1
|
Peng Q, Guo R, Zhou Y, Teng R, Cao Y, Mu S. Comparison of Gelatin/Polylysine- and Silk Fibroin/SDF-1α-Coated Mesenchymal Stem Cell-Seeded Intracranial Stents. Macromol Biosci 2022; 23:e2200402. [PMID: 36541928 DOI: 10.1002/mabi.202200402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Endothelialization of the aneurysmal neck is essential for aneurysm healing after endovascular treatment. Mesenchymal stem cell (MSC)-seeded stents can promote aneurysm repair. The biological effects of coated and uncoated nitinol intracranial stents seeded with MSCs on vascular cells and macrophage proliferation and inflammation are investigated. Two stent coatings that exert pro-aggregation effects on MSCs via different mechanisms are examined: gelatin/polylysine (G/PLL), which enhances cell adhesion, and silk fibroin/SDF-1α (SF/SDF-1α), which enhances chemotaxis. The aim is to explore the feasibility of MSC-seeded coated stents in the treatment of intracranial aneurysms. The G/PLL coating provides the highest cytocompatibility and blood compatibility substrate for MSCs and vascular cells and promotes cell adhesion and proliferation. Moreover, it enhances MSC secretion and regulation of vascular cell and macrophage proliferation and chemotaxis. Although the SF/SDF-1α coating promotes MSC secretion and vascular cell chemotaxis, it induces a greater degree of macrophage proliferation, chemotaxis, and secretion of pro-inflammatory factors. MSC-seeded stents coated with G/PLL may benefit stent surface endothelialization and reduce the inflammatory response after endovascular treatment of intracranial aneurysm. These effects may improve aneurysm healing and increase the cure rate.
Collapse
Affiliation(s)
- Qichen Peng
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ruimin Guo
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area, HAB-TEDA, Tianjin, 300457, China.,Tangyi holdings (Shenzhen) Co., LTD, Shenzhen, 518101, China
| | - Yangyang Zhou
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ruidi Teng
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area, HAB-TEDA, Tianjin, 300457, China.,Tangyi holdings (Shenzhen) Co., LTD, Shenzhen, 518101, China
| | - Yulin Cao
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area, HAB-TEDA, Tianjin, 300457, China.,Tangyi holdings (Shenzhen) Co., LTD, Shenzhen, 518101, China
| | - Shiqing Mu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
2
|
Li P, Cai W, Li X, Zhang H, Zhao Y, Wang J. Sulfur-Mediated Polycarbonate Polyurethane for Potential Application of Blood-Contacting Materials. Front Bioeng Biotechnol 2022; 10:874419. [PMID: 35356777 PMCID: PMC8959617 DOI: 10.3389/fbioe.2022.874419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/01/2022] Open
Abstract
In this study, a sulfur-mediated polycarbonate polyurethane (PCU-SS) is developed by mimicking the catalyzing ability of glutathione peroxidase (GPx) on nitric oxide (NO) in the human body. The PCU-SS is endowed with the capability to produce NO based on disulfide bonds, which could strongly improve the biocompatibility of the materials. The characterization results indicate that PCU-SS could not only decrease the adhesion of platelets but also enhance the capability of anti-thrombus. Moreover, it is shown that PCU-SS has a good compatibility with endothelial cells (ECs), while has a marked inhibition capacity of the proliferation of smooth muscle cells (SMCs) and macrophages (MA). Meanwhile, the result of animal implantation experiments further demonstrates the good abilities of PCU-SS on anti-inflammation, anti-thrombus, and anti-hyperplasia. Our results offer a novel strategy for the modification of blood-contacting materials based on disulfide bonds. It is expected that the PCU-SS could shed new light on biocompatibility improvement of cardiovascular stents.
Collapse
Affiliation(s)
- Peichuang Li
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Wanhao Cai
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Xin Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, China
| | - Hong Zhang
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, China
| | - Yuancong Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Yuancong Zhao, ; Jin Wang,
| | - Jin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Yuancong Zhao, ; Jin Wang,
| |
Collapse
|
3
|
Selvakumar PP, Rafuse MS, Johnson R, Tan W. Applying Principles of Regenerative Medicine to Vascular Stent Development. Front Bioeng Biotechnol 2022; 10:826807. [PMID: 35321023 PMCID: PMC8936177 DOI: 10.3389/fbioe.2022.826807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Stents are a widely-used device to treat a variety of cardiovascular diseases. The purpose of this review is to explore the application of regenerative medicine principles into current and future stent designs. This review will cover regeneration-relevant approaches emerging in the current research landscape of stent technology. Regenerative stent technologies include surface engineering of stents with cell secretomes, cell-capture coatings, mimics of endothelial products, surface topography, endothelial growth factors or cell-adhesive peptides, as well as design of bioresorable materials for temporary stent support. These technologies are comparatively analyzed in terms of their regenerative effects, therapeutic effects and challenges faced; their benefits and risks are weighed up for suggestions about future stent developments. This review highlights two unique regenerative features of stent technologies: selective regeneration, which is to selectively grow endothelial cells on a stent but inhibit the proliferation and migration of smooth muscle cells, and stent-assisted regeneration of ischemic tissue injury.
Collapse
Affiliation(s)
| | | | | | - Wei Tan
- University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
4
|
Tsukada J, Mela P, Jinzaki M, Tsukada H, Schmitz-Rode T, Vogt F. Development of In Vitro Endothelialised Stents - Review. Stem Cell Rev Rep 2021; 18:179-197. [PMID: 34403073 DOI: 10.1007/s12015-021-10238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 01/12/2023]
Abstract
Endovascular treatment is prevalent as a primary treatment for coronary and peripheral arterial diseases. Although the introduction of drug-eluting stents (DES) dramatically reduced the risk of in-stent restenosis, stent thrombosis persists as an issue. Notwithstanding improvements in newer generation DES, they are yet to address the urgent clinical need to abolish the late stent complications that result from in-stent restenosis and are associated with late thrombus formation. These often lead to acute coronary syndromes with high mortality in coronary artery disease and acute limb ischemia with a high risk of limb amputation in peripheral arterial disease. Recently, a significant amount of research has focused on alternative solutions to improve stent biocompatibility by using tissue engineering. There are two types of tissue engineering endothelialisation methods: in vitro and in vivo. To date, commercially available in vivo endothelialised stents have failed to demonstrate antithrombotic or anti-stenosis efficacy in clinical trials. In contrast, the in vitro endothelialisation methods exhibit the advantage of monitoring cell type and growth prior to implantation, enabling better quality control. The present review discusses tissue-engineered candidate stents constructed by distinct in vitro endothelialisation approaches, with a particular focus on fabrication processes, including cell source selection, stent material composition, stent surface modifications, efficacy and safety evidence from in vitro and in vivo studies, and future directions.
Collapse
Affiliation(s)
- Jitsuro Tsukada
- Department of Diagnostic Radiology, Nihon University School of Medicine, 30-1, Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan. .,Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - P Mela
- Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Boltzmannstr. 15, Garching, Munich, 85748, Germany
| | - M Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - H Tsukada
- Department of Surgery II, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - T Schmitz-Rode
- AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074, Germany
| | - F Vogt
- Department of Cardiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, Aachen, 52074, Germany
| |
Collapse
|
5
|
Heo HY, Ahn JG, Ji C, Yoon WK. Selective Temporary Stent-Assisted Coil Embolization for Intracranial Wide-Necked Small Aneurysms Using Solitaire AB Retrievable Stent. J Korean Neurosurg Soc 2019; 62:27-34. [PMID: 30630293 PMCID: PMC6328798 DOI: 10.3340/jkns.2018.0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/12/2018] [Indexed: 12/02/2022] Open
Abstract
Objective Stent-assisted coil embolization of intracranial wide-necked aneurysm requires long-term postoperative antiplatelet therapy to prevent in-stent thrombosis. This study aimed to demonstrate results of temporary stent placement for coiling wide necked small intracranial aneurysms, which eliminated need for antiplatelet agents, and to discuss its feasibility and safety.
Methods Data of 156 patients who underwent stent-assisted coil embolization between 2011 and 2014 were retrospectively analyzed. Thirteen cases of temporary stent-assisted coil embolization were included, and their clinical and radiological results were evaluated.
Results The aneurysms treated were all unruptured except one case. All of them had wide neck with mean dome-to-neck ratio of 0.96 and were small-sized aneurysms with mean maximal diameter of 4.2 mm. There was no technical failure in retrieval of stent after completion of embolization of the target aneurysm. Immediate angiography revealed 11 complete and two partial embolization (one residual neck and one residual aneurysm). Two cases encountered thrombosis complication, and they were managed without neurological sequelae. The mean follow-up period was 43 months, angiographic follow-up revealed two cases with minor recurrence, and clinical outcome was good with modified Rankin scale score of 0.
Conclusion Temporary stent-assisted coil embolization of small wide-necked intracranial aneurysm using fully retrievable stent appears safe and effective. Further application and evaluation of this technique in more cases with larger size aneurysm is warranted.
Collapse
Affiliation(s)
- Han Yong Heo
- Department of Neurosurgery, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Guen Ahn
- Department of Neurosurgery, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Cheol Ji
- Department of Neurosurgery, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Ki Yoon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Song Y, Liu P, Li Z, Shi Y, Huang J, Li S, Liu Y, Zhang Z, Wang Y, Zhu W, Yang GY. The Effect of Myosin Light Chain Kinase on the Occurrence and Development of Intracranial Aneurysm. Front Cell Neurosci 2018; 12:416. [PMID: 30555299 PMCID: PMC6282066 DOI: 10.3389/fncel.2018.00416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Myosin light chain kinase is a key enzyme in smooth muscle cell contraction. However, whether myosin light chain kinase plays a role in the occurrence or development of intracranial aneurysms is not clear. The present study explored the function of myosin light chain kinase in human intracranial aneurysm tissues. Five aneurysm samples and five control samples were collected, and smooth muscle cells (SMCs) were dissociated and cultured. A label-free proteomic analysis was performed to screen the differentially expressed proteins between aneurysm and control samples. The expression and function of myosin light chain kinase in aneurysms were examined. We found that 180 proteins were differentially expressed between the aneurysm and control samples, among which 88 were increased and 92 (including myosin light chain kinase) were decreased in aneurysms compared to control tissues. In a model of the inflammatory environment, contractility was weakened and apoptosis was increased in aneurysm SMCs compared to human brain SMCs (p < 0.05). The knock down of myosin light chain kinase in human brain SMCs caused effects similar to those observed in aneurysm SMCs. These results indicated that myosin light chain kinase plays an important role in maintaining smooth muscle contractility, cell survival and inflammation tolerance.
Collapse
Affiliation(s)
- Yaying Song
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Zongwei Li
- Neuroscience and Neuroengineering Research Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Shi
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Jun Huang
- Shanghai Key Laboratory of Hypertension, Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sichen Li
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Yingjun Liu
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Neuroscience and Neuroengineering Research Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Pang JH, Farhatnia Y, Godarzi F, Tan A, Rajadas J, Cousins BG, Seifalian AM. In situ Endothelialization: Bioengineering Considerations to Translation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6248-64. [PMID: 26460851 DOI: 10.1002/smll.201402579] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 06/14/2015] [Indexed: 05/10/2023]
Abstract
Improving patency rates of current cardiovascular implants remains a major challenge. It is widely accepted that regeneration of a healthy endothelium layer on biomaterials could yield the perfect blood-contacting surface. Earlier efforts in pre-seeding endothelial cells in vitro demonstrated success in enhancing patency, but translation to the clinic is largely hampered due to its impracticality. In situ endothelialization, which aims to create biomaterial surfaces capable of self-endothelializing upon implantation, appears to be an extremely promising solution, particularly with the utilization of endothelial progenitor cells (EPCs). Nevertheless, controlling cell behavior in situ using immobilized biomolecules or physical patterning can be complex, thus warranting careful consideration. This review aims to provide valuable insight into the rationale and recent developments in biomaterial strategies to enhance in situ endothelialization. In particular, a discussion on the important bio-/nanoengineering considerations and lessons learnt from clinical trials are presented to aid the future translation of this exciting paradigm.
Collapse
Affiliation(s)
- Jun Hon Pang
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Yasmin Farhatnia
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Fatemeh Godarzi
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
- UCL Medical School, University College London (UCL), London, UK
- Biomaterials & Advanced Drug Delivery Laboratory, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Jayakumar Rajadas
- Biomaterials & Advanced Drug Delivery Laboratory, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Brian G Cousins
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Alexander M Seifalian
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
- Royal Free Hospital, London, UK
- NanoRegMed Ltd, London, UK
| |
Collapse
|
8
|
Jantzen AE, Noviani M, Mills JS, Baker KM, Lin FH, Truskey GA, Achneck HE. Point-of-care seeding of nitinol stents with blood-derived endothelial cells. J Biomed Mater Res B Appl Biomater 2015; 104:1658-1665. [PMID: 26340233 DOI: 10.1002/jbm.b.33510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/09/2015] [Accepted: 08/14/2015] [Indexed: 01/21/2023]
Abstract
Nitinol-based vascular devices, for example, peripheral and intracranial stents, are limited by thrombosis and restenosis. To ameliorate these complications, we developed a technology to promote vessel healing by rapidly seeding (QuickSeeding) autologous blood-derived endothelial cells (ECs) onto modified self-expanding nitinol stent delivery systems immediately before implantation. Several thousand micropores were laser-drilled into a delivery system sheath surrounding a commercial nitinol stent to allow for exit of an infused cell suspension. As suspension medium flowed outward through the micropores, ECs flowed through the delivery system attaching to the stent surface. The QuickSeeded ECs adhered to and spread on the stent surface following 24-h in vitro culture under static or flow conditions. Further, QuickSeeded ECs on stents that were deployed into porcine carotid arteries spread to endothelialize stent struts within 48 h (n = 4). The QuickSeeded stent struts produced significantly more nitric oxide in ex vivo flow circuits after 24 h, as compared to static conditions (n = 5). In conclusion, ECs QuickSeeded onto commercial nitinol stents within minutes of implantation spread to form a functional layer in vitro and in vivo, providing proof of concept that the novel QuickSeeding method with modified delivery systems can be used to seed functional autologous endothelium at the point of care. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1658-1665, 2016.
Collapse
Affiliation(s)
- Alexandra E Jantzen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Maria Noviani
- Department of Surgery, Duke University Medical Center, Durham, North Carolina.,Duke-National University of Singapore Graduate Medical School Singapore Cardiovascular & Metabolic Disorders Program, Singapore
| | - James S Mills
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Fu-Hsiung Lin
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Hardean E Achneck
- Department of Surgery, Duke University Medical Center, Durham, North Carolina. .,Duke-National University of Singapore Graduate Medical School Singapore Cardiovascular & Metabolic Disorders Program, Singapore. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina. .,Hemostemix Inc., Ness Ziona, Israel, Calgary, Alberta, Canada.
| |
Collapse
|
9
|
Sultan S, Kavanagh EP, Bonneau M, Kang C, Alves A, Hynes NM. Kinetics of endothelialization of the multilayer flow modulator and single-layer arterial stents. Vascular 2015; 24:78-87. [DOI: 10.1177/1708538115585073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The multilayer flow modulator (MFM; Cardiatis, Isnes, Belgium) is a self-expandable mesh of braided cobalt alloy wires, used for treatment of aortic and peripheral aneurysms. To further improve our understanding of this novel technology, the endothelialization kinetics of the MFM was investigated and compared with those of two marketed single-layer stents. Five porcine animal models were used in which a total of 19 stents were implanted in the iliac and carotid arteries between one and five weeks before sacrifice. All 19 stents were successfully delivered. For all devices, nonsignificant signs of inflammation or thrombosis were noted, and there was no evidence of local intolerance. The MFM developed a thin layer of endothelial cells earlier and was associated with less neointimal development than the two single-layer stents. A differing phenomenon of integration was also revealed and hypothesized as endothelialization from adhesion of circulating endothelial progenitor cells, as well as adhesion from the arterial wall, and also by the differences in trauma exposed to the arterial wall.
Collapse
Affiliation(s)
- Sherif Sultan
- Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, Galway, Ireland
- Department of Vascular and Endovascular Surgery, Galway Clinic, Doughiska, Galway, Ireland
| | - Edel P Kavanagh
- Department of Vascular and Endovascular Surgery, Galway Clinic, Doughiska, Galway, Ireland
| | - Michel Bonneau
- Centre de Recherche en Imagerie Interventionnelle (CR2i), National Institute of Agronomic Research, Jouy-en-Josas, France
| | - Chantal Kang
- Centre de Recherche en Imagerie Interventionnelle (CR2i), National Institute of Agronomic Research, Jouy-en-Josas, France
| | | | - Niamh M Hynes
- Department of Vascular and Endovascular Surgery, Galway Clinic, Doughiska, Galway, Ireland
| |
Collapse
|