1
|
Karakurt EM, Cetin Y, Incesu A, Demirtas H, Kaya M, Yildizhan Y, Tosun M, Huang Y. Microstructural, Biomechanical, and In Vitro Studies of Ti-Nb-Zr Alloys Fabricated by Powder Metallurgy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4240. [PMID: 37374426 DOI: 10.3390/ma16124240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
This study investigated the microstructures, mechanical performances, corrosion resistances, and in vitro studies of porous Ti-xNb-10Zr (x: 10 and 20; at. %) alloys. The alloys were fabricated by powder metallurgy with two categories of porosities, i.e., 21-25% and 50-56%, respectively. The space holder technique was employed to generate the high porosities. Microstructural analysis was performed by using various methods including scanning electron microscopy, energy dispersive spectroscopy, electron backscatter diffraction, and x-ray diffraction. Corrosion resistance was assessed via electrochemical polarisation tests, while mechanical behavior was determined by uniaxial compressive tests. In vitro studies, such as cell viability and proliferation, adhesion potential, and genotoxicity, were examined by performing an MTT assay, fibronectin adsorption, and plasmid-DNA interaction assay. Experimental results showed that the alloys had a dual-phase microstructure composed of finely dispersed acicular hcp α-Ti needles in the bcc β-Ti matrix. The ultimate compressive strength ranged from 1019 MPa to 767 MPa for alloys with 21-25% porosities and from 173 MPa to 78 MPa for alloys with 50-56% porosities. Noted that adding a space holder agent played a more critical role in the mechanical behaviors of the alloys compared to adding niobium. The pores were largely open and exhibited irregular shapes, with uniform size distribution, allowing for cell ingrowth. Histological analysis showed that the alloys studied met the biocompatibility criteria required for orthopaedic biomaterial use.
Collapse
Affiliation(s)
- Eyyup Murat Karakurt
- BCAST, Institute of Materials and Manufacturing, Brunel University London, Uxbridge, London UB8 3PH, UK
| | - Yuksel Cetin
- TUBITAK, Marmara Research Center, Life Sciences, Medical Biotechnology Unit, Kocaeli 41470, Turkey
| | - Alper Incesu
- TOBB Technical Sciences Vocational School, Karabuk University, Karabuk 78050, Turkey
| | - Huseyin Demirtas
- TOBB Technical Sciences Vocational School, Karabuk University, Karabuk 78050, Turkey
| | - Mehmet Kaya
- Machinery and Metal Technologies Departmant, Corlu Vocational School, Tekirdag Namik Kemal University, Tekirdag 59830, Turkey
| | - Yasemin Yildizhan
- TUBITAK, Marmara Research Center, Life Sciences, Medical Biotechnology Unit, Kocaeli 41470, Turkey
| | - Merve Tosun
- TUBITAK, Marmara Research Center, Life Sciences, Medical Biotechnology Unit, Kocaeli 41470, Turkey
| | - Yan Huang
- BCAST, Institute of Materials and Manufacturing, Brunel University London, Uxbridge, London UB8 3PH, UK
| |
Collapse
|
2
|
Boraei NFE, Ibrahim MA, Rehim SSAE, Elshamy IH. The effect of annealing temperature and immersion time on the active-passive dissolution of biomedical Ti70Zr20Nb7.5Ta2.5 alloy in Ringer’s solution.. [DOI: 10.21203/rs.3.rs-2403846/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Because of their superior biocompatibility, chemical stability, and mechanical strength, Ti and Ti - based alloys are commonly utilized in orthopaedic dentistry. In Ringer’s solution (RS), the corrosion behavior of the Ti70Zr20Nb7.5Ta2.5 (T70Z20N7.5T2.5) alloy was examined as an alternative potential material for Ti and Ti6Al4V (T6A4V) in medical applications. The corrosion resistance was evaluated utilizing potentiodynamic polarization curves (PPCs), electrochemical impedance spectroscopy (EIS), and open circuit potential techniques (OCP), supplemented by XRD and SEM surface analysis. The T70Z20N7.5T2.5 alloy has the highest resistance to corrosion since it has the most stable passive state in addition to the lowest corrosion current (Icorr) and the highest corrosion potential (Ecorr) in comparison with that of T6A4V and Ti. Furthermore, it was also looked at how different annealing temperatures (600, 800, and 1000 ºC) and immersion times (one, two, and three weeks) affected the corrosion behaviour of T70Z20N7.5T2.5. In comparison to the other samples, the T70Z20N7.5T2.5 alloy annealed at 800 ºC demonstrated superior resistance to corrosion (the lowest Icorr and Ipass). While that annealed at 1000 ºC has the lowest resistance to corrosion (highest Icorr and Ipass) as a result of the passive layer dissolution. The same results are confirmed using the OCP measurements. The passive film is composed of an inner and outer oxide layer, according to the EIS measurements. Meanwhile, the PPCs data demonstrates that the resistance to corrosion of the alloy is higher without immersion than it is with immersion and for a shorter immersion time. These results entirely agree with those of the EIS and OCP measurements of the alloy at the same immersion times. It was found that the T70Z20N7.5T2.5 system consisted of α and β phases. An X-ray structural study indicated a mixture of body centred –cubic β-Ti and hexagonal close-packed α-Ti (main phase, with a grain size of about 5.35 nm). Therefore, among all the materials evaluated in this work, the T70Z20N7.5T2.5 alloy can be considered a promising material suitable for use as a biomaterial.
Collapse
|
3
|
Jongprateep O, Jitanukul N, Saphongxay K, Petchareanmongkol B, Bansiddhi A, Laobuthee A, Lertworasirikul A, Techapiesancharoenkij R. Hydroxyapatite coating on an aluminum/bioplastic scaffold for bone tissue engineering. RSC Adv 2022; 12:26789-26799. [PMID: 36320835 PMCID: PMC9491302 DOI: 10.1039/d2ra03285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional printing can produce scaffolds with shapes and dimensions tailored for practical clinical applications. Enhanced osteoconductivity of such scaffolds is generally desired. Hydroxyapatite (HA) is an inorganic ceramic that can be used to coat such scaffolds and to accelerate healing during the bone restoration process. In this study, HA-coated aluminum/bioplastic scaffolds were fabricated, and their structural characteristics and osteoconductivity were evaluated. Aluminum/bioplastic scaffolds were fabricated by three-dimensional printing, and HA slurries with solids loadings of 10–20 vol% were used for coating. As solids loadings increased, the thickness of the coating layers slightly increased, whereas pore sizes decreased. The average compressive strength was comparable to that of cancellous bone. Potential osteoconductivity was tested by simulated body fluid immersion for 28 days, and the formation of the HA phase on the surface along with a weight increase indicates the potential bioactivity of the samples. Schematic representation of hydroxyapatite synthesis, 3D printing of Al/PLA scaffolds, and hydrothermal coating of the scaffolds. The best uniformity of coating and the greatest compressive strength were observed in samples coated with 10 vol% slurry.![]()
Collapse
Affiliation(s)
- Oratai Jongprateep
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- ICE-Matter Consortium, ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED Net), Bangkok, Thailand
| | - Nonthaporn Jitanukul
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Khotamy Saphongxay
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- ICE-Matter Consortium, ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED Net), Bangkok, Thailand
| | - Benjamon Petchareanmongkol
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Ampika Bansiddhi
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Apirat Laobuthee
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Amornrat Lertworasirikul
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Ratchatee Techapiesancharoenkij
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- ICE-Matter Consortium, ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED Net), Bangkok, Thailand
| |
Collapse
|
4
|
Sharma A, Waddell JN, Li KC, A Sharma L, Prior DJ, Duncan WJ. Is titanium-zirconium alloy a better alternative to pure titanium for oral implant? Composition, mechanical properties, and microstructure analysis. Saudi Dent J 2021; 33:546-553. [PMID: 34803299 PMCID: PMC8589587 DOI: 10.1016/j.sdentj.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 11/28/2022] Open
Abstract
Introduction Titanium (Ti) is widely accepted as a biomaterial for orthopaedic and dental implants, primarily due to its capacity to integrate directly into the bone and its superior corrosion resistance. It has been suggested that titanium–zirconium alloy (TiZr), with 13–17% of zirconium, has better mechanical properties than pure Ti, but there are very few published studies assessing the suitability of TiZr for high-load- bearing implants. This study aimed to compare the mechanical properties and microstructures of TiZr and commercially pure titanium (Ti). Methodology Pure Ti and TiZr alloy discs were prepared and subjected to characterisation by nanoindentation, electron dispersive spectroscopy (EDS), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD). Results The TiZr alloy was found to have significantly lower elastic modulus value (p < 0.0001) and greater hardness than Ti (p < 0.05). The EDS results confirmed the presence of Zr (13–17%) in the TiZr alloy, with XRD and EBSD images showing microstructure with the alpha phase similar to commercially available Ti. Conclusion The lower elastic modulus, higher hardness, presence of alpha phase, and the finer grain size of the TiZr alloy make it more suitable for high-load-bearing implants compared to commercially available Ti and is likely to encourage a positive biological response.
Collapse
Affiliation(s)
- Ajay Sharma
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - John N Waddell
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Kai C Li
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Lavanya A Sharma
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - David J Prior
- Department of Geology, University of Otago, Dunedin, New Zealand
| | - Warwick J Duncan
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Elhattab K, Hefzy MS, Hanf Z, Crosby B, Enders A, Smiczek T, Haghshenas M, Jahadakbar A, Elahinia M. Biomechanics of Additively Manufactured Metallic Scaffolds-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6833. [PMID: 34832234 PMCID: PMC8625735 DOI: 10.3390/ma14226833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
This review paper is related to the biomechanics of additively manufactured (AM) metallic scaffolds, in particular titanium alloy Ti6Al4V scaffolds. This is because Ti6Al4V has been identified as an ideal candidate for AM metallic scaffolds. The factors that affect the scaffold technology are the design, the material used to build the scaffold, and the fabrication process. This review paper includes thus a discussion on the design of Ti6A4V scaffolds in relation to how their behavior is affected by their cell shapes and porosities. This is followed by a discussion on the post treatment and mechanical characterization including in-vitro and in-vivo biomechanical studies. A review and discussion are also presented on the ongoing efforts to develop predictive tools to derive the relationships between structure, processing, properties and performance of powder-bed additive manufacturing of metals. This is a challenge when developing process computational models because the problem involves multi-physics and is of multi-scale in nature. Advantages, limitations, and future trends in AM scaffolds are finally discussed. AM is considered at the forefront of Industry 4.0, the fourth industrial revolution. The market of scaffold technology will continue to boom because of the high demand for human tissue repair.
Collapse
Affiliation(s)
| | - Mohamed Samir Hefzy
- Department of Mechanical, Industrial & Manufacturing Engineering, College of Engineering, The University of Toledo, Toledo, OH 43606, USA; (K.E.); (Z.H.); (B.C.); (A.E.); (T.S.); (M.H.); (A.J.); (M.E.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
de Camargo Reis Mello D, Rodrigues LM, D'Antola Mello FZ, Gonçalves TF, Ferreira B, Schneider SG, de Oliveira LD, de Vasconcellos LMR. Biological and microbiological interactions of Ti-35Nb-7Zr alloy and its basic elements on bone marrow stromal cells: good prospects for bone tissue engineering. Int J Implant Dent 2020; 6:65. [PMID: 33099690 PMCID: PMC7585585 DOI: 10.1186/s40729-020-00261-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND An effective biomaterial for bone replacement should have properties to avoid bacterial contamination and promote bone formation while inducing rapid cell differentiation simultaneously. Bone marrow stem cells are currently being investigated because of their known potential for differentiation in osteoblast lineage. This makes these cells a good option for stem cell-based therapy. We have aimed to analyze, in vitro, the potential of pure titanium (Ti), Ti-35Nb-7Zr alloy (A), niobium (Nb), and zirconia (Zr) to avoid the microorganisms S. aureus (S.a) and P. aeruginosa (P.a). Furthermore, our objective was to evaluate if the basic elements of Ti-35Nb-7Zr alloy have any influence on bone marrow stromal cells, the source of stem cells, and observe if these metals have properties to induce cell differentiation into osteoblasts. METHODS Bone marrow stromal cells (BMSC) were obtained from mice femurs and cultured in osteogenic media without dexamethasone as an external source of cell differentiation. The samples were divided into Ti-35Nb-7Zr alloy (A), pure titanium (Ti), Nb (niobium), and Zr (zirconia) and were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). After predetermined periods, cell interaction, cytotoxicity, proliferation, and cell differentiation tests were performed. For monotypic biofilm formation, standardized suspensions (106 cells/ml) with the microorganisms S. aureus (S.a) and P. aeruginosa (P.a) were cultured for 24 h on the samples and submitted to an MTT test. RESULTS All samples presented cell proliferation, growth, and spreading. All groups presented cell viability above 70%, but the alloy (A) showed better results, with statistical differences from Nb and Zr samples. Zr expressed higher ALP activity and was statistically different from the other groups (p < 0.05). In contrast, no statistical difference was observed between the samples as regards mineralization nodules. Lower biofilm formation of S.a and P.a. was observed on the Nb samples, with statistical differences from the other samples. CONCLUSION Our results suggest that the basic elements present in the alloy have osteoinductive characteristics, and Zr has a good influence on bone marrow stromal cell differentiation. We also believe that Nb has the best potential for reducing the formation of microbial biofilms.
Collapse
Affiliation(s)
- Daphne de Camargo Reis Mello
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil.
| | - Lais Morandini Rodrigues
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
- Oakland University, Mathematics and Science, 318 Meadow Brook Rd, Rochester Hills, USA
| | - Fabia Zampieri D'Antola Mello
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Thais Fernanda Gonçalves
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Bento Ferreira
- Escola de Engenharia de Lorena (EEL-USP), Pólo-Urbo Industrial, Gleba Al-6, S/N, Lorena, SP, Brazil
| | | | - Luciane Dias de Oliveira
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| |
Collapse
|
7
|
Abstract
β-type titanium (Ti) alloys have attracted a lot of attention as novel biomedical materials in the past decades due to their low elastic moduli and good biocompatibility. This article provides a broad and extensive review of β-type Ti alloys in terms of alloy design, preparation methods, mechanical properties, corrosion behavior, and biocompatibility. After briefly introducing the development of Ti and Ti alloys for biomedical applications, this article reviews the design of β-type Ti alloys from the perspective of the molybdenum equivalency (Moeq) method and DV-Xα molecular orbital method. Based on these methods, a considerable number of β-type Ti alloys are developed. Although β-type Ti alloys have lower elastic moduli compared with other types of Ti alloys, they still possess higher elastic moduli than human bones. Therefore, porous β-type Ti alloys with declined elastic modulus have been developed by some preparation methods, such as powder metallurgy, additive manufacture and so on. As reviewed, β-type Ti alloys have comparable or even better mechanical properties, corrosion behavior, and biocompatibility compared with other types of Ti alloys. Hence, β-type Ti alloys are the more suitable materials used as implant materials. However, there are still some problems with β-type Ti alloys, such as biological inertness. As such, summarizing the findings from the current literature, suggestions forβ-type Ti alloys with bioactive coatings are proposed for the future development.
Collapse
|
8
|
Sikder P, Ferreira JA, Fakhrabadi EA, Kantorski KZ, Liberatore MW, Bottino MC, Bhaduri SB. Bioactive amorphous magnesium phosphate-polyetheretherketone composite filaments for 3D printing. Dent Mater 2020; 36:865-883. [PMID: 32451208 PMCID: PMC7359049 DOI: 10.1016/j.dental.2020.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to develop bioactive and osseointegrable polyetheretherketone (PEEK)-based composite filaments melt-blended with novel amorphous magnesium phosphate (AMP) particles for 3D printing of dental and orthopedic implants. MATERIALS AND METHODS A series of materials and biological analyses of AMP-PEEK were performed. Thermal stability, thermogravimetric and differential scanning calorimetry curves of as-synthesized AMP were measured. Complex viscosity, elastic modulus and viscous modulus were determined using a rotational rheometer. In vitro bioactivity was analyzed using SBF immersion method. SEM, EDS and XRD were used to study the apatite-forming ability of the AMP-PEEK filaments. Mouse pre-osteoblasts (MC3T3-E1) were cultured and analyzed for cell viability, proliferation and gene expression. For in vivo analyses, bare PEEK was used as the control and 15AMP-PEEK was chosen based on its in vitro cell-related results. After 4 or 12 weeks, animals were euthanized, and the femurs were collected for micro-computed tomography (μ-CT) and histology. RESULTS The collected findings confirmed the homogeneous dispersion of AMP particles within the PEEK matrix with no phase degradation. Rheological studies demonstrated that AMP-PEEK composites are good candidates for 3D printing by exhibiting high zero-shear and low infinite-shear viscosities. In vitro results revealed enhanced bioactivity and superior pre-osteoblast cell function in the case of AMP-PEEK composites as compared to bare PEEK. In vivo analyses further corroborated the enhanced osseointegration capacity for AMP-PEEK implants. SIGNIFICANCE Collectively, the present investigation demonstrated that AMP-PEEK composite filaments can serve as feedstock for 3D printing of orthopedic and dental implants due to enhanced bioactivity and osseointegration capacity.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Karla Z Kantorski
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Post-Graduate Program in Oral Science (Periodontology Unit), School of Dentistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43606, USA; EEC Division, Directorate of Engineering, The National Science Foundation, Alexandria, VA 22314, USA.
| |
Collapse
|
9
|
Mello DDCR, de Oliveira JR, Cairo CAA, Ramos LSDB, Vegian MRDC, de Vasconcellos LGO, de Oliveira FE, de Oliveira LD, de Vasconcellos LMR. Titanium alloys: in vitro biological analyzes on biofilm formation, biocompatibility, cell differentiation to induce bone formation, and immunological response. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:108. [PMID: 31535222 DOI: 10.1007/s10856-019-6310-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Biological effects of titanium (Ti) alloys were analyzed on biofilms of Candida albicans, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans, and Streptococcus sanguinis, as well as on osteoblast-like cells (MG63) and murine macrophages (RAW 264.7). Standard samples composed of aluminum and vanadium (Ti-6Al-4V), and sample containing niobium (Ti-35Nb) and zirconium (Ti-13Nb-13Zr) were analyzed. Monomicrobial biofilms were formed on the Ti alloys. MG63 cells were grown with the alloys and the biocompatibility (MTT), total protein (TP) level, alkaline phosphatase (ALP) activity, and mineralization nodules (MN) formation were verified. Levels of interleukins (IL-1β and IL-17), tumor necrosis factor alpha (TNF-α), and oxide nitric (NO) were checked, from RAW 264.7 cells supernatants. Data were statically analyzed by one-way analysis of variance (ANOVA) and Tukey's test, or T-test (P ≤ 0.05). Concerning the biofilm formation, Ti-13Nb-13Zr alloy showed the best inhibitory effect on E. faecalis, P. aeruginosa, and S. aureus. And, it also acted similarly to the Ti-6Al-4V alloy on C. albicans and Streptococcus spp. Both alloys were biocompatible and similar to the Ti-6Al-4V alloy. Additionally, Ti-13Nb-13Zr alloy was more effective for cell differentiation, as observed in the assays of ALP and MN. Regarding the stimulation for release of IL-1β and TNF-α, Ti-35Nb and Ti-13Nb-13Zr alloys inhibited similarly the synthesis of these molecules. However, both alloys stimulated the production of IL-17. Additionally, all Ti alloys showed the same effect for NO generation. Thus, Ti-13Nb-13Zr alloy was the most effective for inhibition of biofilm formation, cell differentiation, and stimulation for release of immune mediators.
Collapse
Affiliation(s)
- Daphne de Camargo Reis Mello
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| | - Jonatas Rafael de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil.
| | - Carlos Alberto Alves Cairo
- Division of Materials, Air and Space Institute (CTA), Praça Marechal do Ar Eduardo Gomes, 14, São José dos Campos, SP, CEP 12904-000, Brazil
| | - Lais Siebra de Brito Ramos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| | - Mariana Raquel da Cruz Vegian
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| | - Luis Gustavo Oliveira de Vasconcellos
- Department of Materials and Dental Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| | - Felipe Eduardo de Oliveira
- Brazcubas Faculty of Dentistry, University Center Brazcubas, Av. Francisco Rodrigues Filho, 1233, Mogi das Cruzes, SP, CEP 08773-380, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, CEP12245-000, Brazil
| |
Collapse
|
10
|
do Prado RF, Esteves GC, Santos ELDS, Bueno DAG, Cairo CAA, Vasconcellos LGOD, Sagnori RS, Tessarin FBP, Oliveira FE, Oliveira LDD, Villaça-Carvalho MFL, Henriques VAR, Carvalho YR, De Vasconcellos LMR. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PLoS One 2018; 13:e0196169. [PMID: 29771925 PMCID: PMC5957353 DOI: 10.1371/journal.pone.0196169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
Abstract
Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but β type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1—commercially pure Ti group (CpTi); G2—Ti-6Al-4V alloy; G3—Ti-13 Niobium-13 Zirconium alloy; G4—Ti-35 Niobium alloy; G5—Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (μCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5μm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical application since they contributed to excellent cellular behavior and osseointegration besides presenting lower elastic modulus.
Collapse
Affiliation(s)
- Renata Falchete do Prado
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
- * E-mail: ,
| | - Gabriela Campos Esteves
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Evelyn Luzia De Souza Santos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Daiane Acácia Griti Bueno
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Carlos Alberto Alves Cairo
- Division of Materials, Air and Space Institute, Praça Mal. do Ar Eduardo Gomes, São José dos Campos, São Paulo, Brazil
| | - Luis Gustavo Oliveira De Vasconcellos
- Department of Prosthodontic and Dental Material, Institute of Science and Technology São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Renata Silveira Sagnori
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (Unicamp), Piracicaba, São Paulo, Brazil
| | - Fernanda Bastos Pereira Tessarin
- Department of Restorative Dentistry, Institute of Science and Technology São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Felipe Eduardo Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Luciane Dias De Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Maria Fernanda Lima Villaça-Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | | | - Yasmin Rodarte Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Luana Marotta Reis De Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
11
|
Hong L, Wang Y, Wang L, Zhang H, Na H, Zhang Z. Synthesis and characterization of a novel resin monomer with low viscosity. J Dent 2017; 59:11-17. [PMID: 28122255 DOI: 10.1016/j.jdent.2017.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE In this study, we designed and synthesized a novel macromolecule (tetramethyl bisphenol F acrylate, TMBPF-Ac) with low viscosity, excellent mechanical properties, and good biocompatibility. It could be used as a monomer for dental resin composites, which could reduce the risk of human exposure to bisphenol A derivatives in the oral environment. In addition, the monomer could be used without diluent, thereby avoiding the negative effect of a diluent METHODS: TMBPF-Ac was synthesized by a multistep condensation reaction. Its structure was confirmed by 1H NMR spectra. Different resin mixtures were prepared, and then a number of performance and cytotoxicity tests were performed on these specimens. RESULTS 1H NMR spectra showed that the structure of TMBPF-Ac was in accordance with the design. The viscosity of TMBPF-Ac was obviously lower than that of bisphenol-A diglycidyl methacrylate. The three kinds of resins used in this study were in line with ISO 4049:2009 and ISO 10993-5:2009. TMBPF-Ac-based resin had better physical and biological properties.
Collapse
Affiliation(s)
- Lihua Hong
- Endodontics Department of Stomatological Hospital, Jilin University, Changchun 130021, PR China; Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yu Wang
- Endoscopy Center Pathological Room, First Clinical Hospital of Bethune Medical, Jilin University, Changchun 130021, PR China
| | - Lin Wang
- VIP Department of Stomatological Hospital, Jilin University, Changchun 130021, PR China
| | - Hong Zhang
- Endodontics Department of Stomatological Hospital, Jilin University, Changchun 130021, PR China
| | - Hui Na
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Zhimin Zhang
- Endodontics Department of Stomatological Hospital, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
12
|
Mendes MW, Ágreda CG, Bressiani AH, Bressiani JC. A new titanium based alloy Ti–27Nb–13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:671-7. [DOI: 10.1016/j.msec.2016.03.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/14/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
13
|
Feitosa SA, Münchow EA, Al-Zain AO, Kamocki K, Platt JA, Bottino MC. Synthesis and characterization of novel halloysite-incorporated adhesive resins. J Dent 2015; 43:1316-22. [DOI: 10.1016/j.jdent.2015.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022] Open
|
14
|
de Andrade DP, de Vasconcellos LMR, Carvalho ICS, Forte LFDBP, de Souza Santos EL, Prado RFD, Santos DRD, Cairo CAA, Carvalho YR. Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:538-44. [PMID: 26249625 DOI: 10.1016/j.msec.2015.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/03/2015] [Accepted: 07/11/2015] [Indexed: 01/17/2023]
Abstract
Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium-niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti-35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti-35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti-35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti-35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants.
Collapse
Affiliation(s)
- Dennia Perez de Andrade
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP, Brazil
| | - Isabel Chaves Silva Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP, Brazil
| | - Lilibeth Ferraz de Brito Penna Forte
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP, Brazil
| | - Evelyn Luzia de Souza Santos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP, Brazil
| | - Renata Falchete do Prado
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP, Brazil.
| | - Dalcy Roberto Dos Santos
- Division of Materials, Air and Space Institute, CTA, Praça Mal. do Ar Eduardo Gomes, 14, São José dos Campos 12904-000, SP, Brazil
| | - Carlos Alberto Alves Cairo
- Division of Materials, Air and Space Institute, CTA, Praça Mal. do Ar Eduardo Gomes, 14, São José dos Campos 12904-000, SP, Brazil
| | - Yasmin Rodarte Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP, Brazil
| |
Collapse
|
15
|
Münchow EA, Albuquerque MTP, Zero B, Kamocki K, Piva E, Gregory RL, Bottino MC. Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dent Mater 2015; 31:1038-51. [PMID: 26116414 DOI: 10.1016/j.dental.2015.06.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study reports on the synthesis, materials characterization, antimicrobial capacity, and cytocompatibility of novel ZnO-loaded membranes for guided tissue/bone regeneration (GTR/GBR). METHODS Poly(ɛ-caprolactone) (PCL) and PCL/gelatin (PCL/GEL) were dissolved in hexafluoropropanol and loaded with ZnO at distinct concentrations: 0 (control), 5, 15, and 30wt.%. Electrospinning was performed using optimized parameters and the fibers were characterized via scanning and transmission electron microscopies (SEM/TEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), contact angle (CA), mechanical testing, antimicrobial activity against periodontopathogens, and cytotoxicity test using human dental pulp stem cells (hDPSCs). Data were analyzed using ANOVA and Tukey (α=5%). RESULTS ZnO nanoparticles were successfully incorporated into the overall submicron fibers, which showed fairly good morphology and microstructure. Upon ZnO nanoparticles' incorporation, the PCL and PCL/GEL fibers became thicker and thinner, respectively. All GEL-containing membranes showed lower CA than the PCL-based membranes, which were highly hydrophobic. Overall, the mechanical properties of the membranes were reduced upon ZnO incorporation, except for PCL-based membranes containing ZnO at the 30wt.% concentration. The presence of GEL enhanced the stretching ability of membranes under wet conditions. All ZnO-containing membranes displayed antibacterial activity against the bacteria tested, which was generally more pronounced with increased ZnO content. All membranes synthesized in this study demonstrated satisfactory cytocompatibility, although the presence of 30wt.% ZnO led to decreased viability. SIGNIFICANCE Collectively, this study suggests that PCL- and PCL/GEL-based membranes containing a low content of ZnO nanoparticles can potentially function as a biologically safe antimicrobial GTR/GBR membrane.
Collapse
Affiliation(s)
- Eliseu A Münchow
- Department of Restorative Dentistry, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, IN 46202, USA; Department of Operative Dentistry, Federal University of Pelotas (UFPEL), School of Dentistry, Pelotas, RS 96015-560, Brazil
| | - Maria Tereza P Albuquerque
- Department of Restorative Dentistry, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, IN 46202, USA; Graduate Program in Restorative Dentistry, Universidade Estadual Paulista, São José dos Campos Dental School, São José dos Campos, São Paulo 12245-000, Brazil
| | - Bianca Zero
- Department of Restorative Dentistry, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, IN 46202, USA
| | - Krzysztof Kamocki
- Department of Restorative Dentistry, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, IN 46202, USA
| | - Evandro Piva
- Department of Operative Dentistry, Federal University of Pelotas (UFPEL), School of Dentistry, Pelotas, RS 96015-560, Brazil
| | | | - Marco C Bottino
- Department of Restorative Dentistry, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, IN 46202, USA.
| |
Collapse
|
16
|
Bimix antimicrobial scaffolds for regenerative endodontics. J Endod 2014; 40:1879-84. [PMID: 25201643 DOI: 10.1016/j.joen.2014.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/07/2014] [Accepted: 07/11/2014] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Eliminating and/or inhibiting bacterial growth within the root canal system has been shown to play a key role in the regenerative outcome. The aim of this study was to synthesize and determine in vitro both the antimicrobial effectiveness and cytocompatibility of bimix antibiotic-containing polydioxanone-based polymer scaffolds. METHODS Antibiotic-containing (metronidazole [MET] and ciprofloxacin [CIP]) polymer solutions (distinct antibiotic weight ratios) were spun into fibers as a potential mimic to the double antibiotic paste (DAP, a MET/CIP mixture). Fiber morphology, chemical characteristics, and tensile strength were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, and tensile testing, respectively. Antimicrobial efficacy was tested over time (aliquot collection) against Enterococcus faecalis (Ef), Porphyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn). Similarly, cytotoxicity was evaluated in human dental pulp stem cells. Data were statistically analyzed (P < .05). RESULTS Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed that electrospinning was able to produce antibiotic-containing fibers with a diameter mostly in the nanoscale. The tensile strength of 1:1MET/CIP scaffolds was significantly (P < .05) higher than pure polydioxanone (control). Meanwhile, all other groups presented similar strength as the control. Aliquots obtained from antibiotic-containing scaffolds inhibited the growth of Ef, Pg, and Fn, except pure MET, which did not show an inhibitory action toward Pg or Fn. Antibiotic-containing aliquots promoted slight human dental pulp stem cell viability reduction, but none of them were considered to be cytotoxic. CONCLUSIONS Our data suggest that the incorporation of multiple antibiotics within a nanofibrous scaffold holds great potential toward the development of a drug delivery system for regenerative endodontics.
Collapse
|
17
|
Lorenzetti M, Pellicer E, Sort J, Baró MD, Kovač J, Novak S, Kobe S. Improvement to the Corrosion Resistance of Ti-Based Implants Using Hydrothermally Synthesized Nanostructured Anatase Coatings. MATERIALS 2014; 7:180-194. [PMID: 28788449 PMCID: PMC5453144 DOI: 10.3390/ma7010180] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 11/22/2022]
Abstract
The electrochemical behavior of polycrystalline TiO2 anatase coatings prepared by a one-step hydrothermal synthesis on commercially pure (CP) Ti grade 2 and a Ti13Nb13Zr alloy for bone implants was investigated in Hank’s solution at 37.5 °C. The aim was to verify to what extent the in-situ-grown anatase improved the behavior of the substrate in comparison to the bare substrates. Tafel-plot extrapolations from the potentiodynamic curves revealed a substantial improvement in the corrosion potentials for the anatase coatings. Moreover, the coatings grown on titanium also exhibited lower corrosion-current densities, indicating a longer survival of the implant. The results were explained by considering the effects of crystal morphology, coating thickness and porosity. Evidence for the existing porosity was obtained from corrosion and nano-indentation tests. The overall results indicated that the hydrothermally prepared anatase coatings, with the appropriate morphology and surface properties, have attractive prospects for use in medical devices, since better corrosion protection of the implant can be expected.
Collapse
Affiliation(s)
- Martina Lorenzetti
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana 1000, Slovenia.
| | - Eva Pellicer
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain.
| | - Jordi Sort
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain.
| | - Maria Dolors Baró
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain.
| | - Janez Kovač
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia.
| | - Saša Novak
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana 1000, Slovenia.
| | - Spomenka Kobe
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana 1000, Slovenia.
| |
Collapse
|
18
|
Xu J, Weng XJ, Wang X, Huang JZ, Zhang C, Muhammad H, Ma X, Liao QD. Potential use of porous titanium-niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro. PLoS One 2013; 8:e79289. [PMID: 24260188 PMCID: PMC3834032 DOI: 10.1371/journal.pone.0079289] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/20/2013] [Indexed: 12/03/2022] Open
Abstract
Background The improvement of bone ingrowth into prosthesis and enhancement of the combination of the range between the bone and prosthesis are important for long-term stability of artificial joints. They are the focus of research on uncemented artificial joints. Porous materials can be of potential use to solve these problems. Objectives/Purposes This research aims to observe the characteristics of the new porous Ti-25Nb alloy and its biocompatibility in vitro, and to provide basic experimental evidence for the development of new porous prostheses or bone implants for bone tissue regeneration. Methods The Ti-25Nb alloys with different porosities were fabricated using powder metallurgy. The alloys were then evaluated based on several characteristics, such as mechanical properties, purity, pore size, and porosity. To evaluate biocompatibility, the specimens were subjected to methylthiazol tetrazolium (MTT) colorimetric assay, cell adhesion and proliferation assay using acridine staining, scanning electron microscopy, and detection of inflammation factor interleukin-6 (IL-6). Results The porous Ti-25Nb alloy with interconnected pores had a pore size of 200 µm to 500 µm, which was favorable for bone ingrowth. The compressive strength of the alloy was similar to that of cortical bone, while with the elastic modulus closer to cancellous bone. MTT assay showed that the alloy had no adverse reaction to rabbit bone marrow mesenchymal stem cells, with a toxicity level of 0 to 1. Cell adhesion and proliferation experiments showed excellent cell growth on the surface and inside the pores of the alloy. According to the IL-6 levels, the alloy did not cause any obvious inflammatory response. Conclusion All porous Ti-25Nb alloys showed good biocompatibility regardless of the percentage of porosity. The basic requirement of clinical orthopedic implants was satisfied, which made the alloy a good prospect for biomedical application. The alloy with 70% porosity had the optimum mechanical properties, as well as suitable pore size and porosity, which allowed more bone ingrowth.
Collapse
Affiliation(s)
- Jian Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Jun Weng
- Department of Joint Surgery, Hunan Provincial People’s Hospital, Hunan Province, China
| | - Xu Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Zhang Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hassan Muhammad
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
- * E-mail: (XM); (QDL)
| | - Qian-De Liao
- Department of Orthopedics, Xiangya Hospital, Central South University, Hunan Province, China
- * E-mail: (XM); (QDL)
| |
Collapse
|
19
|
de Vasconcellos LMR, Oliveira FN, Leite DDO, de Vasconcellos LGO, do Prado RF, Ramos CJ, Graça MLDA, Cairo CAA, Carvalho YR. Novel production method of porous surface Ti samples for biomedical application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:357-364. [PMID: 22183791 DOI: 10.1007/s10856-011-4515-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
A porous implant material with adequate pore structure and the appropriate mechanical properties for bone ingrowth has long been sought. This article presents details of the development, characterization and in vivo evaluations of powder metallurgy-processed titanium samples exhibiting a dense core with an integrated porous surface for biomedical applications. A space-holder method was applied to investigate the effects of different percentages and particle sizes of the urea on bone neoformation in 30 rabbits. The samples were previously characterized using scanning electron microscopy and mechanical testing. After 8 and 12 weeks of implantation, bone ingrowth was histologically and histometrically analyzed and push-out testing was performed. This study demonstrated that the association of a dense core integrated with the greatest number of interconnected pores of the smallest size is a promising biomaterial for bone tissue engineering. This sample exhibits appropriate mechanical properties combined with increased bone ingrowth, providing enhanced resistance to displacement.
Collapse
Affiliation(s)
- Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, São Jose dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), São José dos Campos, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Negri B, Calvo-Guirado JL, Maté Sánchez de Val JE, Delgado Ruiz RA, Ramírez Fernández MP, Gómez Moreno G, Aguilar Salvatierra A, Guardia J, Muñoz Guzón F. Biomechanical and bone histomorphological evaluation of two surfaces on tapered and cylindrical root form implants: an experimental study in dogs. Clin Implant Dent Relat Res 2012; 15:799-808. [PMID: 22236466 DOI: 10.1111/j.1708-8208.2011.00431.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to evaluate the early bone response of tapered and cylindrical root form implants with two different surface treatments in fresh extraction sockets after 4 and 8 weeks. MATERIALS AND METHODS Surface treatments and implant design comprised (n = 9 each): tapered with dual acid-etched surface; tapered with dual acid-etched and sandblasted surface (T DAE SB); cylindrical with dual acid-etched surface (C DAE); and cylindrical with dual acid-etched and sandblasted surface (C DAE SB). Implants were placed in the distal sockets of mandibular premolars (2 P2, 3 P3, 4 P4 ) of six beagle dogs, remaining in vivo for 4 and 8 weeks. After sacrifice, the implants were subjected to torque to the point of interface fracture and subsequently nondecalcified for histomorphological study. Statistical analysis was performed by a General Linear Model (GLM) analysis of variance model with a significance level of 5%. RESULTS Torque to interface fracture was significantly greater for the C DAE SB group than for the other groups (p < .001). Histomorphological analysis showed woven bone formation around all implant surfaces at 4 weeks and its replacement by lamellar bone at 8 weeks. Study time (4 or 8 weeks) did not affect torque measures. CONCLUSIONS The double acid-etched and sandblasted sample surface increased early bone biomechanical fixation of both cylindrical and tapered root form implants. The cylindrical root form implants showed higher torque to interface fracture values when compared with the tapered root form implants. The C DAE SB surface group showed the highest biomechanical fixation values (p < .001).
Collapse
Affiliation(s)
- Bruno Negri
- Collaborator professor of Master in Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain; senior lecturer in General and Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain; associate professor in Restorative Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain; senior lecturer of Farmacological Interactions, Faculty of Dentristry, University of Granada, Granada, Spain; lecturer in General Veterinary, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The effect of alterations on resorbable blasting media processed implant surfaces on early bone healing: a study in rabbits. IMPLANT DENT 2011; 20:167-77. [PMID: 21448026 DOI: 10.1097/id.0b013e318211fb32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Etching resorbable blasting media (RM) processed implants is a common engineering procedure, but the interplay between the resulting physicochemical properties and its effects on early bone healing have not been thoroughly addressed. METHODS Screw-root form implant surfaces were treated with 1 of 3 methods: grit (alumina) blasted/acid etching, RM, and RM + acid etching (RMAA). Surface topography (n = 3 each) was characterized by scanning electron microscopy and atomic force microscopy and chemical characterization by x-ray photoelectron spectroscopy analysis. The implants were placed at the distal femur of 16 rabbits, where 3 implants, 1 from each surface, were placed bilaterally remaining 4 and 8 weeks in vivo. After euthanization, one half of the specimens were torqued to interface failure at a rate of ∼0.196 radians/min and the other half were nondecalcified processed for histomorphology and bone-to-implant contact evaluation. RESULTS Physicochemical characterization showed that the grit (alumina) blasted/acid-etched surface was rougher than RM and RMAA. Higher levels of calcium and phosphorous were observed for the RM surface compared with the RMAA surface. No significant differences were observed in torque and bone-to-implant contact between surfaces at 4 or 8 weeks. Histomorphologic evaluation showed woven bone formation around all surfaces at 4 weeks, and its initial replacement by lamellar bone at 8 weeks. CONCLUSIONS Despite differences in texture/chemistry, all implant surfaces were biocompatible and osseoconductive, and led to comparable in vivo bone fixation and measurable histomorphometric parameters.
Collapse
|
22
|
Biomechanical evaluation of endosseous implants at early implantation times: a study in dogs. J Oral Maxillofac Surg 2010; 68:1667-75. [PMID: 20561471 DOI: 10.1016/j.joms.2010.02.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/13/2010] [Accepted: 02/12/2010] [Indexed: 11/22/2022]
Abstract
PURPOSE This study tested the null hypothesis that differences in surgical instrumentation, macrogeometry, and surface treatment imposed by different implant systems do not affect early biomechanical fixation in a canine mandible model. MATERIALS AND METHODS The lower premolars of 6 beagle dogs were extracted and the ridges allowed to heal for 8 weeks. Thirty-six (n = 12 each group) implants were bilaterally placed, remaining for 1 and 3 weeks in vivo. The implant groups were as follows: group 1, Ti-6Al-4V with a dual acid-etched surface with nanometer scale discrete crystalline deposition (Nanotite; Certain Biomet-3i, West Palm Springs, FL); group 2, Ti-6Al-4V with a titanium oxide-blasted fluoride-modified surface chemistry (Osseospeed 4.0 S; Astra Tech, Mölndal, Sweden); group 3: Ti-6Al-4V with a bioceramic microblasted surface (Ossean; Intra-Lock International, Boca Raton, FL). Following euthanasia, implants were torqued to interface failure and histologically evaluated. General linear modeling (ANOVA) at 95% level of significance was performed. RESULTS Histology showed that interfacial bone remodeling and initial woven bone formation were observed around all implant groups at 1 and 3 weeks. Torque values were significantly affected by time in vivo, implant group, and their interaction (P = .016, P < .001, and P = .001, respectively). Regarding torque values, group 3, group 2, and group 1 ranked highest, intermediate, and lowest, respectively. CONCLUSION Early biomechanical fixation at 1 and 3 weeks was affected by surgical instrumentation, macrogeometry, and surface treatment present for one of the implant systems tested. The null hypothesis was rejected.
Collapse
|
23
|
Biomechanical and bone histomorphologic evaluation of four surfaces on plateau root form implants: An experimental study in dogs. ACTA ACUST UNITED AC 2010; 109:e39-45. [DOI: 10.1016/j.tripleo.2010.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/29/2009] [Accepted: 01/05/2010] [Indexed: 11/18/2022]
|
24
|
Abstract
Bone tissue engineering is an emerging interdisciplinary field in Science, combining expertise in medicine, material science and biomechanics. Hard tissue engineering research is focused mainly in two areas, osteo and dental clinical applications. There is a lot of exciting research being performed worldwide in developing novel scaffolds for tissue engineering. Although, nowadays the majority of the research effort is in the development of scaffolds for non-load bearing applications, primarily using soft natural or synthetic polymers or natural scaffolds for soft tissue engineering; metallic scaffolds aimed for hard tissue engineering have been also the subject of in vitro and in vivo research and industrial development. In this article, descriptions of the different manufacturing technologies available to fabricate metallic scaffolds and a compilation of the reported biocompatibility of the currently developed metallic scaffolds have been performed. Finally, we highlight the positive aspects and the remaining problems that will drive future research in metallic constructs aimed for the reconstruction and repair of bone.
Collapse
Affiliation(s)
- Kelly Alvarez
- Center for Geo-Environmental Science, Faculty of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuen-machi, Akita 010-8502, Japan; E-Mail:
| | - Hideo Nakajima
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel. +81-6-6879-8435; Fax: +81-6-6879-8439
| |
Collapse
|