1
|
Ates B, Eroglu T, Sahsuvar S, Kirimli CE, Kocaturk O, Senay S, Gok O. Hydrogel-Integrated Heart-on-a-Chip Platform for Assessment of Myocardial Ischemia Markers. ACS OMEGA 2024; 9:42103-42115. [PMID: 39431078 PMCID: PMC11483411 DOI: 10.1021/acsomega.4c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Organ-on-a-chip platform scans offer a controllable environment and a physiological similarity to mimic human pathophysiology. In this study, a single-channel PDMS microchip was fabricated, characterized, and optimized to obtain a heart-on-a-chip platform, which is integrated with a hydrogel scaffold suitable for cardiomyocyte growth inside its channel. Single-channel chips with a size of 20 × 12 mm and a channel height ranging from 60 to 100 μm were produced using photolithography and soft lithography techniques. A gelatin-embedded alginate network-based hydrogel was further augmented with 3% (v/v) collagen type I. Pore sizes were in the range of 74-153 μm for H9C2 implantation and biomimicry. The hydrogels are characterized both on PDMS surfaces and in capillaries. The primary feature distinguishing this study from previous microchip studies is that it mimics the cell microenvironment much better using different hydrogel formulations instead of creating a 2D cell culture by passing fluids, such as fibronectin, for cell adhesion. Instead of using complex microchip designs, the chip system we created intends to provide a physiologically relevant copy by using a 3D cell culture to its advantage and a simple, single-channel architecture. The microchip study was combined with cardiomyocytes to create the heart-on-a-chip system and tested under normoxic and hypoxic conditions to create a myocardial ischemia model inside this channel. As a result, this heart-on-a-chip platform was shown to be utilized for the detection of several small-size biomarkers such as adenosine, ADP, lactic acid, l-isoleucine, l-glutamic acid, and oxidized glutathione via LC-MS/MS from control conditions and a myocardial ischemia model. Cell-embedded and hydrogel matrix-supported versions of this heart-on-a-chip system were successfully prepared and shown to provide powerful outputs with myocardial ischemia markers. In light of this research, these outputs aim to develop simple and biologically effective organ-on-a-chip systems for future research.
Collapse
Affiliation(s)
- Berna Ates
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Tolga Eroglu
- School
of Medicine, Acibadem Mehmet Ali Aydinlar
University, Istanbul 34752, Turkey
| | - Seray Sahsuvar
- Department
of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Ceyhun Ekrem Kirimli
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Ozgur Kocaturk
- Institute
of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Sahin Senay
- Department
of Cardiovascular Surgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Ozgul Gok
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| |
Collapse
|
2
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
3
|
Suhar RA, Marquardt LM, Song S, Buabbas H, Doulames VM, Johansson PK, Klett KC, Dewi RE, Enejder AMK, Plant GW, George PM, Heilshorn SC. Elastin-like Proteins to Support Peripheral Nerve Regeneration in Guidance Conduits. ACS Biomater Sci Eng 2021; 7:4209-4220. [PMID: 34510904 DOI: 10.1021/acsbiomaterials.0c01053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic nerve guidance conduits (NGCs) offer an alternative to harvested nerve grafts for treating peripheral nerve injury (PNI). NGCs have been made from both naturally derived and synthesized materials. While naturally derived materials typically have an increased capacity for bioactivity, synthesized materials have better material control, including tunability and reproducibility. Protein engineering is an alternative strategy that can bridge the benefits of these two classes of materials by designing cell-responsive materials that are also systematically tunable and consistent. Here, we tested a recombinantly derived elastin-like protein (ELP) hydrogel as an intraluminal filler in a rat sciatic nerve injury model. We demonstrated that ELPs enhance the probability of forming a tissue bridge between the proximal and distal nerve stumps compared to an empty silicone conduit across the length of a 10 mm nerve gap. These tissue bridges have evidence of myelinated axons, and electrophysiology demonstrated that regenerated axons innervated distal muscle groups. Animals implanted with an ELP-filled conduit had statistically higher functional control at 6 weeks than those that had received an empty silicone conduit, as evaluated by the sciatic functional index. Taken together, our data support the conclusion that ELPs support peripheral nerve regeneration in acute complete transection injuries when used as an intraluminal filler. These results support the further study of protein engineered recombinant ELP hydrogels as a reproducible, off-the-shelf alternative for regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Riley A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Laura M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Hana Buabbas
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Vanessa M Doulames
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Patrik K Johansson
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Katarina C Klett
- Program in Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ruby E Dewi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Annika M K Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Giles W Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Scott RA, Fowler EW, Jia X, Kiick KL, Akins RE. Regulation of neovasculogenesis in co-cultures of aortic adventitial fibroblasts and microvascular endothelial cells by cell-cell interactions and TGF-β/ALK5 signaling. PLoS One 2020; 15:e0244243. [PMID: 33370415 PMCID: PMC7769260 DOI: 10.1371/journal.pone.0244243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Adventitial fibroblasts (AFs) are critical mediators of vascular remodeling. However, the contributions of AFs towards development of vasculature and the specific mechanisms by which these cells regulate physiological expansion of the vasa vasorum, the specialized microvasculature that supplies nutrients to the vascular wall, are not well understood. To determine the regulatory role of AFs in microvascular endothelial cell (MVEC) neovasculogenesis and to investigate the regulatory pathways utilized for communication between the two cell types, AFs and MVECs were cultured together in poly(ethylene glycol)-based hydrogels. Following preliminary evaluation of a set of cell adhesion peptides (AG10, AG73, A2G78, YIGSR, RGD), 7.5wt% hydrogels containing 3 mM RGD were selected as these substrates did not initiate primitive tubule structures in 3D MVEC monocultures, thus providing a passive platform to study AF-MVEC interaction. The addition of AFs to hydrogels promoted MVEC viability; however, increasing AF density within hydrogels stimulated MVEC proliferation, increased microvessel density and size, and enhanced deposition of basement membrane proteins, collagen IV and laminin. Importantly, AF-MVEC communication through the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) signaling pathway was observed to mediate microvessel formation, as inhibition of ALK5 significantly decreased MVEC proliferation, microvessel formation, mural cell recruitment, and basement membrane production. These data indicate that AFs regulate MVEC neovasculogenesis and suggest that therapeutics targeting the TGF-β/ALK5 pathway may be useful for regulation of vasculogenic and anti-vasculogenic responses.
Collapse
Affiliation(s)
- Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Nemours—Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Robert E. Akins
- Nemours—Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| |
Collapse
|
5
|
Protective Mechanism and Treatment of Neurogenesis in Cerebral Ischemia. Neurochem Res 2020; 45:2258-2277. [PMID: 32794152 DOI: 10.1007/s11064-020-03092-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the fifth leading cause of death worldwide and is a main cause of disability in adults. Neither currently marketed drugs nor commonly used treatments can promote nerve repair and neurogenesis after stroke, and the repair of neurons damaged by ischemia has become a research focus. This article reviews several possible mechanisms of stroke and neurogenesis and introduces novel neurogenic agents (fibroblast growth factors, brain-derived neurotrophic factor, purine nucleosides, resveratrol, S-nitrosoglutathione, osteopontin, etc.) as well as other treatments that have shown neuroprotective or neurogenesis-promoting effects.
Collapse
|
6
|
Scott RA, Robinson KG, Kiick KL, Akins RE. Human Adventitial Fibroblast Phenotype Depends on the Progression of Changes in Substrate Stiffness. Adv Healthc Mater 2020; 9:e1901593. [PMID: 32105417 PMCID: PMC7274877 DOI: 10.1002/adhm.201901593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Adventitial fibroblasts (AFs) are major contributors to vascular remodeling and maladaptive cascades associated with arterial disease, where AFs both contribute to and respond to alterations in their surrounding matrix. The relationships between matrix modulus and human aortic AF (AoAF) function are investigated using poly(ethylene glycol)-based hydrogels designed with matrix metalloproteinase (MMP)-sensitive and integrin-binding peptides. Initial equilibrium shear storage moduli for the substrates examined are 0.33, 1.42, and 2.90 kPa; after 42 days of culture, all hydrogels exhibit similar storage moduli (0.3-0.7 kPa) regardless of initial modulus, with encapsulated AoAFs spreading and proliferating. In 10 and 7.5 wt% hydrogels, modulus decreases monotonically throughout culture; however, in 5 wt% hydrogels, modulus increases after an initial 7 days of culture, accompanied by an increase in myofibroblast transdifferentiation and expression of collagen I and III through day 28. Thereafter, significant reductions in both collagens occur, with increased MMP-9 and decreased tissue inhibitor of metalloproteinase-1/-2 production. Releasing cytoskeletal tension or inhibiting cellular protein secretion in 5 wt% hydrogels block the stiffening of the polymer matrix. Results indicate that encapsulated AoAFs initiate cell-mediated matrix remodeling and demonstrate the utility of dynamic 3D systems to elucidate the complex interactions between cell behavior and substrate properties.
Collapse
Affiliation(s)
- Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Karyn G. Robinson
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Robert E. Akins
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
| |
Collapse
|
7
|
Kornev VA, Grebenik EA, Solovieva AB, Dmitriev RI, Timashev PS. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Comput Struct Biotechnol J 2018; 16:488-502. [PMID: 30455858 PMCID: PMC6232648 DOI: 10.1016/j.csbj.2018.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
Recent years have witnessed the development of an enormous variety of hydrogel-based systems for neuroregeneration. Formed from hydrophilic polymers and comprised of up to 90% of water, these three-dimensional networks are promising tools for brain tissue regeneration. They can assist structural and functional restoration of damaged tissues by providing mechanical support and navigating cell fate. Hydrogels also show the potential for brain injury therapy due to their broadly tunable physical, chemical, and biological properties. Hydrogel polymers, which have been extensively implemented in recent brain injury repair studies, include hyaluronic acid, collagen type I, alginate, chitosan, methylcellulose, Matrigel, fibrin, gellan gum, self-assembling peptides and proteins, poly(ethylene glycol), methacrylates, and methacrylamides. When viewed as tools for neuroregeneration, hydrogels can be divided into: (1) hydrogels suitable for brain injury therapy, (2) hydrogels that do not meet basic therapeutic requirements and (3) promising hydrogels which meet the criteria for further investigations. Our analysis shows that fibrin, collagen I and self-assembling peptide-based hydrogels display very attractive properties for neuroregeneration.
Collapse
Affiliation(s)
- Vladimir A. Kornev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
| | - Ekaterina A. Grebenik
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
| | - Anna B. Solovieva
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 117977, Russian Federation
| | - Ruslan I. Dmitriev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 117977, Russian Federation
- Institute of Photonic Technologies, Research Center “Crystallography and Photonics” Russian Academy of Sciences, 2 Pionerskaya st., Troitsk, Moscow 108840, Russian Federation
| |
Collapse
|
8
|
Rangel-Argote M, Claudio-Rizo JA, Mata-Mata JL, Mendoza-Novelo B. Characteristics of Collagen-Rich Extracellular Matrix Hydrogels and Their Functionalization with Poly(ethylene glycol) Derivatives for Enhanced Biomedical Applications: A Review. ACS APPLIED BIO MATERIALS 2018; 1:1215-1228. [DOI: 10.1021/acsabm.8b00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Magdalena Rangel-Argote
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Guanajuato, México
- Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Guanajuato, México
| | - Jesús A. Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Venustiano Carranza s/n, 25280 Saltillo, Coahuila, México
| | - José L. Mata-Mata
- Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Guanajuato, México
| | - Birzabith Mendoza-Novelo
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Guanajuato, México
| |
Collapse
|
9
|
Marquardt LM, Heilshorn SC. Design of Injectable Materials to Improve Stem Cell Transplantation. CURRENT STEM CELL REPORTS 2016; 2:207-220. [PMID: 28868235 PMCID: PMC5576562 DOI: 10.1007/s40778-016-0058-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cell-based therapies are steadily gaining traction for regenerative medicine approaches to treating disease and injury throughout the body. While a significant body of work has shown success in preclinical studies, results often fail to translate in clinical settings. One potential cause is the massive transplanted cell death that occurs post injection, preventing functional integration with host tissue. Therefore, current research is focusing on developing injectable hydrogel materials to protect cells during delivery and to stimulate endogenous regeneration through interactions of transplanted cells and host tissue. This review explores the design of targeted injectable hydrogel systems for improving the therapeutic potential of stem cells across a variety of tissue engineering applications with a focus on hydrogel materials that have progressed to the stage of preclinical testing.
Collapse
Affiliation(s)
- Laura M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
10
|
Francisco AT, Hwang PY, Jeong CG, Jing L, Chen J, Setton LA. Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomater 2014; 10:1102-11. [PMID: 24287160 DOI: 10.1016/j.actbio.2013.11.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/15/2013] [Accepted: 11/17/2013] [Indexed: 01/08/2023]
Abstract
Intervertebral disc (IVD) disorders and age-related degeneration are believed to contribute to lower back pain. There is significant interest in cell-based strategies for regenerating the nucleus pulposus (NP) region of the disc; however, few scaffolds have been evaluated for their ability to promote or maintain an immature NP cell phenotype. Previous studies have shown that NP cell-laminin interactions promote cell adhesion and biosynthesis, which suggests a laminin-functionalized biomaterial may be useful for promoting or maintaining the NP cell phenotype. Here, a photocrosslinkable poly(ethylene glycol)-laminin 111 (PEG-LM111) hydrogel was developed. The mechanical properties of PEG-LM111 hydrogel could be tuned within the range of dynamic shear moduli values previously reported for human NP. When primary immature porcine NP cells were seeded onto PEG-LM111 hydrogels of varying stiffnesses, LM111-presenting hydrogels were found to promote cell clustering and increased levels of sGAG production as compared to stiffer LM111-presenting and PEG-only gels. When cells were encapsulated in 3-D gels, hydrogel formulation was found to influence NP cell metabolism and expression of proposed NP phenotypic markers, with higher expression of N-cadherin and cytokeratin 8 observed for cells cultured in softer (<1kPa) PEG-LM111 hydrogels. Overall, these findings suggest that soft, LM111-functionalized hydrogels may promote or maintain the expression of specific markers characteristic of an immature NP cell phenotype.
Collapse
|
11
|
Thompson S, Stukel J, AlNiemi A, Willits RK. Characteristics of precipitation-formed polyethylene glycol microgels are controlled by molecular weight of reactants. J Vis Exp 2013:e51002. [PMID: 24378988 DOI: 10.3791/51002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Susan Thompson
- Department of Biomedical Engineering, The University of Akron
| | | | | | | |
Collapse
|
12
|
Zustiak SP, Wei Y, Leach JB. Protein-hydrogel interactions in tissue engineering: mechanisms and applications. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:160-71. [PMID: 23150926 DOI: 10.1089/ten.teb.2012.0458] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein-hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel-protein interactions that will advance our ability to control the cell-biomaterial interface.
Collapse
Affiliation(s)
- Silviya P Zustiak
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
13
|
Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. J Mol Neurosci 2012; 49:334-46. [PMID: 22878912 DOI: 10.1007/s12031-012-9863-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/23/2012] [Indexed: 01/15/2023]
Abstract
The aim of our work is to utilize the crosstalk between the vascular and the neuronal system to enhance directed neuritogenesis in uniaxial guidance scaffolds for the repair of spinal cord injury. In this study, we describe a method for angioneural regenerative engineering, i.e., for generating biodegradable scaffolds, produced by a combination of controlled freezing (freeze-casting) and lyophilization, which contain longitudinally oriented channels, and provide uniaxial directionality to support and guide neuritogenesis from neuronal cells in the presence of endothelial cells. The optimized scaffolds, composed of 2.5 % gelatin and 1 % genipin crosslinked, were characterized by an elastic modulus of ~51 kPa and longitudinal channels of ~50 μm diameter. The scaffolds support the growth of endothelial cells, undifferentiated or NGF-differentiated PC12 cells, and primary cultures of fetal chick forebrain neurons. The angioneural crosstalk, as generated by first forming endothelial cell monolayers in the scaffolds followed by injection of neuronal cells, leads to the outgrowth of long aligned neurites in the PC12/endothelial cell co-cultures also in the absence of exogenously added nerve growth factor. Neuritogenesis was not observed in the scaffolds in the absence of the endothelial cells. This methodology is a promising approach for neural tissue engineering and may be applicable for regenerative spinal cord injury repair.
Collapse
|
14
|
Shoffstall AJ, Taylor DM, Lavik EB. Engineering therapies in the CNS: what works and what can be translated. Neurosci Lett 2012; 519:147-54. [PMID: 22330751 DOI: 10.1016/j.neulet.2012.01.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 01/01/2023]
Abstract
Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS.
Collapse
Affiliation(s)
- Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-1712, USA
| | | | | |
Collapse
|
15
|
Scott RA, Elbert DL, Willits RK. Modular poly(ethylene glycol) scaffolds provide the ability to decouple the effects of stiffness and protein concentration on PC12 cells. Acta Biomater 2011; 7:3841-9. [PMID: 21787889 DOI: 10.1016/j.actbio.2011.06.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/28/2011] [Accepted: 06/30/2011] [Indexed: 02/03/2023]
Abstract
This research focused on developing a modular poly(ethylene glycol) (PEG) scaffold, assembled from PEG microgels and collagen I, to provide an environment to decouple the chemical and mechanical cues within a three-dimensional scaffold. We first characterized the microgel fabrication process, examining the size, polydispersity, swelling ratio, mesh size and storage modulus of the polymer particles. The resulting microgels had a low polydispersity index, PDI=1.08, and a diameter of ~1.6 μm. The mesh size of the microgels, calculated from the swelling ratio, was 47.53 Å. Modular hydrogels (modugels) were then formed by compacting N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimidyl group-activated microgels with PEG-4arm-amine and 0, 1, 10, or 100 μg ml(-1) collagen. The stiffness (G(∗)) of the modugels was not significantly altered with the addition of collagen, allowing for modification of the chemical environment independent from the mechanical properties of the scaffold. PC12 cell aggregation increased in modugels as collagen concentrations increased and cell viability in modugels was improved over bulk PEG hydrogels. Overall, these results indicate that further exploration of modular scaffolds formed from microgels could allow for a better understanding of the relationship between the chemical and mechanical properties and cellular behavior.
Collapse
|