Collapse
Affiliation(s)
- Kuihua Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Dianwu Huang
- College of Civil Engineering and Architecture, Jiaxing University, Jiaxing, 314001, China
| | - Zhiyong Yan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Chunyang Wang
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
13
|
Lozeau LD, Grosha J, Kole D, Prifti F, Dominko T, Camesano TA, Rolle MW. Collagen tethering of synthetic human antimicrobial peptides cathelicidin LL37 and its effects on antimicrobial activity and cytotoxicity. Acta Biomater 2017; 52:9-20. [PMID: 28017866 DOI: 10.1016/j.actbio.2016.12.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022]
Abstract
Wound infections, particularly of chronic wounds, pose a substantial challenge for designing antimicrobial dressings that are both effective against pathogens, and do not interfere with wound healing. Due to their broad-spectrum antimicrobial and immunomodulatory activities, naturally-occurring antimicrobial peptides (AMPs) are promising alternative treatments. However, their cytotoxicity at high concentrations and poor stability hinders their clinical use. To mitigate these undesirable properties, we investigated the effects of tethering human AMP cathelicidin LL37 to collagen, one of the main extracellular matrix proteins in wound sites, secreted by fibroblasts, and in commercially-available wound dressings. The active domain of human AMP cathelicidin, LL37, and two chimeric peptides containing LL37 fused to collagen binding domains (derived from collagenase - cCBD-LL37 or fibronectin - fCBD-LL37) were synthesized and adsorbed to PURACOL® type I collagen scaffolds. After 14days, 73%, 81% and 99% of LL37, cCBD-LL37 and fCBD-LL37, respectively, was retained on the scaffolds and demonstrated undiminished antimicrobial activity when challenged with both Gram-positive and Gram-negative bacterial strains. Loaded scaffolds were not cytotoxic to fibroblasts despite retaining peptides at concentrations 24 times higher than the reported cytotoxic concentrations in solution. These findings indicate that biopolymer-tethered AMPs may represent a viable alternative for preventing and treating wound infection while also supporting tissue repair. STATEMENT OF SIGNIFICANCE Over 6.5million people annually in the United States suffer chronic wounds; many will become infected with antibiotic-resistant bacteria. Treatments used to prevent and fight infection are toxic and may hinder wound healing. AMPs are broad-spectrum antimicrobials that also promote healing; however, their instability and toxicity are major challenges. To overcome treatment gaps, we functionalized collagen scaffolds with chimeric antimicrobial peptides (AMPs) with collagen binding domains to create antimicrobial and non-cytotoxic scaffolds that may promote healing. This is the first report of CBD-mediated delivery of AMPs onto collagen scaffolds that demonstrates no cytotoxicity toward fibroblasts. This study also suggests that retention of antimicrobial activity is CBD-dependent, which provides foundations for fundamental studies of CBD-AMP mechanisms and clinical explorations.
Collapse
Affiliation(s)
- Lindsay D Lozeau
- Dept. of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Jonian Grosha
- Dept. of Biomedical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy; Dept. of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Denis Kole
- Dept. of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States; Dept. of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Fioleda Prifti
- Dept. of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States; Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Tanja Dominko
- Dept. of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States; Center for Biomedical Sciences and Engineering, University of Nova Gorica, Vipavska cesta, 5000 Nova Gorica, Slovenia
| | - Terri A Camesano
- Dept. of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Marsha W Rolle
- Dept. of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States.
| |
Collapse
|
14
|
Lee SJ, Zhu W, Heyburn L, Nowicki M, Harris B, Zhang LG. Development of Novel 3-D Printed Scaffolds With Core-Shell Nanoparticles for Nerve Regeneration. IEEE Trans Biomed Eng 2017; 64:408-418. [DOI: 10.1109/tbme.2016.2558493] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Addi C, Murschel F, De Crescenzo G. Design and Use of Chimeric Proteins Containing a Collagen-Binding Domain for Wound Healing and Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:163-182. [PMID: 27824290 DOI: 10.1089/ten.teb.2016.0280] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collagen-based biomaterials are widely used in the field of tissue engineering; they can be loaded with biomolecules such as growth factors (GFs) to modulate the biological response of the host and thus improve its potential for regeneration. Recombinant chimeric GFs fused to a collagen-binding domain (CBD) have been reported to improve their bioavailability and the host response, especially when combined with an appropriate collagen-based biomaterial. This review first provides an extensive description of the various CBDs that have been fused to proteins, with a focus on the need for accurate characterization of their interaction with collagen. The second part of the review highlights the benefits of various CBD/GF fusion proteins that have been designed for wound healing and bone regeneration.
Collapse
Affiliation(s)
- Cyril Addi
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Frederic Murschel
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Gregory De Crescenzo
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| |
Collapse
|
16
|
Wang B, Yuan J, Xu J, Chen X, Ying X, Dong P. Brain-derived and glial cell line-derived neurotrophic factor fusion protein immobilization to laminin. Exp Ther Med 2016; 13:178-186. [PMID: 28123487 PMCID: PMC5245157 DOI: 10.3892/etm.2016.3925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/01/2016] [Indexed: 11/06/2022] Open
Abstract
Damage to the recurrent laryngeal nerve often causes hoarseness, dyspnea, dysphagia, and sometimes asphyxia due to vocal cord paralysis which result in a reduction of quality of life. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) play critical roles in peripheral nerve regeneration. However, methods for efficiently delivering these molecules are lacking, which limits their use in clinical applications. The present study reports an effective strategy for targeting BDNF and GDNF to laminin by fusing the N-terminal domains of these molecules with agrin (NtA). More specifically, laminin-binding efficacy was assessed and sustained release assays of the delivery of BDNF or GDNF fused with NtA (LBD-BDNF or LBD-GDNF) to laminin were conducted in vitro. In addition, the bioactivity of LBD-BDNF and LBD-GDNF on laminin in vitro was investigated. LBD-BDNF and LBD-GDNF were each able to specifically bind to laminin and maintain their activity in vitro. Moreover, neurotrophic factors with NtA retained higher concentrations and bioactivity levels compared with those without NtA. The ratio of LBD-BDNF and LBD-GDNF that produced optimal effects was 4:6. BDNF and GDNF fused with NtA were effective in specifically binding to laminin. As laminin is a major component of the extracellular matrix, LBD-BDNF and LBD-GDNF may prove useful in the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Baoxin Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| | - Junjie Yuan
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital South Campus, Shanghai 200011, P.R. China
| | - Jiafeng Xu
- School of Economics and Finance, Shanghai International Studies University, Shanghai 200083, P.R. China
| | - Xinwei Chen
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| | - Xinjiang Ying
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| | - Pin Dong
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| |
Collapse
|
17
|
Wang B, Yuan J, Chen X, Xu J, Li Y, Dong P. Functional regeneration of the transected recurrent laryngeal nerve using a collagen scaffold loaded with laminin and laminin-binding BDNF and GDNF. Sci Rep 2016; 6:32292. [PMID: 27558932 PMCID: PMC4997630 DOI: 10.1038/srep32292] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022] Open
Abstract
Recurrent laryngeal nerve (RLN) injury remains a challenge due to the lack of effective treatments. In this study, we established a new drug delivery system consisting of a tube of Heal-All Oral Cavity Repair Membrane loaded with laminin and neurotrophic factors and tested its ability to promote functional recovery following RLN injury. We created recombinant fusion proteins consisting of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) fused to laminin-binding domains (LBDs) in order to prevent neurotrophin diffusion. LBD-BDNF, LBD-GDNF, and laminin were injected into a collagen tube that was fitted to the ends of the transected RLN in rats. Functional recovery was assessed 4, 8, and 12 weeks after injury. Although vocal fold movement was not restored until 12 weeks after injury, animals treated with the collagen tube loaded with laminin, LBD-BDNF and LBD-GDNF showed improved recovery in vocalisation, arytenoid cartilage angles, compound muscle action potentials and regenerated fibre area compared to animals treated by autologous nerve grafting (p < 0.05). These results demonstrate the drug delivery system induced nerve regeneration following RLN transection that was superior to that induced by autologus nerve grafting. It may have potential applications in nerve regeneration of RLN transection injury.
Collapse
Affiliation(s)
- Baoxin Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Junjie Yuan
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai 201499, P.R. China
| | - Xinwei Chen
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Jiafeng Xu
- School of Economics and Finance, Shanghai International Studies University, Shanghai 200083, P.R. China
| | - Yu Li
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Pin Dong
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| |
Collapse
|
18
|
Guan J, Zhang B, Zhang J, Ding W, Xiao Z, Zhu Z, Han Q, Wu C, Sun Y, Tong W, Dai J, Wang R. Nerve regeneration and functional recovery by collagen-binding brain-derived neurotrophic factor in an intracerebral hemorrhage model. Tissue Eng Part A 2014; 21:62-74. [PMID: 24941993 DOI: 10.1089/ten.tea.2014.0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) exerts therapeutic effects following intracerebral hemorrhage (ICH). However, it is difficult to maintain sufficient concentrations in the hemorrhage hemisphere. We demonstrated previously that BDNF fused to a collagen-binding domain (CBD) could bind to collagen in the ventricular ependyma and stimulate cell proliferation in the subventricular zone (SVZ). In this study, we verified the therapeutic effects of CBD-BDNF in the rat ICH model induced by bacterial collagenase by injecting CBD-BDNF into the lateral ventricle of ICH rats. The results demonstrated that CBD-BDNF was retained at high levels in the hemorrhage hemisphere, where it promoted neural regeneration and angiogenesis, reduced tissue loss, and improved functional recovery.
Collapse
Affiliation(s)
- Jian Guan
- 1 Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014; 35:6143-56. [PMID: 24818883 DOI: 10.1016/j.biomaterials.2014.04.064] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022]
Abstract
Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
20
|
Han Q, Zhang B, Chen B, Dai J, Xu J, Wang C, Wang Z. Evaluation of a bioactive bone-inducing material consisting of collagen scaffolds and collagen-binding bone morphogenetic protein 2. J Biomed Mater Res A 2013; 102:3093-101. [DOI: 10.1002/jbm.a.34979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Qianqian Han
- Testing Department of Biomaterials and Tissue Engineering Products; Chinese National Institutes for Food and Drug Control; Beijing 100050 China
| | - Beibei Zhang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou Jiangsu 215123 China
| | - Bing Chen
- State key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100190 China
| | - Jianwu Dai
- State key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100190 China
| | - Jianxia Xu
- Testing Department of Biomaterials and Tissue Engineering Products; Chinese National Institutes for Food and Drug Control; Beijing 100050 China
| | | | | |
Collapse
|
21
|
WU XIAOCHENG, HUANG BO, WANG JIAN, LI CHANGQING, ZHOU YUE. Collagen-targeting parathyroid hormone-related peptide promotes collagen binding and in vitro chondrogenesis in bone marrow-derived MSCs. Int J Mol Med 2012; 31:430-6. [DOI: 10.3892/ijmm.2012.1219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/06/2012] [Indexed: 11/05/2022] Open
|
22
|
Cao J, Xiao Z, Jin W, Chen B, Meng D, Ding W, Han S, Hou X, Zhu T, Yuan B, Wang J, Liang W, Dai J. Induction of rat facial nerve regeneration by functional collagen scaffolds. Biomaterials 2012; 34:1302-10. [PMID: 23122676 DOI: 10.1016/j.biomaterials.2012.10.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/10/2012] [Indexed: 12/31/2022]
Abstract
Nerve conduit provides a promising strategy for nerve regeneration, and the proper microenvironment in the lumen could improve the regeneration. Our previous work had demonstrated that linear ordered collagen scaffold (LOCS) could effectively guide the oriented growth of axons. Laminin is known as an important nerve growth promoting factor and can facilitate the growth cone formation. In addition, ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) can effectively improve the nerve regeneration after nerve injuries. However, in practice, diffusion caused by the body fluids is the major obstacle in their applications. To retain CNTF or BDNF on the scaffolds, we produced collagen binding CNTF (CBD-CNTF), collagen binding BDNF (CBD-BDNF) and laminin binding CNTF (LBD-CNTF), laminin binding BDNF (LBD-BDNF) respectively. In this work, we developed laminin modified LOCS fibers (L × LOCS) by chemical cross-linking LOCS fibers with laminin. Collagen binding or laminin binding neurotrophic factors were combined with LOCS or L × LOCS, and then filled them into the collagen nerve conduit. They were found to guide the ordered growth of axons, and improve the nerve functional recovery in the rat facial nerve transection model. The combination of CNTF and BDNF greatly enhanced the facial nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Jiani Cao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tada S, Kitajima T, Ito Y. Design and synthesis of binding growth factors. Int J Mol Sci 2012; 13:6053-6072. [PMID: 22754349 PMCID: PMC3382770 DOI: 10.3390/ijms13056053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 05/09/2012] [Indexed: 01/01/2023] Open
Abstract
Growth factors play important roles in tissue regeneration. However, because of their instability and diffusible nature, improvements in their performance would be desirable for therapeutic applications. Conferring binding affinities would be one way to improve their applicability. Here we review techniques for conjugating growth factors to polypeptides with particular affinities. Conjugation has been designed at the level of gene fusion and of polypeptide ligation. We summarize and discuss the designs and applications of binding growth factors prepared by such conjugation approaches.
Collapse
Affiliation(s)
- Seiichi Tada
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Kitajima
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
24
|
Ko EC, Fujihara Y, Ogasawara T, Asawa Y, Nishizawa S, Nagata S, Takato T, Hoshi K. BMP-2 Embedded Atelocollagen Scaffold for Tissue-Engineered Cartilage Cultured in the Medium Containing Insulin and Triiodothyronine—A New Protocol for Three-Dimensional In Vitro Culture of Human Chondrocytes. Tissue Eng Part C Methods 2012; 18:374-86. [DOI: 10.1089/ten.tec.2011.0217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Edward Chengchuan Ko
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- School of Dentistry, Collge of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuko Fujihara
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
| | - Toru Ogasawara
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiyo Asawa
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
| | - Satoru Nishizawa
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
| | - Satoru Nagata
- Nagata Microtia and Reconstructive Plastic Surgery Clinic, Saitama, Japan
| | - Tsuyoshi Takato
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuto Hoshi
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Guan J, Tong W, Ding W, Du S, Xiao Z, Han Q, Zhu Z, Bao X, Shi X, Wu C, Cao J, Yang Y, Ma W, Li G, Yao Y, Gao J, Wei J, Dai J, Wang R. Neuronal regeneration and protection by collagen-binding BDNF in the rat middle cerebral artery occlusion model. Biomaterials 2012; 33:1386-95. [PMID: 22098777 DOI: 10.1016/j.biomaterials.2011.10.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 10/27/2011] [Indexed: 01/08/2023]
|
26
|
Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL. Natural and Genetically Engineered Proteins for Tissue Engineering. Prog Polym Sci 2012; 37:1-17. [PMID: 22058578 PMCID: PMC3207498 DOI: 10.1016/j.progpolymsci.2011.07.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To overcome the limitations of traditionally used autografts, allografts and, to a lesser extent, synthetic materials, there is the need to develop a new generation of scaffolds with adequate mechanical and structural support, control of cell attachment, migration, proliferation and differentiation and with bio-resorbable features. This suite of properties would allow the body to heal itself at the same rate as implant degradation. Genetic engineering offers a route to this level of control of biomaterial systems. The possibility of expressing biological components in nature and to modify or bioengineer them further, offers a path towards multifunctional biomaterial systems. This includes opportunities to generate new protein sequences, new self-assembling peptides or fusions of different bioactive domains or protein motifs. New protein sequences with tunable properties can be generated that can be used as new biomaterials. In this review we address some of the most frequently used proteins for tissue engineering and biomedical applications and describe the techniques most commonly used to functionalize protein-based biomaterials by combining them with bioactive molecules to enhance biological performance. We also highlight the use of genetic engineering, for protein heterologous expression and the synthesis of new protein-based biopolymers, focusing the advantages of these functionalized biopolymers when compared with their counterparts extracted directly from nature and modified by techniques such as physical adsorption or chemical modification.
Collapse
Affiliation(s)
- Sílvia Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
27
|
Wilkinson AE, McCormick AM, Leipzig ND. Central Nervous System Tissue Engineering: Current Considerations and Strategies. ACTA ACUST UNITED AC 2011. [DOI: 10.2200/s00390ed1v01y201111tis008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Han Q, Li B, Feng H, Xiao Z, Chen B, Zhao Y, Huang J, Dai J. The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials 2011; 32:5077-85. [DOI: 10.1016/j.biomaterials.2011.03.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
|
29
|
Han QQ, Jin W, Xiao ZF, Huang JC, Ni HB, Kong J, Wu J, Chen B, Liang WB, Dai JW. The promotion of neurological recovery in an intracerebral hemorrhage model using fibrin-binding brain derived neurotrophic factor. Biomaterials 2011; 32:3244-52. [DOI: 10.1016/j.biomaterials.2011.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/13/2011] [Indexed: 12/09/2022]
|
30
|
Ko EC, Fujihara Y, Ogasawara T, Asawa Y, Nishizawa S, Nagata S, Takato T, Hoshi K. Administration of the insulin into the scaffold atelocollagen for tissue-engineered cartilage. J Biomed Mater Res A 2011; 97:186-92. [DOI: 10.1002/jbm.a.33046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/27/2010] [Accepted: 11/22/2010] [Indexed: 11/08/2022]
|
31
|
Inducible nerve growth factor delivery for peripheral nerve regeneration in vivo. Plast Reconstr Surg 2011; 126:1874-1889. [PMID: 21124128 DOI: 10.1097/prs.0b013e3181f5274e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HEK-293 cells can be genetically modified to release and regulate nerve growth factor (NGF) in vitro. The aim of this study was to evaluate the impact of this NGF delivery system on peripheral nerve regeneration in vivo. METHODS HEK-293 cells were transfected with an ecdysone receptor, NGF cDNA, and herpes simplex virus-thymidine kinase suicide vector. NGF production is induced by ponasterone A and stopped by ganciclovir. A 13-mm sciatic nerve gap was bridged with Silastic conduits in 120 nude rats, and transfected HEK-293 cells were added, induced, and boostered to secrete bioactive NGF. RESULTS The induction of the cell line and additional booster with ponasterone A demonstrated significantly higher levels of bioactive NGF, enhanced macroscopic nerve growth, improved functional recovery, and histologic regeneration when compared with control groups after 7, 14, and 21 days, and 2 and 4 months. The treatment with ganciclovir resulted in suppression of the NGF production and decreased functional and histologic outcomes. CONCLUSIONS Transfected HEK-293 cells can be regulated to inducibly produce bioactive NGF in vivo over prolonged periods. This tissue-engineered nerve construct including the NGF delivery system is able to improve peripheral nerve regeneration and functional recovery and appears to be superior to nerve isografts.
Collapse
|
32
|
Leipzig ND, Wylie RG, Kim H, Shoichet MS. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 2010; 32:57-64. [PMID: 20934216 DOI: 10.1016/j.biomaterials.2010.09.031] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/14/2010] [Indexed: 11/17/2022]
Abstract
The adult central nervous system (CNS) contains adult neural stem/progenitor cells (NSPCs) that possess the ability to differentiate into the primary cell types found in the CNS and to regenerate lost or damaged tissue. The ability to specifically and spatially control differentiation is vital to enable cell-based CNS regenerative strategies. Here we describe the development of a protein-biomaterial system that allows rapid, stable and homogenous linking of a growth factor to a photocrosslinkable material. A bioactive recombinant fusion protein incorporating pro-neural rat interferon-γ (rIFN-γ) and the AviTag for biotinylation was successfully expressed in Escherichia coli and purified. The photocrosslinkable biopolymer, methacrylamide chitosan (MAC), was thiolated, allowing conjugation of maleimide-strepatavidin via Michael-type addition. We demonstrated that biotin-rIFN-γ binds specifically to MAC-streptavidin in stoichiometric yields at 100 and 200 ng/mL in photocrosslinked hydrogels. For cell studies, NSPCs were photo-encapsulated in 100 ng/mL biotin-rIFN-γ immobilized MAC based scaffolds and compared to similar NSPC-seeded scaffolds combining 100 ng/mL soluble biotin-rIFN-γ vs. no growth factor. Cells were cultured for 8 days after which differentiation was assayed using immunohistochemistry for lineage specific markers. Quantification showed that immobilized biotin-rIFN-γ promoted neuronal differentiation (72.8 ± 16.0%) similar to soluble biotin-rIFN-γ (71.8 ± 13.2%). The percentage of nestin-positive (stem/progenitor) cells as well as RIP-positive (oligodendrocyte) cells were significantly higher in scaffolds with soluble vs. immobilized biotin-rIFN-γ suggesting that 3-D immobilization results in a more committed lineage specification.
Collapse
Affiliation(s)
- Nic D Leipzig
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
33
|
Wood MD, Hunter D, Mackinnon SE, Sakiyama-Elbert SE. Heparin-binding-affinity-based delivery systems releasing nerve growth factor enhance sciatic nerve regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 21:771-87. [PMID: 20482984 DOI: 10.1163/156856209x445285] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The controlled delivery of nerve growth factor (NGF) to the peripheral nervous system has been shown to enhance nerve regeneration following injury, although the effect of release rate has not been previously studied with an affinity-based delivery system (DS). The goal of this research was to determine if the binding site affinity of the DS affected nerve regeneration in vivo using nerve guidance conduits (NGCs) in a 13-mm rat sciatic nerve defect. These DSs consisted of bi-domain peptides that varied in heparin-binding affinity, heparin and NGF, which binds to heparin with moderate affinity. Eight experimental groups were evaluated consisting of NGF with DS, control groups excluding one or more components of the DS within silicone conduits and nerve isografts. Nerves were harvested 6 weeks after treatment for analysis by histomorphometry. These DSs with NGF resulted in a higher frequency of nerve regeneration compared to control groups and were similar to the nerve isograft group in measures of nerve fiber density and percent neural tissue, but not in total nerve fiber count. In addition, these DSs with NGF contained a significantly greater percentage of larger diameter nerve fibers, suggesting more mature regenerating nerve content. While there were no differences in nerve regeneration due to varying peptide affinity with these DSs, their use with NGF enhanced peripheral nerve regeneration through a NGC across a critical nerve gap.
Collapse
Affiliation(s)
- Matthew D Wood
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
34
|
Sun W, Lin H, Chen B, Zhao W, Zhao Y, Xiao Z, Dai J. Collagen scaffolds loaded with collagen-binding NGF-beta accelerate ulcer healing. J Biomed Mater Res A 2010; 92:887-95. [PMID: 19283824 DOI: 10.1002/jbm.a.32445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies have shown that exogenous nerve growth factor (NGF) accelerates ulcer healing, but the inefficient growth factor delivery system limits its clinical application. In this report, we found that the native human NGF-beta fused with a collagen-binding domain (CBD) could form a collagen-based NGF targeting delivery system, and the CBD-fused NGF-beta could bind to collagen membranes efficiently. Using the rabbit dermal ischemic ulcer model, we have found that this targeting delivery system maintains a higher concentration and stronger bioactivity of NGF-beta on the collagen membranes by promoting peripheral nerve growth. Furthermore, it enhances the rate of ulcer healing through accelerating the re-epithelialization of dermal ulcer wounds and the formation of capillary lumens within the newly formed tissue area. Thus, collagen membranes loaded with collagen-targeting human NGF-beta accelerate ulcer healing efficiently.
Collapse
Affiliation(s)
- Wenjie Sun
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen W, Shi C, Yi S, Chen B, Zhang W, Fang Z, Wei Z, Jiang S, Sun X, Hou X, Xiao Z, Ye G, Dai J. Bladder regeneration by collagen scaffolds with collagen binding human basic fibroblast growth factor. J Urol 2010; 183:2432-9. [PMID: 20403614 DOI: 10.1016/j.juro.2010.02.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Indexed: 11/17/2022]
Abstract
PURPOSE Studies show that basic fibroblast growth factor can promote bladder regeneration. However, the lack of targeting delivery approaches limits its clinical application. We investigated a collagen based targeting system for bladder regeneration. A collagen binding domain was added to the native basic fibroblast growth factor N-terminal to allow it to bind to collagen. MATERIALS AND METHODS Sprague-Dawley rats underwent partial cystectomy. Collagen scaffolds loaded with collagen binding domain basic fibroblast growth factor, native basic fibroblast growth factor or phosphate buffered saline were grafted to the remaining host bladders, respectively. At days 30 and 90 reconstructed bladders were evaluated by histological analysis and urodynamics. RESULTS This targeting basic fibroblast growth factor delivery system induced satisfying bladder histological structures. It promoted more vascularization and smooth muscle cell ingrowth. Urodynamics revealed well accommodated bladder tissue with volume capacity and compliance. CONCLUSIONS Results show that the targeting delivery system consisting of collagen binding domain basic fibroblast growth factor and collagen membranes induced better bladder regeneration at the injury site. Thus, this targeting delivery system may be an effective strategy for bladder regeneration with potential clinical applications.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-Based Biomaterials for Tissue Engineering Applications. MATERIALS 2010. [PMCID: PMC5445871 DOI: 10.3390/ma3031863] [Citation(s) in RCA: 669] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rémi Parenteau-Bareil
- Laboratoire d’Organogénèse Expérimentale (LOEX), Centre de recherche FRSQ du CHA universitaire de Québec, Hôpital du Saint-Sacrement, Québec, QC, G1S 4L8 Canada; E-Mails: (R.P.B.); (R.G.)
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, G1V 0A6 Canada
| | - Robert Gauvin
- Laboratoire d’Organogénèse Expérimentale (LOEX), Centre de recherche FRSQ du CHA universitaire de Québec, Hôpital du Saint-Sacrement, Québec, QC, G1S 4L8 Canada; E-Mails: (R.P.B.); (R.G.)
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, G1V 0A6 Canada
| | - François Berthod
- Laboratoire d’Organogénèse Expérimentale (LOEX), Centre de recherche FRSQ du CHA universitaire de Québec, Hôpital du Saint-Sacrement, Québec, QC, G1S 4L8 Canada; E-Mails: (R.P.B.); (R.G.)
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, G1V 0A6 Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-418-682-7565; Fax: +1-418-682-8000
| |
Collapse
|
37
|
Application of Recombinant Fusion Proteins for Tissue Engineering. Ann Biomed Eng 2010; 38:683-93. [DOI: 10.1007/s10439-010-9935-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 01/17/2010] [Indexed: 10/19/2022]
|
38
|
Sun W, Sun C, Zhao H, Lin H, Han Q, Wang J, Ma H, Chen B, Xiao Z, Dai J. Improvement of sciatic nerve regeneration using laminin-binding human NGF-beta. PLoS One 2009; 4:e6180. [PMID: 19587785 PMCID: PMC2703785 DOI: 10.1371/journal.pone.0006180] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 06/06/2009] [Indexed: 12/30/2022] Open
Abstract
Background Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF) plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA), NGF-β could target to nerve cells and improve nerve regeneration. Methods Laminin-binding assay and sustained release assay of NGF-β fused with NtA (LBD-NGF) from laminin in vitro were carried out. The bioactivity of LBD-NGF on laminin in vitro was also measured. Using the rat sciatic nerve crush injury model, the nerve repair and functional restoration by utilizing LBD-NGF were tested. Findings LBD-NGF could specifically bind to laminin and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that LBD-NGF could be retained and concentrated at the nerve injury sites to promote nerve repair and enhance functional restoration following nerve damages. Conclusion Fused with NtA, NGF-β could bind to laminin specifically. Since laminin is the major component of nerve extracellular matrix, laminin binding NGF could target to nerve cells and improve the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Wenjie Sun
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Changkai Sun
- Institute of Brain Disorders and the Key Lab for Brain Disorders of Liaoning Province, Dalian Medical University, Dalian, China
| | - Hui Zhao
- Institute of Brain Disorders and the Key Lab for Brain Disorders of Liaoning Province, Dalian Medical University, Dalian, China
| | - Hang Lin
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qianqian Han
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingyu Wang
- Experimental Animal Center of Dalian Medical University, Dalian, China
| | - Hui Ma
- Department of Pharmaceutics, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bing Chen
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Xiao
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianwu Dai
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
39
|
Bring D, Reno C, Renstrom P, Salo P, Hart D, Ackermann P. Prolonged immobilization compromises up-regulation of repair genes after tendon rupture in a rat model. Scand J Med Sci Sports 2009; 20:411-7. [DOI: 10.1111/j.1600-0838.2009.00954.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Sun W, Sun C, Lin H, Zhao H, Wang J, Ma H, Chen B, Xiao Z, Dai J. The effect of collagen-binding NGF-beta on the promotion of sciatic nerve regeneration in a rat sciatic nerve crush injury model. Biomaterials 2009; 30:4649-56. [PMID: 19573907 DOI: 10.1016/j.biomaterials.2009.05.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/17/2009] [Indexed: 11/29/2022]
Abstract
Nerve growth factor plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical application. It has demonstrated in our previous work that the native human NGF-beta (NAT-NGF) fused with a collagen-binding domain (CBD) could bind to collagen specifically. Since collagen is the major component of nerve extracellular matrix, we speculated that the collagen-binding NGF would target to nerve cells and improve their regeneration. In this report, we found that the fusion protein could specifically bind to endogenous collagen of the rat sciatic nerves and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that collagen-binding NGF could be retained and concentrated at the nerve injured site to promote nerve repair and enhance function recovery following nerve damage. Thus, the collagen-binding NGF could improve the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Wenjie Sun
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The effect of the controlled release of nerve growth factor from collagen gel on the efficiency of neural cell culture. Biomaterials 2009; 30:126-32. [DOI: 10.1016/j.biomaterials.2008.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/04/2008] [Indexed: 11/22/2022]
|