1
|
Borden MD, Shors EC, Walsh WR, Lovric V. Characterization of an advanced bone graft material with a nanocrystalline hydroxycarbanoapatite surface and dual phase composition. J Biomed Mater Res B Appl Biomater 2024; 112:e35416. [PMID: 38747324 DOI: 10.1002/jbm.b.35416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 10/24/2024]
Abstract
The bone formation response of ceramic bone graft materials can be improved by modifying the material's surface and composition. A unique dual-phase ceramic bone graft material with a nanocrystalline, hydroxycarbanoapatite (HCA) surface and a calcium carbonate core (TrelCor®-Biogennix, Irvine, CA) was characterized through a variety of analytical methods. Scanning electron microscopy (SEM) of the TrelCor surface (magnification 100-100,000X) clearly demonstrated a nanosized crystalline structure covering the entire surface. The surface morphology showed a hierarchical structure that included micron-sized spherulites fully covered by plate-like nanocrystals (<60 nm in thickness). Chemical and physical characterization of the material using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDX) showed a surface composed of HCA. Analysis of fractured samples confirmed the dual-phase composition with the presence of a calcium carbonate core and HCA surface. An in vitro bioactivity study was conducted to evaluate whether TrelCor would form a bioactive layer when immersed in simulated body fluid. This response was compared to a known bioactive material (45S5 bioactive glass - Bioglass). Following 14-days of immersion, surface and cross-sectional analysis via SEM-EDX showed that the TrelCor material elicited a bioactive response with the formation of a bioactive layer that was qualitatively thicker than the layer that formed on Bioglass. An in vivo sheep muscle pouch model was also conducted to evaluate the ability of the material to stimulate an ectopic, cellular bone formation response. Results were compared against Bioglass and a first-generation calcium phosphate ceramic that lacked a nanocrystalline surface. Histology and histomorphometric analysis (HMA) confirmed that the TrelCor nanocrystalline HCA surface stimulated a bone formation response in muscle (avg. 11% bone area) that was significantly greater than Bioglass (3%) and the smooth surface calcium phosphate ceramic (0%).
Collapse
Affiliation(s)
| | | | - William R Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Vedran Lovric
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
3
|
Abdul Rahman FS, Abdullah AM, Radhi A, Shahidan WNS, Abdullah JY. Physicochemical Characterization of Thermally Processed Goose Bone Ash for Bone Regeneration. J Funct Biomater 2023; 14:351. [PMID: 37504846 PMCID: PMC10381847 DOI: 10.3390/jfb14070351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Goose bone is traditionally applied for many ailments including bone fractures. Goose bone that consists of calcium phosphate plays a major role in bone regeneration. In this study, the production of goose bone ash (GBA) was translated from a traditional process into one of a laboratory scale via thermal and mechanical methods. The GBA was thermally processed via calcination at 300 °C and 900 °C. The differences in physicochemical properties between studied GBA (SGBA) and commercial GBA (CGBA) were elucidated via Fourier transform infrared (FT-IR), X-ray fluorescence (XRF), X-ray diffraction (XRD) and electron diffraction X-Ray (EDX). The morphological properties of SGBA and CGBA were characterized using field emission scanning electron microscopy (FESEM) in which nano-sized particles were detected. The results showed that the SGBA of 300 °C had comparable physicochemical properties to those of CGBA. A high processing temperature was associated with decreasing organic compounds and increasing crystallinity. The finding from EDX suggests that sintering at 900 °C (SGBA 900) demonstrated the presence of hydroxyapatite in the mineralogical phase and had a Ca/P atomic ratio of 1.64 which is comparable to the ideal stoichiometric ratio of 1.67. Findings from this study could be used for the further exploration of GBA as a potential material for bone regeneration via the elucidation of their biological properties in the next experimental setting.
Collapse
Affiliation(s)
| | - Abdul Manaf Abdullah
- School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Asanah Radhi
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Wan Nazatul Shima Shahidan
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Johari Yap Abdullah
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
4
|
Marchenko ES, Baigonakova GA, Dubovikov KM, Kokorev OV, Gordienko II, Chudinova EA. Properties of Coatings Based on Calcium Phosphate and Their Effect on Cytocompatibility and Bioactivity of Titanium Nickelide. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2581. [PMID: 37048875 PMCID: PMC10095358 DOI: 10.3390/ma16072581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Coatings based on calcium phosphate with thicknesses of 0.5 and 2 μm were obtained by high-frequency magnetron sputtering on NiTi substrates in an argon atmosphere. The coating was characterized using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and in vitro cytocompatibility and bioactivity studies. A biphasic coating of tricalcium phosphate (Ca3(PO4)2) and hydroxyapatite (Ca10(PO4)6(OH)2) with a 100% degree of crystallinity was formed on the surface. The layer enriched in calcium, phosphorus, and oxygen was observed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Scanning electron microscopy showed that the surface structure is homogeneous without visible defects. The 2 µm thick coating obtained by sputtering with a deposition time of 4 h and a deposition rate of 0.43 µm/h is uniform, contains the highest amount of the calcium phosphate phase, and is most suitable for the faster growth of cells and accelerated formation of apatite layers. Samples with calcium phosphate coatings do not cause hemolysis and have a low cytotoxicity index. The results of immersion in a solution simulating body fluid show that NiTi with the biphasic coating promotes apatite growth, which is beneficial for biological activity.
Collapse
Affiliation(s)
- Ekaterina S. Marchenko
- Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Ave., 634045 Tomsk, Russia
| | - Gulsharat A. Baigonakova
- Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Ave., 634045 Tomsk, Russia
| | - Kirill M. Dubovikov
- Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Ave., 634045 Tomsk, Russia
| | - Oleg V. Kokorev
- Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Ave., 634045 Tomsk, Russia
| | - Ivan I. Gordienko
- Department of Pediatric Surgery, Ural State Medical University, 620014 Yekaterinburg, Russia
| | - Ekaterina A. Chudinova
- Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Ave., 634045 Tomsk, Russia
| |
Collapse
|
5
|
Lu T, Yan S, Shi H, Ye J. Synthesis, Characterization, In Vitro Cytological Responses, and In Vivo Bone Regeneration Effects of Low-Crystalline Nanocarbonated Hydroxyapatite. ACS Biomater Sci Eng 2023; 9:918-931. [PMID: 36700921 DOI: 10.1021/acsbiomaterials.2c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydroxyapatite (HA) has been commonly used as an alternative bone substitute. But it has drawbacks, such as poor degradation and limited osteogenesis. Low-crystalline carbonated hydroxyapatite (L-CHA), which has greater biodegradability than HA, is suggested as one of the main components of bone minerals, but the exact mechanism behind the roles of carbonate substituted in biological behaviors of low-crystalline HA is still a mystery. In this study, L-CHAs with different carbonate contents were prepared, and the effects of the content on the physicochemical properties, in vitro cytological responses, and in vivo bone defects repair effects of L-CHAs were investigated. The results demonstrated that CO32- had successfully entered the lattice structure of L-CHAs with a maximum content of 9.2 wt %. Both low-crystalline undoped HA (L-HA) and L-CHAs were nanocrystalline (20-30 nm) with significantly higher specific surface areas, protein adsorption capacities, and biodegradability compared to high-crystalline HA (H-HA) with submicron crystalline size (200-400 nm). Besides, the amounts of the adsorbed protein and released Ca2+ ions increased in a carbonate-content-dependent manner. Compared to L-HA and H-HA, L-CHAs promoted the adhesion and proliferation of bone marrow mesenchymal stem cells and significantly upregulated the levels of alkaline phosphatase (ALP) activity and the expression of osteogenesis-related genes. In addition, L-CHA-9 not only showed a faster biodegradation rate but also effectively promoted bone regeneration when implanted in the critical-sized bone defects of rabbit femora. This study provided evidence for the development of L-CHA as a promising biodegradable and bioactive material with great osteoconductivity and osteogenic capability with respect to conventional HA.
Collapse
Affiliation(s)
- Teliang Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Siwen Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Haishan Shi
- School of Stomatology, Jinan University, Guangzhou510632, P. R. China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, P. R. China
| |
Collapse
|
6
|
Filip DG, Surdu VA, Paduraru AV, Andronescu E. Current Development in Biomaterials-Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. J Funct Biomater 2022; 13:248. [PMID: 36412889 PMCID: PMC9680477 DOI: 10.3390/jfb13040248] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Inorganic biomaterials, including different types of metals and ceramics are widely used in various fields due to their biocompatibility, bioactivity, and bioresorbable capacity. In recent years, biomaterials have been used in biomedical and biological applications. Calcium phosphate (CaPs) compounds are gaining importance in the field of biomaterials used as a standalone material or in more complex structures, especially for bone substitutes and drug delivery systems. The use of multiple dopants into the structure of CaPs compounds can significantly improve their in vivo and in vitro activity. Among the general information included in the Introduction section, in the first section of this review paper, the authors provided a background on the development of hydroxyapatite, methods of synthesis, and its applications. The advantages of using different ions and co-ions for substitution into the hydroxyapatite lattice and their influence on physicochemical, antibacterial, and biological properties of hydroxyapatite are also presented in this section of the review paper. Larry Hench's 45S5 Bioglass®, commercially named 45S5, was the first bioactive glass that revealed a chemical bond with bone, highlighting the potential of this biomaterial to be widely used in biomedicine for bone regeneration. The second section of this article is focused on the development and current products based on 45S5 Bioglass®, covering the historical evolution, importance of the sintering method, hybrid bioglass composites, and applications. To overcome the limitations of the original biomaterials, studies were performed to combine hydroxyapatite and 45S5 Bioglass® into new composites used for their high bioactivity and improved properties. This particular type of combined hydroxyapatite/bioglass biomaterial is discussed in the last section of this review paper.
Collapse
Affiliation(s)
- Diana Georgiana Filip
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andrei Viorel Paduraru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| |
Collapse
|
7
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
8
|
Makishi S, Yamazaki T, Ohshima H. Osteopontin on the Dental Implant Surface Promotes Direct Osteogenesis in Osseointegration. Int J Mol Sci 2022; 23:ijms23031039. [PMID: 35162963 PMCID: PMC8835189 DOI: 10.3390/ijms23031039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
After dental implantation, osteopontin (OPN) is deposited on the hydroxyapatite (HA) blasted implant surface followed by direct osteogenesis, which is significantly disturbed in Opn-knockout (KO) mice. However, whether applying OPN on the implant surface promotes direct osteogenesis remains unclarified. This study analyzed the effects of various OPN modified protein/peptides coatings on the healing patterns of the bone-implant interface after immediately placed implantation in the maxilla of four-week-old Opn-KO and wild-type (WT) mice (n = 96). The decalcified samples were processed for immunohistochemistry for OPN and Ki67 and tartrate-resistant acid phosphatase histochemistry. In the WT mice, the proliferative activity in the HA binding peptide-OPN mimic peptide fusion coated group was significantly higher than that in the control group from day 3 to week 1, and the rates of OPN deposition and direct osteogenesis around the implant surface significantly increased in the recombinant-mouse-OPN (rOPN) group compared to the Gly-Arg-Gly-Asp-Ser peptide group in week 2. The rOPN group achieved the same rates of direct osteogenesis and osseointegration as those in the control group in a half period (week 2). None of the implant surfaces could rescue the direct osteogenesis in the healing process in the Opn-KO mice. These results suggest that the rOPN coated implant enhances direct osteogenesis during osseointegration following implantation.
Collapse
Affiliation(s)
- Sanako Makishi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan;
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
- Correspondence: ; Tel.: +81-25-227-2812
| |
Collapse
|
9
|
Bergara-Muguruza L, Mäkelä K, Yrjälä T, Salonen J, Yamashita K, Nakamura M. Surface Electric Fields Increase Human Osteoclast Resorption through Improved Wettability on Carbonate-Incorporated Apatite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58270-58278. [PMID: 34860490 PMCID: PMC8678988 DOI: 10.1021/acsami.1c14358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/23/2021] [Indexed: 06/02/2023]
Abstract
Osteoclast-mediated bioresorption can be an efficient means of incorporating the dissolution of biomaterials in the bone remodeling process. Because of the compositionally and structurally close resemblance of biomaterials with the natural mineral phases of the bone matrix, synthetic carbonate-substituted apatite (CA) is considered as an ideal biomaterial for clinical use. The present study therefore investigated the effects of electrical polarization on the surface characteristics and interactions with human osteoclasts of hydroxyapatite (HA) and CA. Electrical polarization was found to improve the surface wettability of these materials by increasing the surface free energy, and this effect was maintained for 1 month. Analyses of human osteoclast cultures established that CA subjected to a polarization treatment enhanced osteoclast resorption but did not affect the early differentiation phase or the adherent morphology of the osteoclasts as evaluated by staining. These data suggest that the surface characteristics of the CA promoted osteoclast resorption. The results of this work are expected to contribute to the future design of cell-mediated bioresorbable biomaterials capable of resorption by osteoclasts and of serving as a scaffold for bone regeneration.
Collapse
Affiliation(s)
- Leire Bergara-Muguruza
- Medicity
Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Keijo Mäkelä
- Turku
University Hospital, University of Turku, Luolavuorentie 2, 20700 Turku, Finland
| | - Tommi Yrjälä
- Turku
University Hospital, University of Turku, Luolavuorentie 2, 20700 Turku, Finland
- Department
of Anesthesia and Intensive Care, University
of Turku, Luolavuorentie
2, 20700 Turku, Finland
| | - Jukka Salonen
- Medicity
Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Kimihiro Yamashita
- Graduate
School of Medical and Dental Science, Tokyo
Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Miho Nakamura
- Medicity
Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520 Turku, Finland
- Institute
of Biomaterials and Bioengineering, Tokyo
Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062 Japan
- Graduate
School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 9808579 Japan
| |
Collapse
|
10
|
Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics 2021; 13:pharmaceutics13101642. [PMID: 34683935 PMCID: PMC8537309 DOI: 10.3390/pharmaceutics13101642] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxyapatite (HAP) has been the gold standard in the biomedical field due to its composition and similarity to human bone. Properties such as shape, size, morphology, and ionic substitution can be tailored through the use of different synthesis techniques and compounds. Regardless of the ability to determine its physicochemical properties, a conclusion for the correlation with the biological response it is yet to be found. Hence, a special focus on the most desirable properties for an appropriate biological response needs to be addressed. This review provides an overview of the fundamental properties of hydroxyapatite nanoparticles and the characterization of physicochemical properties involved in their biological response and role as a drug delivery system. A summary of the main chemical properties and applications of hydroxyapatite, the advantages of using nanoparticles, and the influence of shape, size, functional group, morphology, and crystalline phase in the biological response is presented. A special emphasis was placed on the analysis of chemical and physical interactions of the nanoparticles and the cargo, which was explained through the use of spectroscopic and physical techniques such as FTIR, Raman, XRD, SEM, DLS, and BET. We discuss the properties tailored for hydroxyapatite nanoparticles for a specific biomolecule based on the compilation of studies performed on proteins, peptides, drugs, and genetic material.
Collapse
|
11
|
Antoniac IV, Antoniac A, Vasile E, Tecu C, Fosca M, Yankova VG, Rau JV. In vitro characterization of novel nanostructured collagen-hydroxyapatite composite scaffolds doped with magnesium with improved biodegradation rate for hard tissue regeneration. Bioact Mater 2021; 6:3383-3395. [PMID: 33817417 PMCID: PMC8005775 DOI: 10.1016/j.bioactmat.2021.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
New materials are required for bone healing in regenerative medicine able to temporarily substitute damaged bone and to be subsequently resorbed and replaced by endogenous tissues. Taking inspiration from basic composition of the mammalian bones, composed of collagen, apatite and a number of substitution ions, among them magnesium (Mg2+), in this work, novel composite scaffolds composed of collagen(10%)-hydroxyapatite (HAp)(90%) and collagen(10%)-HAp(80%)-Mg(10%) were developed. The lyophilization was used for composites preparation. An insight into the nanostructural nature of the developed scaffolds was performed by Scanning Electron Microscopy coupled with Energy Dispersive X-Ray and Transmission Electron Microscopy coupled with Energy Dispersive X-Ray. The HAp nanocrystallite clusters and Mg nanoparticles were homogeneously distributed within the scaffolds and adherent to the collagen fibrils. The samples were tested for degradation in Simulated Body Fluid (SBF) solution by soaking for up to 28 days. The release of Mg from collagen(10%)-HAp(80%)-Mg(10%) composite during the period of up to 21 days was attested, this composite being characterized by a decreased degradation rate with respect to the composite without Mg. The developed composite materials are promising for applications as bone substitute materials favouring bone healing and regeneration. Lyophilization process was used to obtain new composite scaffolds. Collagen(10%)-HAp(90%) and collagen(10%)-HAp(80%)-Mg(10%) scaffolds were developed. HAp nanocrystallites and Mg nanoparticles are embedded into collagen fibrils. Degradation in SBF attested the Mg release from composite during up to 21 days. Composite collagen(10%)-HAp(80%)-Mg(10%) scaffold can be applied as bone substitute.
Collapse
Affiliation(s)
- Iulian V Antoniac
- University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042, Bucharest, Romania.,Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094, Bucharest, Romania
| | - Aurora Antoniac
- University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042, Bucharest, Romania
| | - Eugeniu Vasile
- University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042, Bucharest, Romania
| | - Camelia Tecu
- University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042, Bucharest, Romania
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Viktoriya G Yankova
- Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, Build. 2, Moscow, 119991, Russia
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100, 00133, Rome, Italy.,Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, Build. 2, Moscow, 119991, Russia
| |
Collapse
|
12
|
Paré A, Charbonnier B, Tournier P, Vignes C, Veziers J, Lesoeur J, Laure B, Bertin H, De Pinieux G, Cherrier G, Guicheux J, Gauthier O, Corre P, Marchat D, Weiss P. Tailored Three-Dimensionally Printed Triply Periodic Calcium Phosphate Implants: A Preclinical Study for Craniofacial Bone Repair. ACS Biomater Sci Eng 2020; 6:553-563. [PMID: 32158932 PMCID: PMC7064275 DOI: 10.1021/acsbiomaterials.9b01241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Finding alternative strategies for the regeneration of craniofacial bone defects (CSD), such as combining a synthetic ephemeral calcium phosphate (CaP) implant and/or active substances and cells, would contribute to solving this reconstructive roadblock. However, CaP's architectural features (i.e., architecture and composition) still need to be tailored, and the use of processed stem cells and synthetic active substances (e.g., recombinant human bone morphogenetic protein 2) drastically limits the clinical application of such approaches. Focusing on solutions that are directly transposable to the clinical setting, biphasic calcium phosphate (BCP) and carbonated hydroxyapatite (CHA) 3D-printed disks with a triply periodic minimal structure (TPMS) were implanted in calvarial critical-sized defects (rat model) with or without addition of total bone marrow (TBM). Bone regeneration within the defect was evaluated, and the outcomes were compared to a standard-care procedure based on BCP granules soaked with TBM (positive control). After 7 weeks, de novo bone formation was significantly greater in the CHA disks + TBM group than in the positive controls (3.33 mm3 and 2.15 mm3, respectively, P=0.04). These encouraging results indicate that both CHA and TPMS architectures are potentially advantageous in the repair of CSDs and that this one-step procedure warrants further clinical investigation.
Collapse
Affiliation(s)
- Arnaud Paré
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de Chirurgie Maxillo faciale, Plastique et Brulés, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37170, France
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Baptiste Charbonnier
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, Saint-Etienne F – 42023, France
| | - Pierre Tournier
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Caroline Vignes
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Joëlle Veziers
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Julie Lesoeur
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Boris Laure
- Service de Chirurgie Maxillo faciale, Plastique et Brulés, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37170, France
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
| | - Hélios Bertin
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes F - 44093, France
| | - Gonzague De Pinieux
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Service d’Anatomo-cyto-pathologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37000, France
| | - Grégory Cherrier
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Service d’Anatomo-cyto-pathologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37000, France
| | - Jérome Guicheux
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Olivier Gauthier
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de rechecherche et d’investigation préclinique (CRIP), 101 route de Gachet, Nantes F - 44300, France
| | - Pierre Corre
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes F - 44093, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, Saint-Etienne F – 42023, France
| | - Pierre Weiss
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| |
Collapse
|
13
|
Mohd Pu'ad N, Koshy P, Abdullah H, Idris M, Lee T. Syntheses of hydroxyapatite from natural sources. Heliyon 2019; 5:e01588. [PMID: 31080905 PMCID: PMC6507053 DOI: 10.1016/j.heliyon.2019.e01588] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/31/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Waste materials from natural sources are important resources for extraction and recovery of valuable compounds. Transformation of these waste materials into valuable materials requires specific techniques and approaches. Hydroxyapatite (HAp) is a biomaterial that can be extracted from natural wastes. HAp has been widely used in biomedical applications owing to its excellent bioactivity, high biocompatibility, and excellent osteoconduction characteristics. Thus, HAp is gaining prominence for applications as orthopaedic implants and dental materials. This review summarizes some of the recent methods for extraction of HAp from natural sources including mammalian, aquatic or marine sources, shell sources, plants and algae, and from mineral sources. The extraction methods used to obtain hydroxyapatite are also described. The effect of extraction process and natural waste source on the critical properties of the HAp such as Ca/P ratio, crystallinity and phase assemblage, particle sizes, and morphology are discussed herein.
Collapse
Affiliation(s)
- N.A.S. Mohd Pu'ad
- Department of Production and Operation Management, Faculty of Technology Management and Business, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
| | - P. Koshy
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - H.Z. Abdullah
- Department of Materials Engineering and Design, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
| | - M.I. Idris
- Department of Materials Engineering and Design, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
| | - T.C. Lee
- Department of Production and Operation Management, Faculty of Technology Management and Business, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
| |
Collapse
|
14
|
Luukkonen J, Hilli M, Nakamura M, Ritamo I, Valmu L, Kauppinen K, Tuukkanen J, Lehenkari P. Osteoclasts secrete osteopontin into resorption lacunae during bone resorption. Histochem Cell Biol 2019; 151:475-487. [PMID: 30637455 PMCID: PMC6542781 DOI: 10.1007/s00418-019-01770-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 01/27/2023]
Abstract
Osteopontin (OPN) is a non-collagenous extracellular sialylated glycoprotein located in bone. It is believed to be one of the key components in osteoclast attachment to bone during resorption. In this study, we characterized OPN and other glycoproteins found in the resorption lacunae to confirm the role of osteoclasts in OPN secretion using electron microscopy and mass spectrometry. Additionally, we examined the glycan epitopes of resorption pits and the effects of different glycan epitopes on the differentiation and function of osteoclasts. Osteoarthritic femoral heads were examined by immunohistochemistry to reveal the presence of OPN in areas of increased bone metabolism in vivo. Our results demonstrate that human osteoclasts secrete OPN into resorption lacunae on native human bone and on carbonated hydroxyapatite devoid of natural OPN. OPN is associated with an elevated bone turnover in osteoarthritic bone under experimental conditions. Our data further confirm that osteoclasts secrete OPN into the resorption pit where it may function as a chemokine for subsequent bone formation. We show that α2,3- and α2,6-linked sialic acids have a role in the process of osteoclast differentiation. OPN is one of the proteins that has both of the above sialic residues, hence we propose that de-sialylation can effect osteoclast differentiation in bone.
Collapse
Affiliation(s)
- Jani Luukkonen
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland.
| | - Meeri Hilli
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland
| | - Miho Nakamura
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 1010062, Japan
| | - Ilja Ritamo
- Thermo Fisher Scientific Oy, Ratastie 2, 01620, Vantaa, Finland
| | - Leena Valmu
- Thermo Fisher Scientific Oy, Ratastie 2, 01620, Vantaa, Finland
| | - Kyösti Kauppinen
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland
| | - Petri Lehenkari
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland
| |
Collapse
|
15
|
White KA, Olabisi RM. Spatiotemporal Control Strategies for Bone Formation through Tissue Engineering and Regenerative Medicine Approaches. Adv Healthc Mater 2019; 8:e1801044. [PMID: 30556328 DOI: 10.1002/adhm.201801044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Global increases in life expectancy drive increasing demands for bone regeneration. The gold standard for surgical bone repair is autografting, which enjoys excellent clinical outcomes; however, it possesses significant drawbacks including donor site morbidity and limited availability. Although collagen sponges delivered with bone morphogenetic protein, type 2 (BMP2) are a common alternative or supplement, they do not efficiently retain BMP2, necessitating extremely high doses to elicit bone formation. Hence, reports of BMP2 complications are rising, including cancer promotion and ectopic bone formation, the latter inducing complications such as breathing difficulties and neurologic impairments. Thus, efforts to exert spatial control over bone formation are increasing. Several tissue engineering approaches have demonstrated the potential for targeted and controlled bone formation. These approaches include biomaterial scaffolds derived from synthetic sources, e.g., calcium phosphates or polymers; natural sources, e.g., bone or seashell; and immobilized biofactors, e.g., BMP2. Although BMP2 is the only protein clinically approved for use in a surgical device, there are several proteins, small molecules, and growth factors that show promise in tissue engineering applications. This review profiles the tissue engineering advances in achieving control over the location and onset of bone formation (spatiotemporal control) toward avoiding the complications associated with BMP2.
Collapse
Affiliation(s)
- Kristopher A. White
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Road Piscataway NJ 08854 USA
| | - Ronke M. Olabisi
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| |
Collapse
|
16
|
Kohli N, Ho S, Brown SJ, Sawadkar P, Sharma V, Snow M, García-Gareta E. Bone remodelling in vitro: Where are we headed?: -A review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials in vitro. Bone 2018; 110:38-46. [PMID: 29355746 DOI: 10.1016/j.bone.2018.01.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
Abstract
Bone remodelling is a dynamic process required for the maintenance of bone architecture in response to the changing mechanical needs. It is also a vital process during the repair of bone tissue following injury. Clinical intervention in terms of autografting or allografting is often required to heal bone injuries where physiological healing fails. The use of biomaterials as alternatives to autografts and allografts has spurred a significant research interest into further development of biomaterials for better clinical outcomes. Unfortunately, many biomaterials fail to make it to the clinic or fail after implantation due to the inconsistencies observed between in vitro and in vivo studies. It is therefore important to mimic the in vivo situation as closely as possible in an in vitro setting for testing biomaterials. The current in vitro models focus mostly on investigating the behaviour of osteoblast progenitors with the biomaterial under development as well as assessing the behaviour of osteoclasts, endothelial cells etc. However, the sequence of events that take place during bone healing or remodelling are not incorporated into the current in vitro models. This review highlights our current understanding of the physiological bone remodelling and the bone healing process followed by strategies to incorporate both the physiological and pathophysiological events into an in vitro environment. Here, we propose three strategies for the assessment of biomaterials for bone, which includes; (1) testing biomaterials in the presence of immune cells, (2) testing biomaterials for osteogenesis, and (3) testing biomaterials in the presence of osteoclasts followed by osteoblasts to recapitulate the physiological events of bone resorption prior to bone formation. The focus of this review is to discuss the third strategy in details as the first two strategies are currently incorporated into a majority of in vitro experiments.
Collapse
Affiliation(s)
- Nupur Kohli
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| | - Sonia Ho
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Stuart J Brown
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Prasad Sawadkar
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Martyn Snow
- Royal Orthopaedic Hospital, Bristol Road, Birmingham B31 2AP, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK
| |
Collapse
|
17
|
Iafisco M, Varoni E, Battistella E, Pietronave S, Prat M, Roveri N, Rimondini L. The Cooperative Effect of Size and Crystallinity Degree on the Resorption of Biomimetic Hydroxyapatite for Soft Tissue Augmentation. Int J Artif Organs 2018. [DOI: 10.1177/039139881003301101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two kinds of hydroxyapatite (HA) crystals were studied as subcutaneous fillers in order to evaluate how their different degree of crystallinity and dimensions influence in vivo resorption. By appropriately adjusting the synthesis temperature, poorly crystalline HA (HApc) and highly crystalline HA (HAhc) were synthesized into clusters of needle-shaped crystals of about 50 nm and plate-shaped crystals of about 100 nm, respectively. The clusters of HApc had larger dimensions (30 μm) than those of HAhc (3 μm). Subcutaneous in vivo inoculations were performed in ten 6-month-old FVB female mice. HAhc underwent complete macroscopic resorption already 4 weeks after the implantation while HApc still showed agglomerates at the eighth week. This unexpected finding may be ascribed to the different size and morphology of the HAhc nanocrystals responsible for a lower aggregation and microcluster dimension than HApc nanocrystals.
Collapse
Affiliation(s)
- Michele Iafisco
- Dipartimento di Scienze Mediche, Università del Piemonte Orientale “A. Avogadro”
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum, Università di Bologna, Bologna - Italy
| | - Elena Varoni
- Dipartimento di Scienze Mediche, Università del Piemonte Orientale “A. Avogadro”
| | - Elisa Battistella
- Dipartimento di Scienze Mediche, Università del Piemonte Orientale “A. Avogadro”
| | - Stefano Pietronave
- Dipartimento di Scienze Mediche, Università del Piemonte Orientale “A. Avogadro”
| | - Maria Prat
- Dipartimento di Scienze Mediche, Università del Piemonte Orientale “A. Avogadro”
| | - Norberto Roveri
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum, Università di Bologna, Bologna - Italy
| | - Lia Rimondini
- Dipartimento di Scienze Mediche, Università del Piemonte Orientale “A. Avogadro”
| |
Collapse
|
18
|
Germaini MM, Detsch R, Grünewald A, Magnaudeix A, Lalloue F, Boccaccini AR, Champion E. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Biomed Mater 2017; 12:035008. [DOI: 10.1088/1748-605x/aa69c3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Shen D, Horiuchi N, Nozaki S, Miyashin M, Yamashita K, Nagai A. Synthesis and enhanced bone regeneration of carbonate substituted octacalcium phosphate. Biomed Mater Eng 2017; 28:9-21. [PMID: 28269740 DOI: 10.3233/bme-171651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using a wet method, we have synthesized octacalcium phosphate carbonate, in which HPO42- in octacalcium phosphate is replaced with CO32-. The physical, crystal, and chemical properties of this new material were compared to octacalcium phosphate, Ca-deficient hydroxyapatite, and Ca-deficient carbonate apatite using X-ray diffraction, Fourier-transform infrared spectroscopy, inductively coupled plasma spectroscopy, and scanning electron microscopy. Surface roughness and morphology were also characterized, along with the ability to support proliferation and differentiation of MG63 cells, as measured by MTT and alkaline phosphatase assay. We found that octacalcium phosphate carbonate enhanced osteoblast proliferation more strongly than all other materials tested. Similarly, Ca-deficient carbonate apatite, a hydrolysate of octacalcium phosphate carbonate, stimulated osteoblast differentiation to a better extent than Ca-deficient hydroxyapatite, a carbonate-free hydrolysate of octacalcium phosphate. These results indicate that octacalcium phosphate carbonate has good biocompatibility and osteoconduction, and incorporation of carbonate into octacalcium phosphate and apatite enhances bone regeneration.
Collapse
Affiliation(s)
- Donghe Shen
- Department of Pediatric Dentistry, Division of Developmental Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Naohiro Horiuchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Sosuke Nozaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Michiyo Miyashin
- Department of Pediatric Dentistry, Division of Developmental Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Kimihiro Yamashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akiko Nagai
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
20
|
Impact of the chemical composition of poly-substituted hydroxyapatite particles on the in vitro pro-inflammatory response of macrophages. Biomed Microdevices 2016; 18:27. [DOI: 10.1007/s10544-016-0056-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Tavafoghi M, Brodusch N, Gauvin R, Cerruti M. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid. J R Soc Interface 2016; 13:20150986. [PMID: 26791001 PMCID: PMC4759803 DOI: 10.1098/rsif.2015.0986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only.
Collapse
Affiliation(s)
- M Tavafoghi
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - N Brodusch
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - R Gauvin
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - M Cerruti
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| |
Collapse
|
22
|
Friederichs RJ, Brooks RA, Ueda M, Best SM. In vitroosteoclast formation and resorption of silicon-substituted hydroxyapatite ceramics. J Biomed Mater Res A 2015; 103:3312-22. [DOI: 10.1002/jbm.a.35470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/21/2015] [Accepted: 03/26/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Robert J. Friederichs
- Department of Materials Science & Metallurgy; University of Cambridge; 27 Charles Babbage Road Cambridge CB3 0FS United Kingdom
| | - Roger A. Brooks
- Division of Trauma & Orthopaedic Surgery; Box 180, Addenbrooke's Hospital; Hills Road Cambridge CB2 0QQ United Kingdom
| | - Masato Ueda
- Faculty of Chemistry; Materials & Bioengineering; Department of Chemistry & Materials Engineering; Kansai University; 3-3-35 Yamate-Cho Suita, Osaka 564-8680 Japan
| | - Serena M. Best
- Department of Materials Science & Metallurgy; University of Cambridge; 27 Charles Babbage Road Cambridge CB3 0FS United Kingdom
| |
Collapse
|
23
|
Shu Y, Baumann MJ, Case ED, Irwin RK, Meyer SE, Pearson CS, McCabe LR. Surface microcracks signal osteoblasts to regulate alignment and bone formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:191-200. [PMID: 25280696 PMCID: PMC4186695 DOI: 10.1016/j.msec.2014.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/15/2014] [Accepted: 08/08/2014] [Indexed: 11/23/2022]
Abstract
Microcracks are present in bone and can result from fatigue damage due to repeated, cyclically applied stresses. From a mechanical point, microcracks can dissipate strain energy at the advancing tip of a crack to improve overall bone toughness. Physiologically, microcracks are thought to trigger bone remodeling. Here, we examine the effect of microcracks specifically on osteoblasts, which are bone-forming cells, by comparing cell responses on microcracked versus non-microcracked hydroxyapatite (HA) specimens. Osteoblast attachment was found to be greater on microcracked HA specimens (p<0.05). More importantly, we identified the preferential alignment of osteoblasts in the direction of the microcracks on HA. Cells also displayed a preferential attachment that was 75 to 90 μm away from the microcrack indent. After 21 days of culture, osteoblast maturation was notably enhanced on the HA with microcracks, as indicated by increased alkaline phosphatase activity and gene expression. Furthermore, examination of bone deposition by confocal laser scanning microscopy indicated preferential mineralization at microcrack indentation sites. Dissolution studies indicate that the microcracks increase calcium release, which could contribute to osteoblast responses. Our findings suggest that microcracks signal osteoblast attachment and bone formation/healing.
Collapse
Affiliation(s)
- Yutian Shu
- Chemical Engineering and Materials Science Department, Michigan State University, United States; The College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Melissa J Baumann
- Chemical Engineering and Materials Science Department, Michigan State University, United States; Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, United States.
| | - Eldon D Case
- Chemical Engineering and Materials Science Department, Michigan State University, United States
| | - Regina K Irwin
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Department of Radiology, Michigan State University, East Lansing, MI 48824, United States
| | - Sarah E Meyer
- Chemical Engineering and Materials Science Department, Michigan State University, United States
| | - Craig S Pearson
- Chemical Engineering and Materials Science Department, Michigan State University, United States
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Department of Radiology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
24
|
Matesanz MC, Linares J, Lilue I, Sánchez-Salcedo S, Feito MJ, Arcos D, Vallet-Regí M, Portolés MT. Nanocrystalline silicon substituted hydroxyapatite effects on osteoclast differentiation and resorptive activity. J Mater Chem B 2014; 2:2910-2919. [PMID: 32261486 DOI: 10.1039/c3tb21697g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, the effects of nanocrystalline hydroxyapatite (nano-HA) and nanocrystalline Si-substituted hydroxyapatite (nano-SiHA) on osteoclast differentiation and resorptive activity have been evaluated in vitro using osteoclast-like cells. The action of these materials on proinflammatory and reparative macrophage populations was also studied. Nano-SiHA disks delayed the osteoclast differentiation and decreased the resorptive activity of these cells on their surface, as compared to nano-HA samples, without affecting cell viability. Powdered nano-SiHA also induced an increase of the reparative macrophage population. These results along with the beneficial effects on osteoblasts previously observed with powdered nano-SiHA suggest the potential of this biomaterial for modulating the fundamental processes of bone formation and turnover, preventing bone resorption and enhancing bone formation at implantation sites in treatment of osteoporotic bone and in bone repair and regeneration.
Collapse
|
25
|
Nakamura M, Hentunen T, Salonen J, Nagai A, Yamashita K. Characterization of bone mineral-resembling biomaterials for optimizing human osteoclast differentiation and resorption. J Biomed Mater Res A 2013; 101:3141-51. [PMID: 23554241 DOI: 10.1002/jbm.a.34621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/12/2013] [Accepted: 01/14/2013] [Indexed: 12/31/2022]
Abstract
Bioresorption is a biological mechanism by which biomaterials are resorbed and thereby disappear from implantation sites partially or completely over a period of time. Osteoclast-medicated bioresorption is a possible new advantage to incorporate material degradation into remodeling in bone metabolism process. The purpose of this study was to investigate the osteoclastogenesis and bioresorption of synthesized calcium phosphate materials. Differentiation into mature human osteoclasts on carbonated hydroxyapatite (CA) was significantly enhanced compared to hydroxyapatite (HA) and β-tricalcium phosphate, based on the quantitative gene expressions of molecular markers for osteoclast differentiation. Osteoclasts adhered and differentiated into giant multinuclear TRAP-positive cells on every type of synthesized sample based on the histological analysis. Morphological observations using fluorescence and quantitative analysis revealed that the actin rings of osteoclasts on CA were thick, small in diameter and co-localized with vinculin, similar to the rings found on bone slices. In contrast, the actin rings of osteoclasts on HA and culture dishes were thin and large in diameter. Scanning electron microscopic images and quantitative analysis indicated that the resorption pits on CA were significantly deeper than those on HA due to the enhanced tight sealing ability between osteoclasts and their substrate.
Collapse
Affiliation(s)
- Miho Nakamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 1010062, Japan
| | | | | | | | | |
Collapse
|
26
|
Velard F, Braux J, Amedee J, Laquerriere P. Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater 2013; 9:4956-63. [PMID: 23036944 DOI: 10.1016/j.actbio.2012.09.035] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite (HA) and amorphous calcium phosphate (CaP) crystals deposited in an organic matrix. One objective of bone tissue engineering is to mimic the chemical and structural properties of this complex tissue. CaP ceramics, such as sintered HA and beta-tricalcium phosphate, are widely used as bone substitutes or prosthesis coatings because of their osteoconductive properties. These ceramic interactions with tissues induce a cell response that can be different according to the composition of the material. In this review, we discuss inflammatory cell responses to CaP materials to provide a comprehensive overview of mechanisms governing the integration or loosening of implants, which remains a major concern in tissue engineering. A focus on the effects of the functionalization of CaP biomaterials highlights potential ways to increase tissue integration and limit rejection processes.
Collapse
|
27
|
|
28
|
Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomater 2013; 9:4878-88. [PMID: 23072829 DOI: 10.1016/j.actbio.2012.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/05/2012] [Accepted: 10/05/2012] [Indexed: 02/05/2023]
Abstract
A human co-culture model of osteoblasts and osteoclasts, derived from bone marrow stromal cells and monocytes respectively, was used to characterize the influence of biomaterial modification on the bioactivity and ultimately the ratio of bone-forming to bone-resorbing cells cultivated directly on the surface. Nanocomposites of silica and collagen have been shown to function as skeletal structures in nature and were reproduced in vitro by using a sol-gel approach. The resulting xerogels exhibit a number of features that make it a valuable system for the development of innovative materials for bone substitution applications. In the present study, the incorporation of different calcium phosphate phases in silica/collagen-based gels was demonstrated to enhance the bioactivity of these samples. This ability of the biomaterial to precipitate calcium phosphate on the surface when incubated in simulated body fluids or cell culture medium is generally considered to an advantageous property for bone substitution materials. By co-cultivating human osteoblasts and osteoclasts up to 42 days on the xerogels, we demonstrate that the long-term ratio of these cell types depends on the level of bioactivity of the substrate samples. Biphasic silica/collagen xerogels exhibited comparably low bioactivity but encouraged proliferation of osteoblasts in comparison to osteoclast formation. A balanced ratio of both cell types was detected for moderately bioactive triphasic xerogels with 5% calcium phosphate. However, enhancing the bioactivity of the xerogel samples by increasing the calcium phosphate phase percentage to 20% resulted in a diminished number of osteoblasts in favor of osteoclast formation. Quantitative evaluation was carried out by biochemical methods (calcium, DNA, ALP, TRAP 5b) as well as RT-PCR (ALP, BSP II, OC, RANKL, TRAP, CALCR, VTNR, CTSK), and was supported by confocal laser scanning microscopy (cell nuclei, actin, CD68, TRAP) as well as scanning electron microscopy.
Collapse
|
29
|
Shepherd JH, Shepherd DV, Best SM. Substituted hydroxyapatites for bone repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2335-2347. [PMID: 22389101 DOI: 10.1007/s10856-012-4598-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
Calcium phosphates such as hydroxyapatite have a wide range of applications both in bone grafts and for the coating of metallic implants, largely as a result of their chemical similarity to the mineral component of bone. However, to more accurately mirror the chemistry, various substitutions, both cationic (substituting for the calcium) and anionic (substituting for the phosphate or hydroxyl groups) have been produced. Significant research has been carried out in the field of substituted apatites and this paper aims to summarise some of the key effect of substitutions including magnesium, zinc, strontium, silicon and carbonate on physical and biological characteristics. Even small substitutions have been shown to have very significant effects on thermal stability, solubility, osteoclastic and osteoblastic response in vitro and degradation and bone regeneration in vivo.
Collapse
Affiliation(s)
- Jennifer H Shepherd
- Department of Materials Science and Metallurgy, University of Cambridge, New Museum's Site, Pembroke Street, Cambridge CB2 3QZ, UK.
| | | | | |
Collapse
|
30
|
Rupani A, Hidalgo-Bastida LA, Rutten F, Dent A, Turner I, Cartmell S. Osteoblast activity on carbonated hydroxyapatite. J Biomed Mater Res A 2012; 100:1089-96. [PMID: 22318934 DOI: 10.1002/jbm.a.34037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/02/2011] [Accepted: 10/26/2011] [Indexed: 11/11/2022]
Abstract
Hydroxyapatite (HA), has been used commonly as a bone substitute and as a scaffold in bone tissue engineering. However it has certain drawbacks such as limited biodegradability and osteointegration properties. Other forms of HA, for example, carbonated hydroxyapatite (CHA) could prove to have enhanced bioactivity as they more closely mimic the chemical composition of the apatite found in human bone. The aim of this study was to test the efficacy of CHA in comparison to HA used as a control. The CHA (4.9 wt %) and the HA discs were seeded with MC3T3-E1 osteoblastic cells. Results revealed a trend of increased cell attachment on the HA discs at day 0, however, the cell proliferation on the CHA discs at 7 and 28 days showed no significant difference in comparison to the HA control. SEM of the CHA discs showed surface irregularities at 7 days indicating dissolution. Also at 7 days, SEM demonstrated cell attachment and extracellular matrix production on both the CHA and HA samples. There was no significant difference in the total amount of collagen produced in the CHA samples relative to the HA control samples at 28 days as evaluated by the hydroxyproline assay. Real time PCR revealed mRNA increase by 2.08, 7.62, and 9.86 fold for collagen I a1, collagen III a1, and osteocalcin respectively on the CHA as compared to the HA discs. This study demonstrates the use of CHA as a biocompatible material that has potentially increased biodegradation properties and osteogenic capability in comparison to HA.
Collapse
Affiliation(s)
- Asha Rupani
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, University of Keele, Hartshill, Stoke-on-Trent, Staffordshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
LIU Q, CHEN Z, GU H, CHEN Z. Preparation and characterization of fluorinated porcine hydroxyapatite. Dent Mater J 2012; 31:742-50. [DOI: 10.4012/dmj.2012-052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Biomimesis and biomorphic transformations: New concepts applied to bone regeneration. J Biotechnol 2011; 156:347-55. [DOI: 10.1016/j.jbiotec.2011.07.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 12/29/2022]
|
33
|
Vergroesen PPA, Kroeze RJ, Helder MN, Smit TH. The use of poly(L-lactide-co-caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model. Macromol Biosci 2011; 11:722-30. [PMID: 21400658 DOI: 10.1002/mabi.201000433] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/30/2010] [Indexed: 11/07/2022]
Abstract
Since the early 1990s, tissue engineering has been heralded as a strategy that may solve problems associated with bone grafting procedures. The original concept of growing bone in the laboratory, however, has proven illusive due to biological, logistic, and regulatory problems. Fat-derived stem cells and synthetic polymers open new, more practicable routes for bone tissue engineering. In this paper, we highlight the potential of poly(L-lactide-co-caprolactone) (PLCL) to serve as a radiolucent scaffold in bone tissue engineering. It appears that PLCL quickly and preferentially binds adipose stem cells (ASCs), which proliferate rapidly and eventually differentiate into the osteogenic phenotype. An in vivo spinal fusion study in a goat model provides a preclinical proof-of-concept for a one-step surgical procedure with ASCs in bone tissue engineering.
Collapse
|
34
|
Miyazaki T, Miyauchi S, Anada T, Imaizumi H, Suzuki O. Evaluation of osteoclastic resorption activity using calcium phosphate coating combined with labeled polyanion. Anal Biochem 2010; 410:7-12. [PMID: 21078287 DOI: 10.1016/j.ab.2010.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 10/30/2010] [Accepted: 11/06/2010] [Indexed: 01/10/2023]
Abstract
Osteoclasts are involved in bone resorption, and its activation is considered one of the causes of osteoporosis. The pit assay is the principal method for evaluating osteoclast function by measuring hydroxyapatite resorption in vitro. However, the pit assay requires time and trained techniques, including the pit image analysis, and there is no other easy method for evaluating bone resorption. In this study, we developed a novel approach to quantify the bone resorption activity using a calcium phosphate (CaP) coating labeled with fluorescent polyanion. Fluoresceinamine-labeled chondroitin polysulfate or Hoechst 33258-labeled deoxyribonucleic acid was used for CaP labeling. When macrophage cell line RAW264 was cultured on the labeled CaP under the stimulation with the receptor activator of the NF-κB ligand (RANKL), RAW264 cells differentiated into osteoclastic cells and the fluorescence intensity of the culture supernatant and pit area increased in a time- and dose-dependent manner. Furthermore, drugs for osteoporosis treatment, such as pamidronate and β-estradiol, inhibited fluorescein release by the cells stimulated with RANKL. A positive correlation between the fluorescence intensity and pit area was observed (r=0.917). These results indicated that this new method using fluorescent polyanion-labeled CaP is a standardized useful assay system for the evaluation of bone resorption activity.
Collapse
Affiliation(s)
- Tatsuya Miyazaki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | |
Collapse
|
35
|
Sinclair SSK, Burg KJL. Effect of osteoclast co-culture on the differentiation of human mesenchymal stem cells grown on bone graft granules. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 22:789-808. [PMID: 20566059 DOI: 10.1163/092050610x496260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Traditional approaches to bone repair are currently being integrated with innovative tissue-engineering techniques, as researchers and clinicians shift their treatment focus toward regenerating functional tissue rather than just filling a defect to provide structural support. Cells are expanded and incorporated into implantable systems in hopes of enhancing the bone-forming capabilities of traditional bone graft substitutes. The present study examined how osteoclasts might be used to stimulate the differentiation of human mesenchymal stem cells (hMSCs) into bone forming cells. The two cell types were co-cultured on a resorbable, three-dimensional bone graft substitute. Osteoclasts were seeded prior to the addition of hMSCs, as well as simultaneously, to determine if resorption of the scaffold would have any bearing on observed response by hMSCs. When seeded directly with hMSCs on the 3-D substrates, the osteoclasts had an increase in TRAP expression over time if seeded simultaneously. The co-culture setup had a positive influence on the proliferation of hMSCs. Late stage osteoblast differentiation markers (bone sialoprotein) were positively affected by direct co-culture with osteoclasts. The addition of RANKL to the culture medium for osteoclastogenesis appears to be a factor in the observed responses by hMSCS, but is not the only factor influencing the MSCs. Osteoclasts were shown to have an influence on the development of mesenchymal stem cells into osteoblasts when cultured in vitro. Findings from this study, coupled with the knowledge obtained from our previous work, will aid in the development of a clinically viable mesenchymal stem cell based bone graft system.
Collapse
Affiliation(s)
- Sarina S Kay Sinclair
- Department of Bioengineering, 401 Rhodes Research Center, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|