1
|
Denoeud C, Luo G, Paquet J, Boisselier J, Wosinski P, Moya A, Diallo A, Larochette N, Marinesco S, Meiller A, Becquart P, Moussi H, Vilquin JT, Logeart-Avramoglou D, Gand A, Larreta-Garde V, Pauthe E, Potier E, Petite H. Enzyme-controlled, nutritive hydrogel for mesenchymal stromal cell survival and paracrine functions. Commun Biol 2023; 6:1266. [PMID: 38092861 PMCID: PMC10719273 DOI: 10.1038/s42003-023-05643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Culture-adapted human mesenchymal stromal cells (hMSCs) are appealing candidates for regenerative medicine applications. However, these cells implanted in lesions as single cells or tissue constructs encounter an ischemic microenvironment responsible for their massive death post-transplantation, a major roadblock to successful clinical therapies. We hereby propose a paradigm shift for enhancing hMSC survival by designing, developing, and testing an enzyme-controlled, nutritive hydrogel with an inbuilt glucose delivery system for the first time. This hydrogel, composed of fibrin, starch (a polymer of glucose), and amyloglucosidase (AMG, an enzyme that hydrolyze glucose from starch), provides physiological glucose levels to fuel hMSCs via glycolysis. hMSCs loaded in these hydrogels and exposed to near anoxia (0.1% pO2) in vitro exhibited improved cell viability and angioinductive functions for up to 14 days. Most importantly, these nutritive hydrogels promoted hMSC viability and paracrine functions when implanted ectopically. Our findings suggest that local glucose delivery via the proposed nutritive hydrogel can be an efficient approach to improve hMSC-based therapeutic efficacy.
Collapse
Affiliation(s)
- Cyprien Denoeud
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Guotian Luo
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Joseph Paquet
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Julie Boisselier
- Biomaterial for Health Group, ERRMECe, University of Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Adrien Moya
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Ahmad Diallo
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | | | | | - Anne Meiller
- Neuroscience Research Center, AniRA-NeuroChem Platform, Lyon, France
| | - Pierre Becquart
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Hilel Moussi
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, CNRS, Centre de Recherche en Myologie, Hôpital Pitié Salpêtrière, Paris, France
| | | | - Adeline Gand
- Biomaterial for Health Group, ERRMECe, University of Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Emmanuel Pauthe
- Biomaterial for Health Group, ERRMECe, University of Cergy-Pontoise, Cergy-Pontoise, France
| | - Esther Potier
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Hervé Petite
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France.
| |
Collapse
|
2
|
Recent Progress on Heparin–Protamine Particles for Biomedical Application. Polymers (Basel) 2022; 14:polym14050932. [PMID: 35267754 PMCID: PMC8912589 DOI: 10.3390/polym14050932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Biomolecules are attractive building blocks with self-assembly ability, structural diversity, and excellent functionality for creating artificial materials. Heparin and protamine, a clinically relevant pair of biomolecules used in cardiac and vascular surgery, have been shown to coassemble into particulate polyelectrolyte complexes in vitro. The resulting heparin–protamine particles exhibit adhesive properties that enable advantageous interactions with proteins, cells, and various other substances and have been employed as functional materials for biomedical applications. In this review article, we summarize recent progress in research on the use of heparin–protamine particles as drug carriers, cell adhesives, and cell labels. Studies have demonstrated that heparin–protamine particles are potentially versatile in biomedical fields from drug delivery and regenerative medicine to plastic surgery.
Collapse
|
3
|
Development of Novel Heparin/Protamine Nanoparticles Useful for Delivery of Exogenous Proteins In Vitro and In Vivo. NANOMATERIALS 2020; 10:nano10081584. [PMID: 32806578 PMCID: PMC7466629 DOI: 10.3390/nano10081584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
We previously reported that heparin/protamine particles (LHPPs) produced as nanoparticles through simple mixing of raw materials exhibit sustained protein release and can be retained in cells. In the present study, we modified LHPPs without employing any organic synthetic approach. The resulting LHPPs were re-named as improved LHPPs (i-LHPPs) and have the ability to retain cell-penetrating peptides (GRKKRRQRRRPPQ) based on electrostatic interactions. We examined whether i-LHPPs can introduce exogenous proteins (i.e., lacZ protein encoding bacterial β-galactosidase) into cultured cells in vitro, or into murine hepatocytes in vivo through intravenous injection to anesthetized mice. We found an accumulation of the transferred protein in both in vitro cultured cells and in vivo hepatocytes. To the best of our knowledge, reports of successful in vivo delivery to hepatocytes are rare. The i-LHPP-based protein delivery technique will be useful for in vivo functional genetic modification of mouse hepatocytes using Cas9 protein-mediated genome editing targeting specific genes, leading to the creation of hepatic disease animal models for research that aims to treat liver diseases.
Collapse
|
4
|
Surgical Injury and Ischemia Prime the Adipose Stromal Vascular Fraction and Increase Angiogenic Capacity in a Mouse Limb Ischemia Model. Stem Cells Int 2020; 2020:7219149. [PMID: 32508933 PMCID: PMC7251464 DOI: 10.1155/2020/7219149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
The adipose-derived stromal vascular fraction (SVF) is an effective source for autologous cell transplantation. However, the quality and quantity of SVFs vary depending on the patient's age, complications, and other factors. In this study, we developed a method to reproducibly increase the cell number and improve the quality of adipose-derived SVFs by surgical procedures, which we term “wound repair priming.” Subcutaneous fat from the inguinal region of BALB/c mice was surgically processed (primed) by mincing adipose parenchyma (injury) and ligating the subcutaneous fat-feeding artery (ischemia). SVFs were isolated on day 0, 1, 3, 5, or 7 after the priming procedures. Gene expression levels of the primed SVFs were measured via microarray and pathway analyses which were performed for differentially expressed genes. Changes in cellular compositions of primed SVFs were analyzed by flow cytometry. SVFs were transplanted into syngeneic ischemic hindlimbs to measure their angiogenic and regeneration potential. Hindlimb blood flow was measured using a laser Doppler blood perfusion imager, and capillary density was quantified by CD31 staining of ischemic tissues. Stabilization of HIF-1 alpha and VEGF-A synthesis in the SVFs were measured by fluorescent immunostaining and Western blotting, respectively. As a result, the number of SVFs per fat weight was increased significantly on day 7 after priming. Among the differentially expressed genes were innate immunity-related signals on both days 1 and 3 after priming. In primed SVFs, the CD45-positive blood mononuclear cell fraction decreased, and the CD31-CD45-double negative mesenchymal cell fraction increased on day 7. The F4/80-positive macrophage fraction was increased on days 1 and 7 after priming. There was a serial decrease in the mesenchymal-gated CD34-positive adipose progenitor fraction and mesenchymal-gated CD140A-positive/CD9-positive preadipocyte fraction on days 1 and 3. Transplantation of primed SVFs resulted in increased capillary density and augmented blood flow, improving regeneration of the ischemic limbs. HIF-1 alpha was stabilized in the primed cutaneous fat in situ, and VEGF-A synthesis of the primed SVFs was on a peak on 5 days after priming. Wound repair priming thus resulted in SVFs with increased number and augmented angiogenic potential.
Collapse
|
5
|
Ishihara M, Nakamura S, Sato Y, Takayama T, Fukuda K, Fujita M, Murakami K, Yokoe H. Heparinoid Complex-Based Heparin-Binding Cytokines and Cell Delivery Carriers. Molecules 2019; 24:molecules24244630. [PMID: 31861225 PMCID: PMC6943580 DOI: 10.3390/molecules24244630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
- Correspondence: ; Tel.: +81-429-95-1211 (ext. 2610)
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-1324, Japan;
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| |
Collapse
|
6
|
Ishihara M, Kishimoto S, Nakamura S, Sato Y, Hattori H. Polyelectrolyte Complexes of Natural Polymers and Their Biomedical Applications. Polymers (Basel) 2019; 11:polym11040672. [PMID: 31013742 PMCID: PMC6523548 DOI: 10.3390/polym11040672] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/15/2023] Open
Abstract
Polyelectrolyte complexes (PECs), composed of natural and biodegradable polymers, (such as positively charged chitosan or protamine and negatively charged glycosaminoglycans (GAGs)) have attracted attention as hydrogels, films, hydrocolloids, and nano-/micro-particles (N/MPs) for biomedical applications. This is due to their biocompatibility and biological activities. These PECs have been used as drug and cell delivery carriers, hemostats, wound dressings, tissue adhesives, and scaffolds for tissue engineering. In addition to their comprehensive review, this review describes our original studies and provides an overview of the characteristics of chitosan-based hydrogel, including photo-cross-linkable chitosan hydrogel and hydrocolloidal PECs, as well as molecular-weight heparin (LH)/positively charged protamine (P) N/MPs. These are generated by electrostatic interactions between negatively charged LH and positively charged P together with their potential biomedical applications.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Shingo Nakamura
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Yoko Sato
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Hidemi Hattori
- Department of Biochemistry and Applied Sciences, University of Miyazaki, Miyazaki 889-2162, Japan.
| |
Collapse
|
7
|
Ishihara M, Kishimoto S, Nakamura S, Fukuda K, Sato Y, Hattori H. Biomaterials as cell carriers for augmentation of adipose tissue-derived stromal cell transplantation. Biomed Mater Eng 2019; 29:567-585. [PMID: 30400072 DOI: 10.3233/bme-181009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adipose tissue-derived stromal cells (ADSCs) contain lineage-committed progenitor cells that have the ability to differentiate into various cell types that may be useful for autologous cell transplantation to correct defects of skin, adipose, cartilage, bone, tendon, and blood vessels. The multipotent characteristics of ADSCs, as well as their abundance in the human body, make them an attractive potential resource for wound repair and applications to tissue engineering. ADSC transplantation has been used in combination with biomaterials, including cell sheets, hydrogel, and three-dimensional (3D) scaffolds based on chitosan, fibrin, atelocollagen, and decellularized porcine dermis, etc. Furthermore, low molecular weight heparin/protamine nanoparticles (LH/P NPs) have been used as an inducer of ADSC aggregation. The tissue engineering potential of these biomaterials as cell carriers is increased by the synergistic relationship between ADSCs and the biomaterials, resulting in the release of angiogenic cytokines and growth factors. In this review article, we describe the advantages of ADSC transplantation for tissue engineering, focusing on biomaterials as cell carriers which we have studied.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Koichi Fukuda
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Yoko Sato
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Hidemi Hattori
- Department of Biochemistry and Applied Sciences, University of Miyazaki, Miyazaki 889-2162, Japan
| |
Collapse
|
8
|
Inoue KI, Kishimoto S, Kaga K, Fuse M, Furuta A, Yamanishi T. Autologous and heterotopic transplantation of adipose stromal vascular fraction ameliorates stress urinary incontinence in rats with simulated childbirth trauma. Regen Ther 2017; 8:9-14. [PMID: 30271860 PMCID: PMC6147152 DOI: 10.1016/j.reth.2017.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/10/2017] [Accepted: 11/29/2017] [Indexed: 01/30/2023] Open
Abstract
Introduction Autologous transplantation of adipose stromal vascular fraction (SVF) is a cost-effective and technically accessible option for cell therapy. Clinical study of SVF transplantation for male stress urinary incontinence (SUI) is underway, but the effectiveness remains unknown for female SUI, majority of which is caused by childbirth trauma. Methods Vaginal Distension (VD) rats were generated as in vivo model for female SUI. To quantitate the severity of SUI, leak point pressure (LPP) was measured by placing a bladder catheter. There was a characteristic waveform of LPP with two-peaks, and we counted the second peak as an LPP value. Adipose SVF was separated from inguinal fat and delivered into external urethral sphincter (EUS) through transperineal injection. LPP was measured 7 or 14 days after SVF transplantation. Tissue damage and collagen synthesis around the EUS were visualized by Masson's trichrome and eosin staining. Antibody against α-smooth muscle actin (α-SMA) was used to stain smooth muscle or activated stromal cells. Donor SVF cells were distinguished from recipient EUS tissue by tracking with GFP transgene. Results VD procedure decreased the frequency at which the normal LPP waveform appeared and lowered the LPP value. SVF injection normalized the waveform as well as the level of LPP. VD disrupted histological structure of EUS and SVF failed to differentiate into striatal muscles. Instead, SVF increased α-SMA positive cells and collagen synthesis but the phenomena depended on VD stimulus. GFP tracking indicated that the transplanted SVF cells persisted for four weeks and synthesized α-SMA protein simultaneously. Conclusions Autologous transplantation of adipose SVF displayed bulking effects through collagen synthesis. However, such heterotopic activation was dependent on tissue damage. VD rat is a reproducible in vivo model for female SUI. LPP waveform is a good indicator of normal EUS function. Transplantation of adipose SVF normalizes LPP decline caused by VD. Heterotopic SVF synthesizes collagen, depending on tissue damage. Heterotopic SVF does not display voiding obstruction.
Collapse
Affiliation(s)
- Ken-Ichi Inoue
- Center for Research Support, Dokkyo Medical University, Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Satoko Kishimoto
- Center for Research Support, Dokkyo Medical University, Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Kanya Kaga
- Department of Urology, Continence Center, Dokkyo Medical University, Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Miki Fuse
- Department of Urology, Continence Center, Dokkyo Medical University, Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Akira Furuta
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-Ku, Tokyo, 105-0003, Japan
| | - Tomonori Yamanishi
- Department of Urology, Continence Center, Dokkyo Medical University, Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
9
|
Ishihara M, Kishimoto S, Takikawa M, Hattori H, Nakamura S, Shimizu M. Biomedical application of low molecular weight heparin/protamine nano/micro particles as cell- and growth factor-carriers and coating matrix. Int J Mol Sci 2015; 16:11785-803. [PMID: 26006248 PMCID: PMC4463730 DOI: 10.3390/ijms160511785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/07/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022] Open
Abstract
Low molecular weight heparin (LMWH)/protamine (P) nano/micro particles (N/MPs) (LMWH/P N/MPs) were applied as carriers for heparin-binding growth factors (GFs) and for adhesive cells including adipose-derived stromal cells (ADSCs) and bone marrow-derived mesenchymal stem cells (BMSCs). A mixture of LMWH and P yields a dispersion of N/MPs (100 nm–3 μm in diameter). LMWH/P N/MPs can be immobilized onto cell surfaces or extracellular matrix, control the release, activate GFs and protect various GFs. Furthermore, LMWH/P N/MPs can also bind to adhesive cell surfaces, inducing cells and LMWH/P N/MPs-aggregate formation. Those aggregates substantially promoted cellular viability, and induced vascularization and fibrous tissue formation in vivo. The LMWH/P N/MPs, in combination with ADSCs or BMSCs, are effective cell-carriers and are potential promising novel therapeutic agents for inducing vascularization and fibrous tissue formation in ischemic disease by transplantation of the ADSCs and LMWH/P N/MPs-aggregates. LMWH/P N/MPs can also bind to tissue culture plates and adsorb exogenous GFs or GFs from those cells. The LMWH/P N/MPs-coated matrix in the presence of GFs may provide novel biomaterials that can control cellular activity such as growth and differentiation. Furthermore, three-dimensional (3D) cultures of cells including ADSCs and BMSCs using plasma-medium gel with LMWH/P N/MPs exhibited efficient cell proliferation. Thus, LMWH/P N/MPs are an adequate carrier both for GFs and for stromal cells such as ADSCs and BMSCs, and are a functional coating matrix for their cultures.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Makoto Takikawa
- Department of Medical Engineering, National Defense Medical College, Saitama 359-8513, Japan.
| | - Hidemi Hattori
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Shingo Nakamura
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Masafumi Shimizu
- Department of Surgery, Tokorozawa Meisei Hospital, Saitama 359-1145, Japan.
| |
Collapse
|
10
|
Applications and implications of heparin and protamine in tissue engineering and regenerative medicine. BIOMED RESEARCH INTERNATIONAL 2014; 2014:936196. [PMID: 24995338 PMCID: PMC4065694 DOI: 10.1155/2014/936196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/14/2014] [Indexed: 12/17/2022]
Abstract
Drug repositioning is one of the most rapidly emerging fields of study. This concept is anchored on the principle that diseases have similar damaged or affected signaling pathways. Recently, drugs have been repositioned not only for their alternative therapeutic uses but also for their applications as biomaterials in various fields. However, medical drugs as biomaterials are rarely focused on in reviews. Fragmin and protamine have been recently the sources of increasing attention in the field of tissue engineering and regenerative medicine. Fragmin and protamine have been manufactured primarily as a safe antidote for the circulating heparin. Lately, these drugs have been utilized as either micro- or nanoparticle biomaterials. In this paper, we will briefly describe the concept of drug repositioning and some of the medical drugs that have been repurposed for their alternative therapeutic uses. Also, this will feature the historical background of the studies focused on fragmin/protamine micro/nanoparticles (F/P M/NPs) and their applications as biomaterials in tissue engineering, stem cell therapy, and regenerative medicine.
Collapse
|
11
|
Three-dimensional culture using human plasma-medium gel with fragmin/protamine microparticles for proliferation of various human cells. Cytotechnology 2013; 66:791-802. [PMID: 23955332 DOI: 10.1007/s10616-013-9628-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022] Open
Abstract
Fragmin/protamine microparticles (F/P MPs) have been used as carriers for the preservation and activation of cytokines in human plasma (HP)-Dulbecco's modified Eagle's medium (DMEM) gels. This study investigated a three-dimensional (3D) culture system using an HP-DMEM gel with 0.1 mg/mL F/P MPs and 5 ng/mL FGF-2 for the proliferation of human dermal fibroblast cells (DFCs), human microvascular endothelial cells (MVECs) and human coronary smooth muscle cells (SMCs), or 5 ng/mL interleukin (IL)-3/granulocyte-macrophage colony-stimulating factor (GM-CSF) for a human hematopoietic cell line (TF-1 cells). DFCs, MVECs, SMCs and TF-1 cells grew rapidly under 3D culture conditions using a low-concentration HP (2 %)-DMEM gel with F/P MPs and FGF-2 (for DFCs, MVECs and SMCs) or IL-3/GM-CSF (for TF-1 cells) at doubling times of 22, 23, 25 and 18 h, respectively, without the use of animal serum, compared to under 2D culture conditions using low-concentration human serum (2 %)-DMEM with 5 ng/mL FGF-2 or IL-3/GM-CSF on F/P MP-coated plates at doubling times of approximately 26, 25, 40 and 20 h, respectively.
Collapse
|
12
|
Kishimoto S, Ishihara M, Mori Y, Takikawa M, Sumi Y, Nakamura S, Sato T, Kiyosawa T. Three-dimensional expansion using plasma-medium gel with fragmin/protamine nanoparticles and fgf-2 to stimulate adipose-derived stromal cells and bone marrow-derived mesenchymal stem cells. Biores Open Access 2013; 1:314-23. [PMID: 23514899 PMCID: PMC3559203 DOI: 10.1089/biores.2012.0251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fragmin/protamine nanoparticles (F/P NPs) have been used as carriers for the preservation and controlled release of fibroblast growth factor (FGF)-2 and various cytokines in human plasma (HP). This study tested an HP–Dulbecco's modified Eagle's medium (DMEM) gel as a three-dimensional (3D) culture for the expansion of adipose tissue-derived multilineage stromal cells (ASCs) and bone marrow-derived mesenchymal stem cells (BMSCs). The growth of these cells improved in 3D culture using low-concentration HP (2%)–DMEM gel with 0.1 mg/mL F/P NPs and 5 ng/mL FGF-2 without animal serum in comparison to two-dimensional (2D) culture using a low-concentration human serum (2%)–DMEM containing 5 ng/mL FGF-2 on F/P NPs-coated plates. ASCs and BMSCs, which were expanded in the low-concentration HP–DMEM gel with F/P NPs and FGF-2, maintained their multilineage potential for differentiation into adipocytes or osteoblasts similar to the 2D cultured cells. Furthermore, flow cytometric analyses showed that the phenotypic markers which were positive for CD44, CD90, and CD105 (>80%) and negative for CD34 and CD45 (<1%) were well maintained in both 2D and 3D cultures after 7 days. Thus, this 3D culture system in low-concentration HP–DMEM gel with F/P NPs and FGF-2 provided an effective and safe method for the expansion of both cell types without using animal serum.
Collapse
Affiliation(s)
- Satoko Kishimoto
- Research Institute, National Defense Medical College , Saitama, Japan . ; Research Fellow of the Japan Society for the Promotion of Science , Tokyo, Japan . ; Department of Biosciences and Informatics, School of Fundamental Science and Technology, Keio University , Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nakamura S, Ishihara M, Takikawa M, Kishimoto S, Isoda S, Fujita M, Sato M, Maehara T. Attenuation of limb loss in an experimentally induced hindlimb ischemic model by fibroblast growth factor-2/fragmin/protamine microparticles as a delivery system. Tissue Eng Part A 2012; 18:2239-47. [PMID: 22655590 DOI: 10.1089/ten.tea.2011.0741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor-2 (FGF-2) is a well-characterized protein that is used in the treatment of healing-impaired wounds. We previously reported that fragmin/protamine microparticles (F/P MPs) are useful as biodegradable carriers for the controlled release of cytokines. We examined the ability of FGF-2-containing (FGF-2/) F/P MPs to prevent limb loss in an experimentally induced ischemic hindlimb model using adult Balb/c-nu/nu male mice. One day after inducing ischemia, intramuscular injections of 100 μL of FGF-2/F/P MPs turbid suspension (10 μg/mL FGF-2 and 6 mg/mL F/P MPs) were administered into eight sites of the ischemic hindlimb. A 100-μL suspension of each of the following-10 μg/mL FGF-2, 6 mg/mL F/P MPs, and phosphate-buffered saline (PBS; the control)-was similarly injected into the hindlimb. From 5 days onward after the injections, recovery from ischemia was observed in the FGF-2/F/P MP-treated group, but only partial recovery occurred in the FGF-2-treated group. The F/P MP-treated and PBS-treated groups (i.e., control) exhibited no recovery from the ischemia. The histological evaluations of the hindlimbs also confirmed that the capillary (i.e., mature vessels) density was significantly higher in the FGF-2/F/P MP-treated group than in the other groups. The mice injected with FGF-2/F/P MPs also recovered hindlimb blood flow, as reflected by oxygen saturation and surface temperature evaluation. Our present approach using FGF-2/F/P MPs could be considered a valuable option for the therapeutic treatment of peripheral ischemic diseases.
Collapse
Affiliation(s)
- Shingo Nakamura
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakamura S, Takikawa M, Ishihara M, Nakayama T, Kishimoto S, Isoda S, Ozeki Y, Sato M, Maehara T. Delivery system for autologous growth factors fabricated with low-molecular-weight heparin and protamine to attenuate ischemic hind-limb loss in a mouse model. J Artif Organs 2012; 15:375-85. [PMID: 22890790 DOI: 10.1007/s10047-012-0658-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/23/2012] [Indexed: 12/18/2022]
Abstract
Frozen and thawed platelet-rich plasma (PRP) contains high concentrations of various growth factors, such as fibroblast growth factor (FGF)-2, vascular endothelial growth factor, and hepatocyte growth factor. We previously reported that low-molecular-weight heparin/protamine microparticles (LH/P MPs) are useful as biodegradable carriers for the controlled release of FGF-2. In this study, we examined the ability of PRP/LH/P MPs to prevent limb loss in an induced ischemic hind-limb model that used adult BALB/c-nu/nu male mice. One day after inducing ischemia, intramuscular injections of a PRP/LH/P MPs solution were administered into several sites of the ischemic hind limb. Seven days and onward after the injections, the PRP/LH/P MPs-treated and PRP-treated groups recovered from ischemia, as reflected by the improved oxygen saturation. In the PRP-treated group, however, the level of recovery of oxygen saturation after ischemia decreased after 14 days. From the 21st day onward, there was a significant difference between those two groups. In the LH/P MPs-treated group, a partial recovery occurred only in the early period. The saline-treated group (i.e., the control) and the noninjection group (i.e., ischemia only) exhibited no recovery. The limb survival rate at 1 year in the ischemia-induced mice injected with PRP/LH/P MPs was approximately 25 % (two of eight mice) but was absent in the other groups.
Collapse
Affiliation(s)
- Shingo Nakamura
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Novel experimental and clinical therapeutic uses of low-molecular-weight heparin/protamine microparticles. Pharmaceutics 2012; 4:42-57. [PMID: 24300179 PMCID: PMC3834902 DOI: 10.3390/pharmaceutics4010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/31/2011] [Accepted: 12/31/2011] [Indexed: 01/29/2023] Open
Abstract
Low-molecular-weight heparin/protamine microparticles (LMW-H/P MPs) were produced as a carrier for heparin-binding growth factors (GFs) and for various adhesive cells. A mixture of low-molecular-weight heparin (MW: approximately 5000 Da, 6.4 mg/mL) and protamine (MW: approximately 3000 Da, 10 mg/mL) at a ratio of 7:3 (vol:vol) yields a dispersion of microparticles (0.5–3 µm in diameter). LMW-H/P MPs immobilize, control the release and protect the activity of GFs. LMW-H/P MPs can also bind to cell surfaces, causing these cells to interact with the LMW-H/P MPs, inducing cells/MPs-aggregate formation and substantially promoting cellular viability. Furthermore, LMW-H/P MPs can efficiently bind to tissue culture plates and retain the binding of important GFs, such as fibroblast growth factor (FGF)-2. The LMW-H/P MPs-coated matrix with various GFs or cytokines may provide novel biomaterials that can control cellular activity such as growth and differentiation. Thus, LMW-H/P MPs are an excellent carrier for GFs and various cells and are an efficient coating matrix for cell cultures.
Collapse
|
16
|
Ishihara M, Kishimoto S, Takikawa M, Mori Y, Nakamura S, Fujita M. Low-Molecular-Weight Heparin and Protamine-Based Polyelectrolyte Nano Complexes for Protein Delivery (A Review Articles). ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbnb.2011.225061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|