1
|
Karimian-Shaddel A, Dadashi H, Mashinchian M, Mohabbat A, Nazemiyeh AR, Vandghanooni S, Eskandani M. Codelivery of metformin and methotrexate with optimized chitosan nanoparticles for synergistic triple-negative breast cancer therapy in vivo. Int J Pharm 2024; 667:124897. [PMID: 39489387 DOI: 10.1016/j.ijpharm.2024.124897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The development of effective therapeutic strategies for triple-negative breast cancer (TNBC), an aggressive subtype with limited treatment options, remains a critical challenge. This study aimed to design and evaluate a combination therapy using chitosan nanoparticles (Cs NPs) loaded with metformin (Met) and methotrexate (MTX) as a promising approach for TNBC management. The Cs NPs exhibited an average size of 78.8 ± 25.84 nm for blank Cs NPs, 84.50 ± 22.54 nm for Met-Cs NPs, and 86.70 ± 30.90 nm for MTX-Cs NPs, with positive surface charges of 26.40 ± 1.40 mV, 28.20 ± 1.60 mV, and 14.30 ± 2.40 mV, respectively. The drug encapsulation efficiency was 88.56 ± 2.26 % for Met-Cs NPs and 97.03 ± 0.52 % for MTX-Cs NPs. The cellular uptake studies demonstrated a time-dependent increase in the accumulation of Shikonin-labeled Cs NPs in 4T1 cells. The cytotoxicity assays revealed that Met-Cs NPs and MTX-Cs NPs exhibited significantly lower IC50 values (19.85 μg/mL and 103.2 ng/mL, respectively) compared to the plain drugs at 48 h. The combination of Met-/MTX-Cs NPs showed a synergistic cytotoxic effect, inducing 50 % cell death at 15.233 μg/mL of Met and 0.166 μg/mL of MTX. In vivo studies using a 4T1 xenograft mouse model demonstrated that the combination of Met-/MTX-Cs NPs resulted in a 100 % reduction in initial tumor volume, compared to a 40 % decrease with the free drug combination. The tumor growth inhibition was 70.45 % for the Met-/MTX-Cs NPs group, significantly higher than the 33.86 % observed in the free drug combination group. The findings of this study highlight the potential of the Met-/MTX-Cs NPs combination as a novel and effective therapeutic approach for TNBC management. The enhanced therapeutic efficacy, improved safety profile, and the ability to modulate key signaling pathways make this nanoparticle-based combination therapy a promising candidate for further clinical investigation.
Collapse
Affiliation(s)
- Alireza Karimian-Shaddel
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Mashinchian
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aria Mohabbat
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Reza Nazemiyeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Choi W, Kohane DS. Hybrid Nanoparticle-Hydrogel Systems for Drug Delivery Depots and Other Biomedical Applications. ACS NANO 2024; 18:22780-22792. [PMID: 39140388 DOI: 10.1021/acsnano.4c06888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Hydrogel-based depots typically tend to remain where injected and have excellent biocompatibility but are relatively poor at controlling drug release. Nanoparticles (NPs) typically have the opposite properties. The smaller the NPs are, the more likely they are to leave the site of injection. Their biocompatibility is variable depending on the material but can be poor. However, NPs can be good at controlling drug release. In these and other properties, combining NPs and hydrogels can leverage their advantages and negate their disadvantages. This review highlights the rationale for hybrid NP-hydrogel systems in drug delivery, the basic methods of producing them, and examples where combining the two systems addressed specific problems.
Collapse
Affiliation(s)
- Wonmin Choi
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Xu Y, Bei Z, Li M, Qiu K, Ren J, Chu B, Zhao Y, Qian Z. Biomaterials for non-invasive trans-tympanic drug delivery: requirements, recent advances and perspectives. J Mater Chem B 2024; 12:7787-7813. [PMID: 39044544 DOI: 10.1039/d4tb00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Various non-invasive delivery systems have recently been developed as an alternative to conventional injections. Local transdermal administration represents the most attractive method due to the low systemic side effects, excellent ease of administration, and persistent drug release. The tympanic membrane (TM), a major barrier between the outer and middle ear, has a similar structure of the stratum corneum compared to the surface of the skin. After several attempts, non-invasive trans-tympanic drug delivery has been regarded as a promising option in the treatment of middle and inner ear diseases. The round window membrane (RWM) was a possible non-invasive delivery approach from the middle to inner ear. The improved permeability of nanocarriers crossing the RWM is a current hotspot in therapeutics for inner ear diseases. In this review, we include the latest studies exploring non-invasive trans-tympanic delivery to treat middle and inner ear diseases. Both passive and active delivery systems are described. A summary of the benefits and disadvantages of various delivery systems in clinical practice and production procedures is introduced. Finally, future possible approaches for its effective application as a non-invasive middle and inner ear drug delivery system are characterised.
Collapse
Affiliation(s)
- Yang Xu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Mei Li
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Qiu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianjun Ren
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Leyden MC, Oviedo F, Saxena S, Kumar R, Le N, Reineke TM. Synergistic Polymer Blending Informs Efficient Terpolymer Design and Machine Learning Discerns Performance Trends for pDNA Delivery. Bioconjug Chem 2024; 35:897-911. [PMID: 38924453 DOI: 10.1021/acs.bioconjchem.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Cationic polymers offer an alternative to viral vectors in nucleic acid delivery. However, the development of polymer vehicles capable of high transfection efficiency and minimal toxicity has remained elusive, and continued exploration of the vast design space is required. Traditional single polymer syntheses with large monomer bases are very time-intensive, limiting the speed at which new formulations are identified. In this work, we present an experimental method for the quick probing of the design space, utilizing a combinatorial set of 90 polymer blends, derived from 6 statistical copolymers, to deliver pDNA. This workflow facilitated rapid screening of polyplex compositions, successfully tailoring polyplex hydrophobicity, particle size, and payload binding affinity. This workflow identified blended polyplexes with high levels of transfection efficiency and cell viability relative to single copolymer controls and commercial JetPEI, indicating synergistic benefits from copolymer blending. Polyplex composition was coupled with biological outputs to guide the synthesis of single terpolymer vehicles, with high-performing polymers P10 and M20, providing superior transfection of HEK293T cells in serum-free and serum-containing media, respectively. Machine learning coupled with SHapley Additive exPlanations (SHAP) was used to identify polymer/polyplex attributes that most impact transfection efficiency, viability, and overall effective efficiency. Subsequent transfections on ARPE-19 and HDFn cells found that P10 and M20 were surpassed in performance by M10, contrasting with results in HEK293T cells. This cell type dependency reinforced the need to evaluate transfection conditions with multiple cell models to potentially identify moieties more beneficial to delivery in certain tissues. Overall, the workflow employed can be used to expedite the exploration of the polymer design space, bypassing extensive synthesis, and to develop improved polymer delivery vehicles more readily for nucleic acid therapies.
Collapse
Affiliation(s)
- Michael C Leyden
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Felipe Oviedo
- Nanite Inc., Boston, Massachusetts 02109, United States
| | - Sonashree Saxena
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ramya Kumar
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ngoc Le
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Co-formulations of adalimumab with hyaluronic acid / polyvinylpyrrolidone to combine intraarticular drug delivery and viscosupplementation. Eur J Pharm Biopharm 2022; 177:39-49. [PMID: 35691537 DOI: 10.1016/j.ejpb.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Polymer-based formulations present an attractive strategy in intraarticular drug-delivery to refrain biologicals from early leakage from the joint. In this study, co-formulations of hyaluronic acid and polyvinylpyrrolidone were investigated for their potential as viscosupplements and their influence on the transsynovial loss of adalimumab. For this purpose, polymer mixtures were evaluated for their viscosity and elasticity behavior while their influence on the permeation of adalimumab across a porcine ex-vivo synovial membrane was determined. Hyaluronic acid showed strong shear thinning behavior and exhibited high viscosity and elasticity at low motions, while combinations with polyvinylpyrrolidone provided absorption and stiffness at high mechanical stress, so that they can potentially restore the rheological properties of the synovial fluid over the range of joint motion. In addition, the formulations showed significant influence on transsynovial permeation kinetics of adalimumab and hyaluronic acid, which could be decelerated up to 5- and 3-fold, respectively. Besides viscosity effects, adalimumab was retained primarily by an electrostatic interaction with hyaluronic acid, as detected by isothermal calibration calorimetry. Furthermore, polymer-mediated stabilization of the antibody activity was detected. In summary, hyaluronic acid - polyvinylpyrrolidone combinations can be efficiently used to prolong the residence of adalimumab in the joint cavity while simultaneously supplying viscosupplementation.
Collapse
|
6
|
Mahboubian A, Vllasaliu D, Dorkoosh FA, Stolnik S. Temperature-Responsive Methylcellulose–Hyaluronic Hydrogel as a 3D Cell Culture Matrix. Biomacromolecules 2020; 21:4737-4746. [DOI: 10.1021/acs.biomac.0c00906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- AliReza Mahboubian
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Driton Vllasaliu
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Farid Abedin Dorkoosh
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran 14399-56131, Iran
| | - Snjezana Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
7
|
Włodarczyk-Biegun MK, Paez JI, Villiou M, Feng J, del Campo A. Printability study of metal ion crosslinked PEG-catechol based inks. Biofabrication 2020; 12:035009. [DOI: 10.1088/1758-5090/ab673a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Hoare T, Yeo Y, Bellas E, Bruggeman JP, Kohane DS. Prevention of peritoneal adhesions using polymeric rheological blends. Acta Biomater 2014; 10:1187-93. [PMID: 24365709 DOI: 10.1016/j.actbio.2013.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/25/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
Abstract
The effectiveness of rheological blends of high molecular weight hyaluronic acid (HA) and low molecular weight hydroxypropyl methylcellulose (HPMC) in the prevention of peritoneal adhesions post-surgery is demonstrated. The physical mixture of the two carbohydrates increased the dwell time in the peritoneum while significantly improving the injectability of the polymer compared with HA alone. HA-HPMC treatment decreased the total adhesion area by ∼ 70% relative to a saline control or no treatment in a repeated cecal injury model in the rabbit. No significant cytotoxicity and minimal inflammation were associated with the blend. Furthermore, no chemical or physical processing was required prior to their use beyond simple mixing.
Collapse
|
9
|
McAlvin JB, Reznor G, Shankarappa SA, Stefanescu CF, Kohane DS. Local toxicity from local anesthetic polymeric microparticles. Anesth Analg 2013; 116:794-803. [PMID: 23460564 DOI: 10.1213/ane.0b013e31828174a7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Local tissue injury from sustained-release formulations for local anesthetics can be severe. There is considerable variability in reporting of that injury. We investigated the influence of the intrinsic myotoxicity of the encapsulated local anesthetic (lidocaine, low; bupivacaine, high) on tissue reaction in rats. METHODS Cytotoxicity from a range of lidocaine and bupivacaine concentrations was measured in C2C12 myotubes over 6 days. Rats were given sciatic nerve blocks with 4 microparticulate formulations of lidocaine and bupivacaine: 10% (w/w) lidocaine poly(lactic-co-glycolic) acid (PLGA), 10% (w/w) bupivacaine PLGA, 50% (w/w) lidocaine PLGA, and 50% (w/w) bupivacaine PLGA. Effectiveness of nerve blockade was assessed by a modified hotplate test and weightbearing measurements. Myotoxicity was scored in histologic sections of injection sites. Bupivacaine and lidocaine release kinetics from the particles were measured. RESULTS Median sensory blockade duration for 50% (w/w) lidocaine was 255 (90-540) minutes versus 840 (277-1215) minutes for 50% (w/w) bupivacaine (P = 0.056). All microparticulate formulations resulted in myotoxicity. The choice of local anesthetic did not influence the severity of myotoxicity. Median myotoxicity scores for 50% (w/w) lidocaine compared with 50% (w/w) bupivacaine at 4 days were 3.4 (2.1-4.2) vs 3.3 (2.9-3.5) (P = 0.44) and at 14 days 1.9 (1.8-2.4) vs 1.7 (1.3-1.9) (P = 0.23), respectively. CONCLUSIONS Lidocaine and bupivacaine PLGA microspheres resulted in similar degrees of myotoxicity, irrespective of drug loading. Intrinsic myotoxicity did not predict tissue injury from sustained release of these anesthetics. Caution is warranted in the use of such devices near muscle and nerve.
Collapse
Affiliation(s)
- J Brian McAlvin
- Department of Medicine, Medicine Critical Care Program, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
10
|
Hoare T, Bellas E, Zurakowski D, Kohane DS. Rheological blends for drug delivery. II. Prolongation of nerve blockade, biocompatibility, and in vitro-in vivo correlations. J Biomed Mater Res A 2010; 92:586-95. [PMID: 19280629 DOI: 10.1002/jbm.a.32420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rheological polymer blends of hyaluronic acid (HA) and hydroxypropylmethyl cellulose (HPMC) were evaluated as prolonged duration delivery vehicles for local anesthetics using a rat sciatic nerve blockade model. HA-HPMC blends extended the duration of sensory block approximately threefold compared to that achieved using a bupivacaine solution. Blending HA and HPMC facilitated the injection of higher polymer concentration delivery vehicles and reduced the rate of polymer hydration compared to HA solutions, enabling prolonged drug release. The duration of effective nerve block was correlated with each of the zero shear viscosity, polymer concentration, yield stress, and gel point frequency of the blends, while a two-parameter model correlating duration of nerve block with zero shear viscosity and humectancy provided improved fits to the in vivo data compared to any single variable alone. The blends exhibited no cytotoxicity and induced only a mild short-term inflammatory reaction in vivo at the site of injection, with all blends largely resorbed 4 days postinjection.
Collapse
Affiliation(s)
- Todd Hoare
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|