1
|
Khan SA, Shakoor A. Recent Strategies and Future Recommendations for the Fabrication of Antimicrobial, Antibiofilm, and Antibiofouling Biomaterials. Int J Nanomedicine 2023; 18:3377-3405. [PMID: 37366489 PMCID: PMC10290865 DOI: 10.2147/ijn.s406078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biomaterials and biomedical devices induced life-threatening bacterial infections and other biological adverse effects such as thrombosis and fibrosis have posed a significant threat to global healthcare. Bacterial infections and adverse biological effects are often caused by the formation of microbial biofilms and the adherence of various biomacromolecules, such as platelets, proteins, fibroblasts, and immune cells, to the surfaces of biomaterials and biomedical devices. Due to the programmed interconnected networking of bacteria in microbial biofilms, they are challenging to treat and can withstand several doses of antibiotics. Additionally, antibiotics can kill bacteria but do not prevent the adsorption of biomacromolecules from physiological fluids or implanting sites, which generates a conditioning layer that promotes bacteria's reattachment, development, and eventual biofilm formation. In these viewpoints, we highlighted the magnitude of biomaterials and biomedical device-induced infections, the role of biofilm formation, and biomacromolecule adhesion in human pathogenesis. We then discussed the solutions practiced in healthcare systems for curing biomaterials and biomedical device-induced infections and their limitations. Moreover, this review comprehensively elaborated on the recent advances in designing and fabricating biomaterials and biomedical devices with these three properties: antibacterial (bacterial killing), antibiofilm (biofilm inhibition/prevention), and antibiofouling (biofouling inhibition/prevention) against microbial species and against the adhesion of other biomacromolecules. Besides we also recommended potential directions for further investigations.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Johansson ML, Calon TGA, Omar O, Shah FA, Trobos M, Thomsen P, Stokroos RJ, Palmquist A. Multimodal Analysis of the Tissue Response to a Bone-Anchored Hearing Implant: Presentation of a Two-Year Case Report of a Patient With Recurrent Pain, Inflammation, and Infection, Including a Systematic Literature Review. Front Cell Infect Microbiol 2021; 11:640899. [PMID: 33859952 PMCID: PMC8042154 DOI: 10.3389/fcimb.2021.640899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/03/2021] [Indexed: 12/04/2022] Open
Abstract
Osseointegration is a well-established concept used in applications including the percutaneous Bone-Anchored Hearing System (BAHS) and auricular rehabilitation. To date, few retrieved implants have been described. A systematic review including cases where percutaneous bone-anchored implants inserted in the temporal bone were retrieved and analyzed was performed. We also present the case of a patient who received a BAHS for mixed hearing loss. After the initial surgery, several episodes of soft tissue inflammation accompanied by pain were observed, leading to elective abutment removal 14 months post-surgery. Two years post-implantation, the implant was removed due to pain and subjected to a multiscale and multimodal analysis: microbial DNA using molecular fingerprinting, gene expression using quantitative real-time polymerase chain reaction (qPCR), X-ray microcomputed tomography (micro-CT), histology, histomorphometry, backscattered scanning electron microscopy (BSE-SEM), Raman spectroscopy, and fluorescence in situ hybridization (FISH). Evidence of osseointegration was provided via micro-CT, histology, BSE-SEM, and Raman spectroscopy. Polymicrobial colonization in the periabutment area and on the implant, including that with Staphylococcus aureus and Staphylococcus epidermidis, was determined using a molecular analysis via a 16S-23S rDNA interspace [IS]-region-based profiling method (IS-Pro). The histology suggested bacterial colonization in the skin and in the peri-implant bone. FISH confirmed the localization of S. aureus and coagulase-negative staphylococci in the skin. Ten articles (54 implants, 47 patients) met the inclusion criteria for the literature search. The analyzed samples were either BAHS (35 implants) or bone-anchored aural epitheses (19 implants) in situ between 2 weeks and 8 years. The main reasons for elective removal were nonuse/changes in treatment, pain, or skin reactions. Most samples were evaluated using histology, demonstrating osseointegration, but with the absence of bone under the implants’ proximal flange. Taken together, the literature and this case report show clear evidence of osseointegration, despite prominent complications. Nevertheless, despite implant osseointegration, chronic pain related to the BAHS may be associated with a chronic bacterial infection and raised inflammatory response in the absence of macroscopic signs of infection. It is suggested that a multimodal analysis of peri-implant health provides possibilities for device improvements and to guide diagnostic and therapeutic strategies to alleviate the impact of complications.
Collapse
Affiliation(s)
- Martin L Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Research and Technology, Oticon Medical AB, Askim, Sweden
| | - Tim G A Calon
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert J Stokroos
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Abram S, Fromm KM. Handling (Nano)Silver as Antimicrobial Agent: Therapeutic Window, Dissolution Dynamics, Detection Methods and Molecular Interactions. Chemistry 2020; 26:10948-10971. [DOI: 10.1002/chem.202002143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah‐Luise Abram
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Katharina M. Fromm
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
4
|
Calon TGA, Trobos M, Johansson ML, van Tongeren J, van der Lugt-Degen M, Janssen AML, Savelkoul PHM, Stokroos RJ, Budding AE. Microbiome on the Bone-Anchored Hearing System: A Prospective Study. Front Microbiol 2019; 10:799. [PMID: 31105654 PMCID: PMC6498861 DOI: 10.3389/fmicb.2019.00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/28/2019] [Indexed: 12/27/2022] Open
Abstract
The bone-anchored hearing system (BAHS) has evolved to a common treatment option for various types of hearing revalidation. The BAHS consists of an implant in the skull that breeches the skin. Soft tissue reactions are a common complication associated with BAHS and are generally poorly understood. This study aims to investigate the influence of BAHS and associated skin reactions around the implant. A total of 45 patients were prospectively followed from implantation up to at least 1 year. Swabs were obtained at baseline, 12 weeks follow-up and during cases of inflammation (Holgers score ≥2). The microbiota was assessed using IS-proTM, a bacterial profiling method based on the interspace region between the 16S–23S rRNA genes. Detection of operational taxonomic units, the Shannon Diversity Index, sample similarity analyses and Partial Least Squares Discriminant Analysis (PLS-DA) were employed. Staphylococcus epidermidis, Streptococcus pneumoniae/mitis, Propionibacterium acnes, Staphylococcus capitis, Staphylococcus hominis, Bifidobacterium longum, Haemophilus parainfluenzae, Lactobacillus rhamnosus, Bordetella spp., Streptococcus sanguinis, Peptostreptococcus anaerobius, Staphylococcus aureus, Lactococcus lactis, Enterobacter cloacae, and Citrobacter koseri were the most commonly found bacterial species. S. pneumoniae/mitis was significantly more often observed after implantation, whereas P. acnes was significantly less observed after implantation compared with baseline. The relative abundance of S. epidermidis (17%) and S. aureus (19.4%) was the highest for the group of patients with inflammation. The Shannon Diversity Index was significantly increased after implantation compared with pre-surgical swabs for Firmicutes, Actinobacteria, Fusobacteria, Verrucomicrobia (FAFV), but not for other phyla. When combining all phyla, there was no significant increase in the Shannon Diversity Index. The diversity index was similar post-surgically for patients experiencing inflammation and for patients without inflammation. With a supervised classifier (PLS-DA), patients prone to inflammation could be identified at baseline with an accuracy of 91.7%. In addition, PLS-DA could classify post-surgical abutments as non-inflamed or inflamed with an accuracy of 97.7%. This study shows the potential of using IS-proTM to describe and quantify the microbiota associated with the percutaneous BAHS. Furthermore, the results indicate the possibility of an early identification of patients susceptible to adverse skin reaction following implantation. Both S. aureus and S. epidermidis should be considered as relevant bacteria for BAHS-associated inflammation.
Collapse
Affiliation(s)
- Tim G A Calon
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin L Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Oticon Medical AB, Askim, Sweden
| | - Joost van Tongeren
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - A M L Janssen
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Methodology and Statistics, Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
| | - Paul H M Savelkoul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Control, Amsterdam, Netherlands.,Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Andries E Budding
- IS-Diagnostics Ltd., Amsterdam, Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Control, Amsterdam, Netherlands
| |
Collapse
|
5
|
Zhang X, Song J, Klymov A, Zhang Y, de Boer L, Jansen JA, van den Beucken JJ, Yang F, Zaat SA, Leeuwenburgh SC. Monitoring local delivery of vancomycin from gelatin nanospheres in zebrafish larvae. Int J Nanomedicine 2018; 13:5377-5394. [PMID: 30254441 PMCID: PMC6143646 DOI: 10.2147/ijn.s168959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Infections such as biomaterial-associated infection and osteomyelitis are often associated with intracellular survival of bacteria (eg, Staphylococcus aureus). Treatment of these infections remains a major challenge due to the low intracellular efficacy of many antibiotics. Therefore, local delivery systems are urgently required to improve the therapeutic efficacy of antibiotics by enabling their intracellular delivery. Purpose To assess the potential of gelatin nanospheres as carriers for local delivery of vancomycin into macrophages of zebrafish larvae in vivo and into THP-1-derived macrophages in vitro using fluorescence microscopy. Materials and methods Fluorescently labeled gelatin nanospheres were prepared and injected into transgenic zebrafish larvae with fluorescent macrophages. Both the biodistribution of gelatin nanospheres in zebrafish larvae and the co-localization of vancomycin-loaded gelatin nanospheres with zebrafish macrophages in vivo and uptake by THP-1-derived macrophages in vitro were studied. In addition, the effect of treatment with vancomycin-loaded gelatin nanospheres on survival of S. aureus-infected zebrafish larvae was investigated. Results Internalization of vancomycin-loaded gelatin nanospheres by macrophages was observed qualitatively both in vivo and in vitro. Systemically delivered vancomycin, on the other hand, was hardly internalized by macrophages without the use of gelatin nanospheres. Treatment with a single dose of vancomycin-loaded gelatin nanospheres delayed the mortality of S. aureus-infected zebrafish larvae, indicating the improved therapeutic efficacy of vancomycin against (intracellular) S. aureus infection in vivo. Conclusion The present study demonstrates that gelatin nanospheres can be used to facilitate local and intracellular delivery of vancomycin.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Jiankang Song
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Alexey Klymov
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Yang Zhang
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Leonie de Boer
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | | | - Fang Yang
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Sebastian Aj Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander Cg Leeuwenburgh
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| |
Collapse
|
6
|
Calon TGA, van Tongeren J, Omar O, Johansson ML, Stokroos RJ. Cytokine expression profile in the bone-anchored hearing system: 12-week results from a prospective randomized, controlled study. Clin Implant Dent Relat Res 2018; 20:606-616. [PMID: 29701288 PMCID: PMC6099213 DOI: 10.1111/cid.12615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/01/2018] [Accepted: 03/17/2018] [Indexed: 12/17/2022]
Abstract
Objective To study the effect of implanting the percutaneous bone‐anchored hearing system (BAHS) itself and inflammation of the peri‐abutment skin warrant clarification. In this study, we aimed to acquire further insight into the immune responses related to BAHS surgery and peri‐implant skin inflammation. Materials and Methods During surgery and 12 weeks post‐implantation, skin biopsies were obtained. If applicable, additional biopsies were taken during cases of inflammation. The mRNA expression of IL‐1β, IL‐6, IL‐8, TNFα, IL‐17, IL‐10, TGF‐ß, MIP‐1α, MMP‐9, TIMP‐1, COL1α1, VEGF‐A, FGF‐2 TLR‐2, and TLR‐4 was quantified using qRT‐PCR. Results Thirty‐five patients agreed to the surgery and 12‐week biopsy. Twenty‐two patients had mRNA of sufficient quality for analysis. Ten were fitted with a BAHS using the minimally invasive Ponto surgery technique. Twelve were fitted with a BAHS using the linear incision technique with soft‐tissue preservation. Five biopsies were obtained during episodes of inflammation. The post‐implantation mRNA expression of IL‐1β (P = .002), IL‐8 (P = .003), MMP9 (P = .005), TIMP‐1 (P = .002), and COL1α1 (P < .001) was significantly up‐regulated. IL‐6 (P = .009) and FGF‐2 (P = .004) mRNA expression was significantly down‐regulated after implantation. Within patients, no difference between post‐implantation mRNA expression (at 12 weeks) and when inflammation was observed. Between patients, the expression of IL‐1β (P = .015) and IL‐17 (P = .02) was higher during cases of inflammation compared with patients who had no inflammation at 12‐week follow‐up. Conclusions As part of a randomized, prospective, clinical trial, the present study reports the molecular profile of selected cytokines in the soft tissue around BAHS. Within the limit of this study, the results showed that 12 weeks after BAHS implantation the gene expression of some inflammatory cytokines (IL‐8 and IL‐1β) is still relatively high compared with the baseline, steady‐state, expression. The up‐regulation of anabolic (COL1α1) and tissue‐remodeling (MMP‐9 and TIMP1) genes indicates an ongoing remodeling process after 12 weeks of implantation. The results suggest that IL‐1β, IL‐17, and TNF‐α may be interesting markers associated with inflammation.
Collapse
Affiliation(s)
- Tim George Ate Calon
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joost van Tongeren
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Lars Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Oticon Medical AB, Askim, Sweden
| | - Robert-Jan Stokroos
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat SAJ. Antimicrobial Peptides in Biomedical Device Manufacturing. Front Chem 2017; 5:63. [PMID: 28971093 PMCID: PMC5609632 DOI: 10.3389/fchem.2017.00063] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Over the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints, and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures, and wound care, biomaterial-associated infections (BAI) are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection. The presence of biofilms on the biomaterial and/or the multidrug-resistant phenotype of the bacteria further impair the efficacy of antibiotic treatment. Removal of the biomaterial is then the last option to control the infection. Clearly, there is a pressing need for alternative strategies to prevent and treat BAI. Synthetic antimicrobial peptides (AMPs) are considered promising candidates as they are active against a broad spectrum of (antibiotic-resistant) planktonic bacteria and biofilms. Moreover, bacteria are less likely to develop resistance to these rapidly-acting peptides. In this review we highlight the four main strategies, three of which applying AMPs, in biomedical device manufacturing to prevent BAI. The first involves modification of the physicochemical characteristics of the surface of implants. Immobilization of AMPs on surfaces of medical devices with a variety of chemical techniques is essential in the second strategy. The main disadvantage of these two strategies relates to the limited antibacterial effect in the tissue surrounding the implant. This limitation is addressed by the third strategy that releases AMPs from a coating in a controlled fashion. Lastly, AMPs can be integrated in the design and manufacturing of additively manufactured/3D-printed implants, owing to the physicochemical characteristics of the implant material and the versatile manufacturing technologies compatible with antimicrobials incorporation. These novel technologies utilizing AMPs will contribute to development of novel and safe antimicrobial medical devices, reducing complications and associated costs of device infection.
Collapse
Affiliation(s)
- Martijn Riool
- Department of Medical Microbiology, Academic Medical Center, Amsterdam Infection and Immunity Institute, University of AmsterdamAmsterdam, Netherlands
| | - Anna de Breij
- Department of Infectious Diseases, Leiden University Medical CenterLeiden, Netherlands
| | - Jan W. Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical CenterLeiden, Netherlands
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical CenterLeiden, Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology, Academic Medical Center, Amsterdam Infection and Immunity Institute, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
8
|
Wang J, Li J, Qian S, Guo G, Wang Q, Tang J, Shen H, Liu X, Zhang X, Chu PK. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11162-11178. [PMID: 27054673 DOI: 10.1021/acsami.6b02803] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
9
|
Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells. Acta Biomater 2014; 10:5202-5212. [PMID: 25153780 DOI: 10.1016/j.actbio.2014.08.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/18/2014] [Accepted: 08/11/2014] [Indexed: 11/20/2022]
Abstract
Infection is a major cause of failure of inserted or implanted biomedical devices (biomaterials). During surgery, bacteria may adhere to the implant, initiating biofilm formation. Bacteria are also observed in and recultured from the tissue surrounding implants, and may even reside inside host cells. Whether these bacteria originate from biofilms is not known. Therefore, we investigated the fate of Staphylococcus epidermidis inoculated on the surface of implants as adherent planktonic cells or as a biofilm in mouse experimental biomaterial-associated infection. In order to discriminate the challenge strain from potential contaminating mouse microflora, we constructed a fully virulent green fluorescent S. epidermidis strain. S. epidermidis injected along subcutaneous titanium implants, pre-seeded on the implants or pre-grown as biofilm, were retrieved from the implants as well as the surrounding tissue in all cases after 4days, and in histology bacteria were observed in the tissue co-localizing with macrophages. Thus, bacteria adherent to or in a biofilm on the implant are a potential source of infection of the surrounding tissue, and antimicrobial strategies should prevent both biofilm formation and tissue colonization.
Collapse
|
10
|
Hamza T, Li B. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. BMC Microbiol 2014; 14:207. [PMID: 25059520 PMCID: PMC4116603 DOI: 10.1186/s12866-014-0207-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is one of the primary causes of bone infections which are often chronic and difficult to eradicate. Bacteria like S. aureus may survive upon internalization in cells and may be responsible for chronic and recurrent infections. In this study, we compared the responses of a phagocytic cell (i.e. macrophage) to a non-phagocytic cell (i.e. osteoblast) upon S. aureus internalization. RESULTS We found that upon internalization, S. aureus could survive for up to 5 and 7 days within macrophages and osteoblasts, respectively. Significantly more S. aureus was internalized in macrophages compared to osteoblasts and a significantly higher (100 fold) level of live intracellular S. aureus was detected in macrophages compared to osteoblasts. However, the percentage of S. aureus survival after infection was significantly lower in macrophages compared to osteoblasts at post-infection days 1-6. Interestingly, macrophages had relatively lower viability in shorter infection time periods (i.e. 0.5-4 h; significant at 2 h) but higher viability in longer infection time periods (i.e. 6-8 h; significant at 8 h) compared to osteoblasts. In addition, S. aureus infection led to significant changes in reactive oxygen species production in both macrophages and osteoblasts. Moreover, infected osteoblasts had significantly lower alkaline phosphatase activity at post-infection day 7 and infected macrophages had higher phagocytosis activity compared to non-infected cells. CONCLUSIONS S. aureus was found to internalize and survive within osteoblasts and macrophages and led to differential responses between osteoblasts and macrophages. These findings may assist in evaluation of the pathogenesis of chronic and recurrent infections which may be related to the intracellular persistence of bacteria within host cells.
Collapse
Affiliation(s)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown 26506, WV, USA.
| |
Collapse
|
11
|
Christensen L, Breiting V, Bjarnsholt T, Eickhardt S, Høgdall E, Janssen M, Pallua N, Zaat SAJ. Bacterial Infection as a Likely Cause of Adverse Reactions to Polyacrylamide Hydrogel Fillers in Cosmetic Surgery. Clin Infect Dis 2013; 56:1438-44. [DOI: 10.1093/cid/cit067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Rochford E, Richards R, Moriarty T. Influence of material on the development of device-associated infections. Clin Microbiol Infect 2012; 18:1162-7. [DOI: 10.1111/j.1469-0691.2012.04002.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Lankinen P, Lehtimäki K, Hakanen AJ, Roivainen A, Aro HT. A comparative 18F-FDG PET/CT imaging of experimental Staphylococcus aureus osteomyelitis and Staphylococcus epidermidis foreign-body-associated infection in the rabbit tibia. EJNMMI Res 2012; 2:41. [PMID: 22824200 PMCID: PMC3414741 DOI: 10.1186/2191-219x-2-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/05/2012] [Indexed: 01/25/2023] Open
Abstract
Background 18F-FDG-PET imaging has emerged as a promising method in the diagnosis of chronic osteomyelitis commonly due to Staphylococcus aureus. The inaccuracy of 18 F-FDG-PET in the detection of periprosthetic joint infections may be related to the predominance of low-virulent S. epidermidis strains as the causative pathogen. We have compared the18F-FDG-PET characteristics of S. aureus osteomyelitis and foreign-body-associated S. epidermidis infections under standardized laboratory conditions. Methods Twenty-two rabbits were randomized into three groups. In group 1, a localized osteomyelitis model induced with a clinical strain of S. aureus was applied. In groups 2 and 3, a foreign-body-associated infection model induced with a clinical or laboratory strain of S. epidermidis was applied. A small block of bone cement was surgically introduced into the medullary cavity of the proximal tibia followed by peri-implant injection of S. aureus (1 × 105 CFU/mL) or one of the two S. epidermidis (1 × 109 CFU/mL) strains with an adjunct injection of aqueous sodium morrhuate. In group 1, the cement block was surgically removed at 2 weeks but left in place in groups 2 and 3 in order to mimic foreign-body-associated S. epidermidis infections. At 8 weeks, the animals were imaged using 18 F-FDG PET/CT. The presence of bacterial infection was confirmed by cultures, and the severity of bone infections was graded by means of radiography, peripheral quantitative CT, and semi-quantitative histology. Results The S. aureus strain caused constantly culture-positive osteomyelitis. The clinical S. epidermidis strain resulted in foreign-body-associated infections, while the laboratory S. epidermidis strain (ATCC 35983) induced only occasionally culture-positive infections. There was a correlation (r = 0.645; P = 0.013) between semi-quantitative score of leukocyte infiltration and the 18 F-FDG uptake in animals with positive cultures. Standardized uptake value (SUV) of the infected bones was twofold (P < 0.001) in S. aureus animals compared with S. epidermidis animals, but there was only a trend (P = 0.053, ANOVA) in the differences of the corresponding SUV ratios. This was due to the altered 18 F-FDG uptake of the contralateral tibias probably reflecting a systemic impact of severe osteomyelitis. Conclusion The peri-implant inoculation of S. epidermidis, reflecting low virulence of the pathogen and limited leukocyte infiltration, was characterized by low 18 F-FDG uptake.
Collapse
Affiliation(s)
- Petteri Lankinen
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland.
| | | | | | | | | |
Collapse
|
14
|
Moriarty TF, Campoccia D, Nees SK, Boure LP, Richards RG. In vivo evaluation of the effect of intramedullary nail microtopography on the development of local infection in rabbits. Int J Artif Organs 2011; 33:667-75. [PMID: 20890880 DOI: 10.1177/039139881003300913] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIM Fractures of the tibia and femoral diaphysis are commonly repaired by intramedullary (IM) nails, which are currently composed of either electropolished stainless steel (EPSS) or standard, non-polished titanium-aluminum-niobium (TAN). Once the fracture has fully healed, removal of IM nails is common, but the strong adhesion of bone to standard TAN complicates removal. Polishing the surface of TAN IM nails has been shown to reduce bony adhesion and ease implant removal without compromising fixation. Polished TAN nails are, therefore, expected to have significant clinical benefit in situations where the device is to be removed. The aim of the present study was to determine the effect of polishing TAN IM nails on susceptibility to infection in an animal model. MATERIALS AND METHODS Solid IM nails (Synthes, Betlach, Switzerland) composed of standard TAN were compared with polished equivalents and also to clinically available EPSS nails. The surface chemical and topographical properties of the materials were assessed by X-ray photon spectroscopy (XPS), white light profilometry, and scanning electron microscopy (SEM). An in vivo infection study was performed using a clinical isolate of Staphylococcus aureus that was characterized with respect to various virulence factors. RESULTS Polishing TAN IM nails caused no significant change to the chemistry of the nails, but the topography of the polished TAN nails was significantly smoother than standard TAN nails. In the infection study, the rank order based on descending infectious dose 50 (ID(50)) was: standard TAN, polished TAN, and finally EPSS. The ID(50) values did not differ greatly between any of the groups. CONCLUSIONS Polishing the surface TAN IM nails was not found to influence the susceptibility to infection in our animal model.
Collapse
|
15
|
Engelsman AF, Saldarriaga-Fernandez IC, Nejadnik MR, van Dam GM, Francis KP, Ploeg RJ, Busscher HJ, van der Mei HC. The risk of biomaterial-associated infection after revision surgery due to an experimental primary implant infection. BIOFOULING 2010; 26:761-7. [PMID: 20737327 DOI: 10.1080/08927014.2010.515027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The fate of secondary biomaterial implants was determined by bio-optical imaging and plate counting, after antibiotic treatment of biomaterials-associated-infection (BAI) and surgical removal of an experimentally infected, primary implant. All primary implants and tissue samples from control mice showed bioluminescence and were culture-positive. In an antibiotic treated group, no bioluminescence was detected and only 20% of all primary implants and no tissue samples were culture-positive. After revision surgery, bioluminescence was detected in all control mice. All the implants and 80% of all tissue samples were culture-positive. In contrast, in the antibiotic treated group, 17% of all secondary implants and 33% of all tissue samples were culture-positive, despite antibiotic treatment. The study illustrates that due to the BAI of a primary implant, the infection risk of biomaterial implants is higher in revision surgery than in primary surgery, emphasizing the need for full clearance of the infection, as well as from surrounding tissues prior to implantation of a secondary implant.
Collapse
Affiliation(s)
- Anton F Engelsman
- Department of BioMedical Engineering, University Medical Center Groningen and University of Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zaat SAJ, Broekhuizen CAN, Riool M. Host tissue as a niche for biomaterial-associated infection. Future Microbiol 2010; 5:1149-51. [DOI: 10.2217/fmb.10.89] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - CAN Broekhuizen
- Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - M Riool
- Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
Microscopic detection of viable Staphylococcus epidermidis in peri-implant tissue in experimental biomaterial-associated infection, identified by bromodeoxyuridine incorporation. Infect Immun 2010; 78:954-62. [PMID: 20048041 DOI: 10.1128/iai.00849-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection of biomedical devices is characterized by biofilm formation and colonization of surrounding tissue by the causative pathogens. To investigate whether bacteria detected microscopically in tissue surrounding infected devices were viable, we used bromodeoxyuridine (BrdU), a nucleotide analogue that is incorporated into bacterial DNA and can be detected with antibodies. Infected human tissue was obtained postmortem from patients with intravascular devices, and mouse biopsy specimens were obtained from mice with experimental biomaterial infection. In vitro experiments showed that Staphylococcus epidermidis incorporated BrdU, as judged from staining of the bacteria with anti-BrdU antibodies. After incubation of bacteria with BrdU and subsequent staining of microscopic sections with anti-BrdU antibodies, bacteria could be clearly visualized in the tissue surrounding intravascular devices of deceased patients. With this staining technique, relapse of infection could be visualized in mice challenged with a low dose of S. epidermidis and treated with dexamethasone between 14 and 21 days after challenge to suppress immunity. This confirms and extends our previous findings that pericatheter tissue is a reservoir for bacteria in biomaterial-associated infection. The pathogenesis of the infection and temporo-spatial distribution of viable, dividing bacteria can now be studied at the microscopic level by immunolabeling with BrdU and BrdU antibodies.
Collapse
|
18
|
Broekhuizen CAN, de Boer L, Schipper K, Jones CD, Quadir S, Feldman RG, Vandenbroucke-Grauls CMJE, Zaat SAJ. The influence of antibodies on Staphylococcus epidermidis adherence to polyvinylpyrrolidone-coated silicone elastomer in experimental biomaterial-associated infection in mice. Biomaterials 2009; 30:6444-50. [PMID: 19716173 DOI: 10.1016/j.biomaterials.2009.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 08/09/2009] [Indexed: 11/30/2022]
Abstract
Biomaterial-associated infection (BAI) is a major problem in modern medicine, and is often caused by Staphylococcus epidermidis. We aimed to raise monoclonal antibodies (mAbs) against major surface protein antigens of S. epidermidis, and to assess their possible protective activity in experimental BAI. Mice were vaccinated with a cell wall protein preparation of S. epidermidis. A highly immunodominant antigen was identified as Accumulation-associated protein (Aap). mAbs against Aap and against surface-exposed lipoteichoic acid (LTA) were used for passive immunization of mice in experimental biomaterial-associated infection. Neither anti-Aap nor anti-LTA mAbs showed protection. Either with or without antibodies, tissue surrounding the implants was more often culture positive than the implants themselves, but bacterial adherence to the implants was significantly increased in mice injected with anti-LTA. In vitro, anti-Aap and anti-LTA did show binding to S. epidermidis, but no opsonic activity was observed. We conclude that antibodies against S. epidermidis LTA or Aap showed no opsonic activity and did not protect mice against BAI. Moreover, the increase in binding to implanted biomaterial suggests that passive immunization may increase the risk for BAI.
Collapse
Affiliation(s)
- Corine A N Broekhuizen
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nejadnik MR, Engelsman AF, Saldarriaga Fernandez IC, Busscher HJ, Norde W, van der Mei HC. Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice. J Antimicrob Chemother 2008; 62:1323-5. [DOI: 10.1093/jac/dkn395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|