1
|
Maduka CV, Makela AV, Tundo A, Ural E, Stivers KB, Kuhnert MM, Alhaj M, Hoque Apu E, Ashammakhi N, Hankenson KD, Narayan R, Elisseeff JH, Contag CH. Regulating the proinflammatory response to composite biomaterials by targeting immunometabolism. Bioact Mater 2024; 40:64-73. [PMID: 38948254 PMCID: PMC11214186 DOI: 10.1016/j.bioactmat.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Composite biomaterials comprising polylactide (PLA) and hydroxyapatite (HA) are applied in bone, cartilage and dental regenerative medicine, where HA confers osteoconductive properties. However, after surgical implantation, adverse immune responses to these composites can occur, which have been attributed to size and morphology of HA particles. Approaches to effectively modulate these adverse immune responses have not been described. PLA degradation products have been shown to alter immune cell metabolism (immunometabolism), which drives the inflammatory response. Accordingly, to modulate the inflammatory response to composite biomaterials, inhibitors were incorporated into composites comprised of amorphous PLA (aPLA) and HA (aPLA + HA) to regulate glycolytic flux. Inhibition at specific steps in glycolysis reduced proinflammatory (CD86+CD206-) and increased pro-regenerative (CD206+) immune cell populations around implanted aPLA + HA. Notably, neutrophil and dendritic cell (DC) numbers along with proinflammatory monocyte and macrophage populations were decreased, and Arginase 1 expression among DCs was increased. Targeting immunometabolism to control the proinflammatory response to biomaterial composites, thereby creating a pro-regenerative microenvironment, is a significant advance in tissue engineering where immunomodulation enhances osseointegration and angiogenesis, which could lead to improved bone regeneration.
Collapse
Affiliation(s)
- Chima V. Maduka
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Ashley V. Makela
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Anthony Tundo
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Evran Ural
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Katlin B. Stivers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Maxwell M. Kuhnert
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Mohammed Alhaj
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN, 37917, USA
| | - Nureddin Ashammakhi
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ramani Narayan
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Christopher H. Contag
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, 48864, USA
| |
Collapse
|
2
|
Su M, Li C, Deng S, Xu L, Shan Z, Xing Y, Li X, Li Y, Liu X, Zhong X, Chen K, Chen S, Liu Q, Wu X, Chen Z, Wu S, Chen Z. Balance between the CMC/ACP Nanocomplex and Blood Assimilation Orchestrates Immunomodulation of the Biomineralized Collagen Matrix. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58166-58180. [PMID: 38079631 DOI: 10.1021/acsami.3c12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Calcium phosphate-based biomineralized biomaterials have broad application prospects. However, the immune response and foreign body reactions elicited by biomineralized materials have drawn substantial attention recently, contrary to the immune microenvironment optimization concept. Therefore, it is important to clarify the immunomodulation properties of biomineralized materials. Herein, we prepared the biomineralized collagen matrix (BCM) and screened the key immunomodulation factor carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) nanocomplex. The immunomodulation effect of the BCM was investigated in vitro and in vivo. The BCM triggered evident inflammatory responses and cascade foreign body reactions by releasing the CMC/ACP nanocomplex, which activated the potential TLR4-MAPK/NF-κB pathway, compromising the collagen matrix biocompatibility. By contrast, blocking the CMC/ACP nanocomplex release via the blood assimilation process of the BCM mitigated the inflammation and foreign body reactions, enhancing biocompatibility. Hence, the immunomodulation of the BCM was orchestrated by the balance between the CMC/ACP nanocomplex and the blood assimilation process. Controlling the release of the CMC/ACP nanocomplex to accord the biological effects of ACP with the temporal regenerative demands is key to developing advanced biomineralized materials.
Collapse
Affiliation(s)
- Mengxi Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Chuangji Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Shudan Deng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Leyao Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhengjie Shan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yihan Xing
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiyan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Ye Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xingchen Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xinyi Zhong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Kaidi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Shoucheng Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Quan Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiayi Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Shiyu Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
3
|
Li X, Li C, Su M, Zhong X, Xing Y, Shan Z, Chen S, Liu X, Wu X, Liu Q, Li Y, Wu S, Chen Z. Optimizing the biodegradability and osteogenesis of biogenic collagen membrane via fluoride-modified polymer-induced liquid precursor process. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2186690. [PMID: 36926201 PMCID: PMC10013244 DOI: 10.1080/14686996.2023.2186690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Biogenic collagen membranes (BCM) have been widely used in guided bone regeneration (GBR) owing to their biodegradability during tissue integration. However, their relatively high degradation rate and lack of pro-osteogenic properties limit their clinical outcomes. It is of great importance to endow BCM with tailored degradation as well as pro-osteogenic properties. In this study, a fluoride-modified polymer-induced liquid precursor (PILP) based biomineralization strategy was used to convert the collagen membrane from an organic phase to an apatite-based inorganic phase, thus achieving enhanced anti-degradation performance as well as osteogenesis. As a result, three phases of collagen membranes were prepared. The original BCM in the organic phase induced the mildest inflammatory response and was mostly degraded after 4 weeks. The organic-inorganic mixture phase of the collagen membrane evoked a prominent inflammatory response owing to the fluoride-containing amorphous calcium phosphate (F-ACP) nanoparticles, resulting in active angiogenesis and fibrous encapsulation, whereas the inorganic phase induced a mild inflammatory response and degraded the least owing to the transition of F-ACP particles into calcium phosphate with high crystallinity. Effective control of ACP is key to building novel apatite-based barrier membranes. The current results may pave the way for the development of advanced apatite-based membranes with enhanced barrier performances.
Collapse
Affiliation(s)
- Xiyan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuangji Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Mengxi Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Zhong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yihan Xing
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhengjie Shan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shoucheng Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xingchen Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiayi Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Quan Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ye Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Shang L, Shao J, Ge S. Immunomodulatory Properties: The Accelerant of Hydroxyapatite-Based Materials for Bone Regeneration. Tissue Eng Part C Methods 2022; 28:377-392. [PMID: 35196904 DOI: 10.1089/ten.tec.2022.00111112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The immunoinflammatory response is the prerequisite step for wound healing and tissue regeneration, and the immunomodulatory effects of biomaterials have attracted increasing attention. Hydroxyapatite [Ca10(PO4)6(OH)2] (HAp), a common calcium phosphate ceramic, due to its structural and functional similarity to the inorganic constituent of natural bones, has been developed for different application purposes such as bone substitutes, tissue engineering scaffolds, and implant coatings. Recently, the interaction between HAp-based materials and the immune system (various immune cells), and the immunomodulatory effects of HAp-based materials on bone tissue regeneration have been explored extensively. Macrophages-mediated regenerative effect by HAp stimulation occupies the mainstream status of immunomodulatory strategies. The immunomodulation of HAp can be manipulated by tuning the physical, chemical, and biological cues such as surface functionalization (physical or chemical modifications), structural and textural characteristics (size, shape, and surface topography), and the incorporation of bioactive substances (cytokines, rare-earth elements, and bioactive ions). Therefore, HAp ceramic materials can contribute to bone regeneration by creating a favorable osteoimmune microenvironment, which would provide a more comprehensive theoretical basis for their further clinical applications. Considering the rapidly developed HAp-based materials as well as their excellent biological performances in the field of regenerative medicine, this review discusses the recent advances concerning the immunomodulatory methods for HAp-based biomaterials and their roles in bone tissue regeneration.
Collapse
Affiliation(s)
- Lingling Shang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
5
|
Calcium Phosphate Coating Prepared by Microarc Oxidation Affects hTERT Expression, Molecular Presentation, and Cytokine Secretion in Tumor-Derived Jurkat T Cells. MATERIALS 2020; 13:ma13194307. [PMID: 32992463 PMCID: PMC7579201 DOI: 10.3390/ma13194307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023]
Abstract
Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 × 10 × 1 mm3) with a bilateral rough (average roughness index (Ra) = 2–5 μm) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150–300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3–0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and β-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.7-fold), IL-17 secretion, the presentation of the activation antigens CD25 (by 2.7%) and CD95 (by 5.15%) on CD4+ cells, and 1.5–2-fold increased cell apoptosis and necrosis after two days of culture. Hyperactivation-dependent death of CD4+ cells triggered by the surface roughness of the CaP coating was proposed. Conversely, a 3.2-fold downregulation in hTERT expression increased the percentages of CD4+ cells and their CD95+ subset (by 15.5% and 22.9%, respectively) and inhibited the secretion of 17 of 27 test cytokines/chemokines without a reduction in Jurkat T cell survival after 14 days of coculture. Thereafter, cell hypoergy and the selection of an hTERT-independent viable CD4+ subset of tumor cells were proposed. The possible role of negative zeta potentials and Ca2+ as effectors of CaP roughness was discussed. The continuous (2–14 days) 1.5–6-fold reductions in the secretion of vascular endothelial growth factor (VEGF) by tumor cells correlated with the Ra values of microarc CaP-coated Ti substrates seems to limit surgical stress-induced metastasis of lymphoid malignancies.
Collapse
|
6
|
Chen L, Qiao P, Liu H, Shao L. Amorphous Calcium Phosphate NPs Mediate the Macrophage Response and Modulate BMSC Osteogenesis. Inflammation 2020; 44:278-296. [PMID: 32939669 DOI: 10.1007/s10753-020-01331-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
The potential risk associated with ACP nanoparticles (ACP NPs) cultured with immune cells and their indirect effects on osteogenesis have not been studied deeply. This project aims to evaluate the safety of ACP NPs in macrophages, the responses of macrophages (macrophage polarization, the cytokine secretion pattern of macrophages and intracellular homeostasis) to ACP NPs and the effect of ACP NPs/macrophage-modulated environments on the osteogenic ability of BMSCs. The cell proliferation rate and apoptosis were detected by CCK-8 and Annexin V Apoptosis Detection kits. ROS and autophagy expression were evaluated by ROS test kits and Western blot (WB). Macrophage polarization and cytokine expression were determined by SEM, cytoskeletal staining, RT-PCR and ELISA. TMT™ quantitative protein analysis was used to evaluate protein expression. BMSC osteogenic differentiation was detected by ALP staining, Alizarin Red solution staining and RT-PCR. ACP NPs were safe to macrophages but promoted autophagy and induced ROS production at high concentrations. ACP NPs changed morphology of macrophages and induced polarization into M1 type, thus promoting the expression of inflammatory cytokines. ACP NPs/macrophage-modulated environments weakened the osteogenic ability of BMSCs. ACP NPs polarize macrophages into the M1 phenotype and change the cytokine secretion pattern. ACP NPs/macrophage-modulated environments weaken the osteogenic ability of BMSCs. ACP NPs may cause aseptic inflammation and attenuate osteogenesis.
Collapse
Affiliation(s)
- Liangjiao Chen
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
- Department of Orthodontics, Affilicated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regeneartive Medicine, Guangzhou, 510140, China
| | - Pengyan Qiao
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Hongchen Liu
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Katagiri H, Mendes LF, Luyten FP. Reduction of BMP6‐induced bone formation by calcium phosphate in wild‐type compared with nude mice. J Tissue Eng Regen Med 2019; 13:846-856. [DOI: 10.1002/term.2837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/01/2018] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Hiroki Katagiri
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research CenterKatholieke Universiteit Leuven Leuven Belgium
- Prometheus, Division of Skeletal Tissue EngineeringKatholieke Universiteit Leuven Leuven Belgium
| | - Luis Filipe Mendes
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research CenterKatholieke Universiteit Leuven Leuven Belgium
- Prometheus, Division of Skeletal Tissue EngineeringKatholieke Universiteit Leuven Leuven Belgium
| | - Frank P. Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research CenterKatholieke Universiteit Leuven Leuven Belgium
- Prometheus, Division of Skeletal Tissue EngineeringKatholieke Universiteit Leuven Leuven Belgium
| |
Collapse
|
8
|
Souza GL, Rosatto CMP, Silva MJB, Silva MV, Rocha Rodrigues DB, Moura CCG. Evaluation of apoptosis/necrosis and cytokine release provoked by three root canal sealers in human polymorphonuclears and monocytes. Int Endod J 2018; 52:629-638. [PMID: 30388307 DOI: 10.1111/iej.13036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
Abstract
AIM To evaluate the in vitro cytotoxicity and cytokine release of three fresh root canal sealers and to determine the type of cell death they induce. METHODOLOGY The sealers tested were Sealer 26 (S26), AH Plus (AHP), and Endosequence BC Sealer (END). Fresh sealers were cultivated in contact with monocytes and polymorphonuclears (PMNs) obtained from the peripheral blood of humans. Cell viability, apoptosis and necrosis were analysed at 4 h (PMNs) or 24 h (monocytes) using Annexin-V and propidium iodide in a cytometer. The supernatants were used to quantify Interleukin (IL)-4, IL-6, IL-10, IL-12 and tumour necrosis factor-α (TNF-α) in monocytes and IL-8 in PMNs by ELISA. One-way ANOVA and the Tukey post-test were used to compare data for cytotoxicity, and the multiple T-test was used to determine the differences between sealers in the release of cytokines that were statistically significant. RESULTS After 4 h of treatment, S26 was associated with greater cell viability than the other sealers (P < 0.05) in the PMN culture and had similar values of necrosis as END (P > 0.05). After 24 h of treatment, AHP and END had greater monocyte cell viability than S26 (P < 0.05), which had more necrosis (P < 0.05). END had the lowest levels of IL-12 compared to the other sealers (P < 0.05) and higher levels of IL-6 compared to S26 (P < 0.05). The tested sealers did not differ in the release of IL-8, IL-10, TNF-α and IL-4 (P > 0.05). CONCLUSIONS The effect of toxic agents released varied depending on the cell type studied. The composition of the sealers appeared to alter the form of self-regulation in the production of these cytokines by cells.
Collapse
Affiliation(s)
- G L Souza
- Department of Endodontics, School of Dentistry, University of Uberlândia, Uberlândia, MG, Brazil
| | - C M P Rosatto
- Department of Endodontics, School of Dentistry, University of Uberlândia, Uberlândia, MG, Brazil
| | - M J B Silva
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - M V Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - D B Rocha Rodrigues
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - C C G Moura
- Department of Endodontics, School of Dentistry, University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|