1
|
Silva MC, Delamura IF, de Sá Simon ME, Barbosa S, Ting DT, Bechara K, Shibli JA, Mourão CF, Bassi APF, Ervolino E, Faverani LP. Is There an Ideal Concentration of Ozonized Oil for the Prevention and Modulation of Zoledronate-Induced Mandibular Osteonecrosis? A Study on Senescent Rats. J Funct Biomater 2024; 15:353. [PMID: 39728153 DOI: 10.3390/jfb15120353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
This study aimed to identify whether there is an ideal concentration for applying ozonized oil (OZ) in the post-exodontic alveoli of senescent rats treated with zoledronate (ZOL). Thirty-five female rats, aged 18 months, were divided into five groups: ZOL; ZOL+OZ500; ZOL+OZ600; ZOL+OZ700; and SAL. The groups treated with ZOL, and other concentrations of OZ received applications at a dose of 100 μg/kg, while the SAL group received saline. After three weeks of ZOL application, the animals underwent extraction of the lower first molar. Subsequently, local therapies were initiated: group ZOL+OZ500 at 500 mEq/kg; ZOL+Z600 at 600 mEq/kg; and ZOL+OZ700 at 700 mEq/kg at baseline, and on days 2 and 4 post-operation. Euthanasia was performed on day 28. The microtomographic parameter of bone volume and histometric data on the area of neoformed bone (NFBT) showed the highest values for the ZOL+OZ600 group (p < 0.05). All OZ groups had smaller areas of non-vital bone than the ZOL group (p < 0.05). The clinical appearance of the operated region showed the alveoli covered with soft tissue, particularly in the OZ groups. All the tested concentrations of OZ were able to prevent and modulate MRONJ. As it presents a greater amount of NFBT, the concentration of 600 mEq/kg seems to be ideal.
Collapse
Affiliation(s)
- Mirela Caroline Silva
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil
| | - Izabela Fornazari Delamura
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil
| | - Maria Eloise de Sá Simon
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil
| | - Stefany Barbosa
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil
| | - David Tawei Ting
- Dental Research Division, Department of Periodontology and Oral Implantology, Federal Fluminense Univesity, Niteroi 21941-617, Rio de Janeiro, Brazil
| | - Karen Bechara
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos (UnG), Guarulhos 07115-230, Sao Paulo, Brazil
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos (UnG), Guarulhos 07115-230, Sao Paulo, Brazil
| | - Carlos Fernando Mourão
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Ana Paula Farnezi Bassi
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil
| | - Leonardo Perez Faverani
- Department of Oral Diagnosis, Division of Oral and Maxillofacial Surgery, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Sao Paulo, Brazil
- OMFS, School of Dentistry, São Paulo State University, Araçatuba 16015-050, Sao Paulo, Brazil
| |
Collapse
|
2
|
Cionca N, Meyer J, Michalet S, Varesio E, Hashim D. Quantification of titanium and zirconium elements in oral mucosa around healthy dental implants: a case-control pilot study. Clin Oral Investig 2023; 27:4715-4726. [PMID: 37270723 PMCID: PMC10415439 DOI: 10.1007/s00784-023-05099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Metallic particles are detected in different sites of the oral cavity, mainly in patients with peri-implantitis lesions. The aim of this pilot study was to analyze the levels of titanium and zirconium elements in the oral mucosa around healthy implants and to investigate the impact of titanium exogenous contamination on the measurements. MATERIALS AND METHODS Forty-one participants were included in this three-phase study. Two groups of subjects were defined according to presence of titanium or zirconia implants (n: 20) or without any implants nor metallic restorations (n:21). Thirteen patients (n: 5 with zirconia implant; n: 3 with titanium implants; n: 5 control group) took part to the first part designed to optimize and validate the method of detecting titanium (Ti) and zirconium (Zr) elements in the oral mucosa and gingival tissues by the Inductively Coupled Plasma Mass Spectrometry (ICPMS). The second phase compared the levels of Ti and Zr concentrations in patients with implants (n: 12) and without implants (n: 6) who were controlled for their intake of titanium dioxide (TiO2). The last step included ten control subjects without any metallic devices to measure the concentration of Ti and Zr before and after having candies containing TiO2. RESULTS In the first phase, concentrations of Ti and Zr were below the limit of detection (LOD) in most cases, 0.18 μg/L and 0.07 μg/L respectively. In the titanium group, two out of three subjects displayed concentrations above the LOD, 0.21 μg/L and 0.66 μg/L. Zr element was only found in patients with zirconia implants. After controlling the intake of TiO2, all concentrations of Ti and Zr were below the limit of quantification (LOQ). Moreover, in patients with no implants, the Ti concentration in gingiva cells was superior for 75% of the samples after having a TiO2 diet. CONCLUSIONS Zirconium was only found in patients with zirconia implants, whereas titanium was detected in all groups even in subjects with no titanium implants. Zirconium and titanium elements were not detected in patients who were controlled for their intake of food and their use of toothpaste irrespective of the presence of implants or not. For 70% of the patients, the titanium detection was directly influenced by the intake of TiO2 contained candies. CLINICAL RELEVANCE When analyzing titanium particles, it is necessary to pay attention to the risk of contamination bias brought by external products. When this parameter was controlled, no titanium particles were detected around clinically healthy implants.
Collapse
Affiliation(s)
- Norbert Cionca
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Meyer
- Mass Spectrometry Core Facility (MZ 2.0), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sophie Michalet
- Mass Spectrometry Core Facility (MZ 2.0), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Emmanuel Varesio
- Mass Spectrometry Core Facility (MZ 2.0), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Dena Hashim
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Polo TOB, Momesso GAC, Silva WPP, Santos AMDS, Fonseca-Santos JM, da Cruz NC, Barão VAR, Garcia VG, Theodoro LH, Faverani LP. Is an anodizing coating associated to the photobiomodulation able to optimize bone healing in ovariectomized animal model? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112167. [PMID: 33667733 DOI: 10.1016/j.jphotobiol.2021.112167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/10/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
This in vivo study investigated whether the bioactivity of anodizing coating, produced by plasma electrolytic oxidation (PEO), on mini-plate in femur fracture could be improved with the association of photobiomodulation (PBM) therapy. From the 20 ovariectomized Wistar female rats, 8 were used for model characterization, and the remaining 12 were divided into four groups according to the use of PBM therapy by diode laser (808 nm; power: 100 mW; energy: 6.0 J; energy density: 212 J/cm2; power density: 3.5 W/cm2) and the type of mini-plate surface (commercially pure titanium mini-plate -cpTi- and PEO-treated mini-plate) as follow: cpTi; PEO; cpTi/PBM; and PEO/PBM. After 60 days of surgery, fracture healing underwent microstructural, bone turnover, histometric, and histologic adjacent muscle analysis. Animals of groups with PEO and PBM showed greater fracture healing than cpTi control group under histometric and microstructural analysis (P < 0.05); however, bone turnover was just improved in PBM's groups (P < 0.05). there was no difference between cpTi and PEO without PBM (P > 0.05). Adjacent muscle analysis showed no metallic particles or muscle alterations in all groups. PEO and PBM are effective strategies for bone repair in fractures, however their association does not provide additional advantages.
Collapse
Affiliation(s)
- Tárik Ocon Braga Polo
- Department of Diagnosis and Surgery, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Gustavo Antônio Correa Momesso
- Department of Diagnosis and Surgery, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - William Phillip Pereira Silva
- Department of Diagnosis and Surgery, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Anderson Maikon de Souza Santos
- Department of Diagnosis and Surgery, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - João Matheus Fonseca-Santos
- Department of Diagnosis and Surgery, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Nilson Cristino da Cruz
- Technological Plasma Laboratory (LaPTec), Experimental Campus of Sorocaba, São Paulo State University (UNESP), Sorocaba, São Paulo, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Valdir Gouveia Garcia
- Department of Diagnosis and Surgery, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Letícia Helena Theodoro
- Department of Diagnosis and Surgery, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Leonardo P Faverani
- Department of Diagnosis and Surgery, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
4
|
Okazaki Y, Katsuda SI. Biological Safety Evaluation and Surface Modification of Biocompatible Ti-15Zr-4Nb Alloy. MATERIALS 2021; 14:ma14040731. [PMID: 33557312 PMCID: PMC7914436 DOI: 10.3390/ma14040731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
We performed biological safety evaluation tests of three Ti–Zr alloys under accelerated extraction condition. We also conducted histopathological analysis of long-term implantation of pure V, Al, Ni, Zr, Nb, and Ta metals as well as Ni–Ti and high-V-containing Ti–15V–3Al–3Sn alloys in rats. The effect of the dental implant (screw) shape on morphometrical parameters was investigated using rabbits. Moreover, we examined the maximum pullout properties of grit-blasted Ti–Zr alloys after their implantation in rabbits. The biological safety evaluation tests of three Ti–Zr alloys (Ti–15Zr–4Nb, Ti–15Zr–4Nb–1Ta, and Ti–15Zr–4Nb–4Ta) showed no adverse (negative) effects of either normal or accelerated extraction. No bone was formed around the pure V and Ni implants. The Al, Zr, Nb, and Ni–Ti implants were surrounded by new bone. The new bone formed around Ti–Ni and high-V-containing Ti alloys tended to be thinner than that formed around Ti–Zr and Ti–6Al–4V alloys. The rate of bone formation on the threaded portion in the Ti–15Zr–4Nb–4Ta dental implant was the same as that on a smooth surface. The maximum pullout loads of the grit- and shot-blasted Ti–Zr alloys increased linearly with implantation period in rabbits. The pullout load of grit-blasted Ti–Zr alloy rods was higher than that of shot-blasted ones. The surface roughness (Ra) and area ratio of residual Al2O3 particles of the Ti–15Zr–4Nb alloy surface grit-blasted with Al2O3 particles were the same as those of the grit-blasted Alloclassic stem surface. It was clarified that the grit-blasted Ti–15Zr–4Nb alloy could be used for artificial hip joint stems.
Collapse
Affiliation(s)
- Yoshimitsu Okazaki
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 1-1 Higashi 1-Chome, Tsukuba 305-8566, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-861-7179
| | - Shin-ichi Katsuda
- Japan Food Research Laboratory, 2-3 Bunkyo, Chitose 206-0025, Hokkaido, Japan;
| |
Collapse
|
5
|
Miniplates coated by plasma electrolytic oxidation improve bone healing of simulated femoral fractures on low bone mineral density rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111775. [PMID: 33545905 DOI: 10.1016/j.msec.2020.111775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
The treatment of polytrauma patients represents a great challenge in the maxillofacial and orthopedic surgery fields. Therefore, this study tested the hypothesis that the use of a bioactive coating (by plasma electrolytic oxidation, PEO) on titanium microplates could improve the fracture healing of low bone mineral density (BMD) rats. Thirty female rats underwent bilateral ovariectomy surgery (OVX), and 35 rats underwent fake surgery (SHAM). Three months later, animals were subjected to femoral fracture simulation and were fixed with either non-coated (CONV) or coated (PEO) titanium miniplates. Eight weeks postoperatively, microplate/bone complexes were analyzed through computed microtomography, histometric, confocal microscopy, molecular, and biomechanical analysis. Bioactive elements (Ca and P) were incorporated on the PEO microplate and the surface was modified in a volcano-like structure. In the microCT analysis the OVX/PEO group had greater values for Tb.Th (bone trabecular thickness), Tb.Sp (separation of bone trabeculae) and Tb.N (number of trabeculae) parameters compared to the OVX/CONV group. According to histometric analysis, the OVX/PEO group showed significantly higher new bone formation than the OVX/CONV group (P < 0.05). For the fluorochrome area, the OVX groups (PEO and CONV) showed greater values for calcein precipitation (old bone) than alizarin red (new bone). Molecular results showed greater values for proteins related to the final phase of bone formation (P < 0.05) in the OVX/PEO group. The OVX/PEO group showed higher bone/miniplate system resilience compared to the others (P < 0.05). It was concluded that PEO coating optimizes bone healing on simulated femoral fractures in low bone mineral density rats. This sheds new light in the treatment of osteoporotic patients with bone fractures.
Collapse
|
6
|
Qin HM, Herrera D, Liu DF, Chen CQ, Nersesyan A, Mišík M, Knasmueller S. Genotoxic properties of materials used for endoprostheses: Experimental and human data. Food Chem Toxicol 2020; 145:111707. [PMID: 32889016 DOI: 10.1016/j.fct.2020.111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 12/28/2022]
Abstract
Approximately 2 million endoprostheses are implanted annually and metal ions as well as particles are released into the body from the materials which are used. This review describes the results of studies concerning genotoxic damage caused by artificial joints. DNA damage leads to various adverse long-term health effects in humans including cancer. Experiments with mammalian cells showed that metal ions and particles from orthopedic materials cause DNA damage. Induction of chromosomal aberrations (CA) was found in several in vitro experiments and in studies with rodents with metals from orthopedic materials. Human studies focused mainly on induction of CA (7 studies). Only few investigations (4) concerned sister chromatid exchanges, oxidative DNA damage (2) and micronucleus formation (1). CA are a reliable biomarker for increased cancer risks in humans) and were increased in all studies in patients with artificial joints. No firm conclusion can be drawn at present if the effects in humans are due to oxidative stress and if dissolved metal ions or release particles play a role. Our findings indicate that patients with artificial joints may have increased cancer risks due to damage of the genetic material. Future studies should be performed to identify safe materials and to study the molecular mechanisms in detail.
Collapse
Affiliation(s)
- Hong-Min Qin
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Denise Herrera
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Dian-Feng Liu
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Chao-Qian Chen
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria.
| |
Collapse
|
7
|
Yamamura H, da Silva VHP, Ruiz PLM, Ussui V, Lazar DRR, Renno ACM, Ribeiro DA. Physico-chemical characterization and biocompatibility of hydroxyapatite derived from fish waste. J Mech Behav Biomed Mater 2018; 80:137-142. [PMID: 29414469 DOI: 10.1016/j.jmbbm.2018.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/07/2018] [Accepted: 01/29/2018] [Indexed: 01/28/2023]
Abstract
The aim of this study was to synthesize hydroxyapatite (HAP) powder from fish waste. The powder was characterized through X-ray diffraction, Fourier transform infrared spectroscopy, ion exchange chromatography, scanning electron microscopy and plasma emission spectrometry. The cyto- and genotoxicity was carried out to demonstrate biocompatibility in vivo by means of rat subcutaneous tissue test. The results showed that the visible crystalline nature of typical apatite crystal structure when they were calcined at 800 °C. Infrared spectroscopy analysis showed similar composition to HAP standard with the presence of carbonate ion demonstrated by wave number values of 871 cm-1 and 1420 cm-1 for calcinations at 800 °C. The scanning electronmicrographies depicted the crystal morphology and porous nature with average pore size of ~10 µm. Plasma emission spectrometry and ion exchange chromatography confirmed the presence of Ca and P in the samples. The mean of calcium content was 36.8; Mg was 0.8, Na was 0.7 and K was 0.5. Rat subcutaneous tissue test revealed that HAP presented biocompatibility. Furthermore, the lack of cyto- and genotoxicity in blood, liver, kidney and lung were noticed after 30 days of HAP implantation. Taken together, our results demonstrated that HAP from fish waste exhibits a great potential for using as biomaterial since is represents a simple, effective, low-cost process and satisfactory degree of biocompatibility.
Collapse
Affiliation(s)
- Hirochi Yamamura
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | - Pedro Luiz Menin Ruiz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Valter Ussui
- Nuclear and Energy Research Institute, IPEN, Sao Paulo, SP, Brazil
| | | | | | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil.
| |
Collapse
|
8
|
Karahalil B, Kadioglu E, Tuzuner-Oncul AM, Cimen E, Emerce E, Kisnisci RS. Micronucleus assay assessment of possible genotoxic effects in patients treated with titanium alloy endosseous implants or miniplates. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 760:70-2. [PMID: 24189049 DOI: 10.1016/j.mrgentox.2013.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/25/2022]
Abstract
The use of titanium and its alloys (Ti-6Al-4V) for oral surgery has increased dramatically in recent years. Ti is a stable biocompatible metal suitable for oral applications and it has been used for endosseous subperiosteal implants and miniplate fixation for more than 25 years. Dental implants are typically made of Ti or Ti alloys. The alloys are potentially toxic due to release of vanadium and aluminum. We tested the possible genotoxicity of Ti alloy endosseous implants and miniplates on the oral mucosal tissues of two groups of patients: 17 patients receiving Ti miniplate and screw fixation, and 37 endosseous dental implant placement patients. Preoperative and postoperative mucogingival cell samples were collected. Genotoxicity was assessed by the micronucleus assay (MN). There were slight but not statistically significant increases in the frequencies of MN (p=0.087 and p=0.047) post-operation in both groups. In summary, neither of the applications showed genotoxicity in the oral epithelial cells of patients.
Collapse
Affiliation(s)
- Bensu Karahalil
- Gazi University, Faculty of Pharmacy, Toxicology Department, 06330 Ankara, Turkey.
| | - Ela Kadioglu
- Gazi University, Faculty of Pharmacy, Toxicology Department, 06330 Ankara, Turkey
| | - Ayşegül M Tuzuner-Oncul
- Ankara University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, 06500 Ankara, Turkey
| | - Emre Cimen
- Medicana Dental Hospital, Cifte havuzlar, Istanbul, Turkey
| | - Esra Emerce
- Gazi University, Faculty of Pharmacy, Toxicology Department, 06330 Ankara, Turkey
| | - Reha S Kisnisci
- Ankara University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, 06500 Ankara, Turkey
| |
Collapse
|
9
|
Kido HW, Ribeiro DA, de Oliveira P, Parizotto NA, Camilo CC, Fortulan CA, Marcantonio E, da Silva VHP, Renno ACM. Biocompatibility of a porous alumina ceramic scaffold coated with hydroxyapatite and bioglass. J Biomed Mater Res A 2013; 102:2072-8. [PMID: 23894045 DOI: 10.1002/jbm.a.34877] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/21/2013] [Accepted: 07/12/2013] [Indexed: 11/08/2022]
Abstract
This study aimed to evaluate the osteointegration and genotoxic potential of a bioactive scaffold, composed of alumina and coated with hydroxyapatite and bioglass, after their implantation in tibias of rats. For this purpose, Wistar rats underwent surgery to induce a tibial bone defect, which was filled with the bioactive scaffolds. Histology analysis (descriptive and morphometry) of the bone tissue and the single-cell gel assay (comet) in multiple organs (blood, liver, and kidney) were used to reach this aim after a period of 30, 60, 90, and 180 days of material implantation. The main findings showed that the incorporation of hydroxyapatite and bioglass in the alumina scaffolds produced a suitable environment for bone ingrowth in the tibial defects and did not demonstrate any genotoxicity in the organs evaluated in all experimental periods. These results clearly indicate that the bioactive scaffolds used in this study present osteogenic potential and still exhibit local and systemic biocompatibility. These findings are promising once they convey important information about the behavior of this novel biomaterial in biological system and highlight its possible clinical application.
Collapse
Affiliation(s)
- Hueliton Wilian Kido
- Department of Physiotherapy, Post-Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
STUDY DESIGN A prospective cohort study. OBJECTIVE To determine serum titanium, niobium, and aluminum levels in pediatric patients within the first postoperative year after instrumented spinal arthrodesis. SUMMARY OF BACKGROUND DATA Instrumented spinal arthrodesis is a common procedure to correct scoliosis and kyphosis. Titanium-based instrumentation is increasingly favored due to enhanced biomechanical properties, but concerns have arisen regarding metal debris release and the potential for local and systemic complications. METHODS The pattern of systemic metal release over time was evaluated by measuring serum titanium, niobium, and aluminum levels preoperatively and 1 week, 1 month, 6 months, and 12 months after instrumented spinal arthrodesis using a titanium alloy. Serum metal levels were measured using high-resolution inductively coupled plasma mass spectrometry. RESULTS Thirty-two patients were included in the study group. Mean age at surgery was 14.7 years. Preoperative and postoperative concentrations of serum titanium and niobium were significantly different (P = 0.0001). Median postoperative serum concentrations of titanium and niobium were elevated 2.4- and 5.9-fold above the normal range respectively with 95% and 99% of samples elevated postoperatively. A significant and rapid rise in serum titanium and niobium levels was observed within the first postoperative week, after which elevated serum levels persisted up to 12 months. CONCLUSION We report abnormally elevated serum titanium and niobium levels in patients with titanium-based spinal instrumentation up to 12 months. The long-term systemic consequences of debris generated by wear and corrosion of spinal instrumentation is unclear but concerning, particularly as these implants inserted into the pediatric population may remain in situ for beyond 6 decades.
Collapse
|
11
|
Ortiz AJ, Fernández E, Vicente A, Calvo JL, Ortiz C. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage. Am J Orthod Dentofacial Orthop 2011; 140:e115-22. [PMID: 21889059 DOI: 10.1016/j.ajodo.2011.02.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 10/17/2022]
Abstract
INTRODUCTION The aims of this study were to determine the amounts of metallic ions that stainless steel, nickel-free, and titanium alloys release to a culture medium, and to evaluate the cellular viability and DNA damage of cultivated human fibroblasts with those mediums. METHODS The metals were extracted from 10 samples (each consisting of 4 buccal tubes and 20 brackets) of the 3 orthodontic alloys that were submerged for 30 days in minimum essential medium. Next, the determination of metals was performed by using inductively coupled plasma mass spectrometry, cellular viability was assessed by using the tetrazolium reduction assay (MTT assay) (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide), and DNA damage was determined with the Comet assay. The metals measured in all the samples were Ti(47), Cr(52), Mn(55), Co(59), Ni(60), Mo(92), Fe(56), Cu(63), Zn(66), As(75), Se(78), Cd(111), and Pb(208). RESULTS The cellular viability of the cultured fibroblasts incubated for 7 days with minimum essential medium, with the stainless steel alloy submerged, was close to 0%. Moreover, high concentrations of titanium, chromium, manganese, cobalt, nickel, molybdenum, iron, copper, and zinc were detected. The nickel-free alloy released lower amounts of ions to the medium. The greatest damage in the cellular DNA, measured as the olive moment, was also produced by the stainless steel alloy followed by the nickel-free alloy. Conversely, the titanium alloy had an increased cellular viability and did not damage the cellular DNA, as compared with the control values. CONCLUSIONS The titanium brackets and tubes are the most biocompatible of the 3 alloys studied.
Collapse
Affiliation(s)
- Antonio José Ortiz
- Docent Unit of Integral Pediatric Dentistry, Faculty of Medicine, Dental Clinic, University of Murcia, Murcia, Spain.
| | | | | | | | | |
Collapse
|
12
|
Turkez H. The role of ascorbic acid on titanium dioxide-induced genetic damage assessed by the comet assay and cytogenetic tests. ACTA ACUST UNITED AC 2011; 63:453-7. [DOI: 10.1016/j.etp.2010.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/09/2010] [Accepted: 03/11/2010] [Indexed: 11/29/2022]
|
13
|
Angelieri F, Marcondes JPC, de Almeida DC, Salvadori DM, Ribeiro DA. Genotoxicity of corrosion eluates obtained from orthodontic brackets in vitro. Am J Orthod Dentofacial Orthop 2011; 139:504-9. [DOI: 10.1016/j.ajodo.2009.03.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 03/01/2009] [Accepted: 03/01/2009] [Indexed: 10/18/2022]
|
14
|
Biomonitoring of mutagenicity and cytotoxicity in patients undergoing fixed orthodontic therapy. Am J Orthod Dentofacial Orthop 2011; 139:e399-404. [DOI: 10.1016/j.ajodo.2009.06.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/01/2009] [Accepted: 06/01/2009] [Indexed: 11/19/2022]
|
15
|
Tsaousi A, Jones E, Case CP. The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 697:1-9. [DOI: 10.1016/j.mrgentox.2010.01.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 10/28/2009] [Accepted: 12/22/2009] [Indexed: 12/28/2022]
|
16
|
Kretzer JP, Jakubowitz E, Krachler M, Thomsen M, Heisel C. Metal release and corrosion effects of modular neck total hip arthroplasty. INTERNATIONAL ORTHOPAEDICS 2009; 33:1531-6. [PMID: 19219434 DOI: 10.1007/s00264-009-0729-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 12/20/2008] [Indexed: 12/18/2022]
Abstract
Modular neck implants are an attractive treatment tool in total hip replacement. Concerns remain about the mechanical stability and metal ion release caused by the modular connection. Five different implant designs were investigated in an experimental set-up. In vivo conditions were simulated and the long-term titanium release was measured. Finally, the modular connections were inspected for corrosion processes and signs of fretting. No mechanical failure or excessive corrosion could be identified for the implants tested. The titanium releases measured were extremely low compared to in vivo and in vitro studies and were not in a critical range.
Collapse
Affiliation(s)
- J Philippe Kretzer
- Laboratory of Biomechanics and Implant Research, Department of Orthopaedics, University of Heidelberg, Schlierbacher Landstrasse 200A, 69117, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|