1
|
Li HY, Makatsoris C, Forbes B. Particulate bioaerogels for respiratory drug delivery. J Control Release 2024; 370:195-209. [PMID: 38641021 DOI: 10.1016/j.jconrel.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The bioaerogel microparticles have been recently developed for respiratory drug delivery and attract fast increasing interests. These highly porous microparticles have ultralow density and hence possess much reduced aerodynamic diameter, which favour them with greatly enhanced dispersibility and improved aerosolisation behaviour. The adjustable particle geometric dimensions by varying preparation methods and controlling operation parameters make it possible to fabricate bioaerogel microparticles with accurate sizes for efficient delivery to the targeted regions of respiratory tract (i.e. intranasal and pulmonary). Additionally, the technical process can provide bioaerogel microparticles with the opportunities of accommodating polar, weak polar and non-polar drugs at sufficient amount to satisfy clinical needs, and the adsorbed drugs are primarily in the amorphous form that potentially can facilitate drug dissolution and improve bioavailability. Finally, the nature of biopolymers can further offer additional advantageous characteristics of improved mucoadhesion, sustained drug release and subsequently elongated time for continuous treatment on-site. These fascinating features strongly support bioaerogel microparticles to become a novel platform for effective delivery of a wide range of drugs to the targeted respiratory regions, with increased drug residence time on-site, sustained drug release, constant treatment for local and systemic diseases and anticipated better-quality of therapeutic effects.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural & Mathematical Sciences, King's College London, WC2R 2LS, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
2
|
Khodov I, Sobornova V, Mulloyarova V, Belov K, Dyshin A, de Carvalho LB, Tolstoy P, Kiselev M. Exploring the Conformational Equilibrium of Mefenamic Acid Released from Silica Aerogels via NMR Analysis. Int J Mol Sci 2023; 24:ijms24086882. [PMID: 37108046 PMCID: PMC10138679 DOI: 10.3390/ijms24086882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
This study examines the influence of mefenamic acid on the physical and chemical properties of silica aerogels, as well as its effect on the sorption characteristics of the composite material. Solid state magic angle spinning nuclear magnetic resonance (MAS NMR) and high-pressure 13C NMR kinetic studies were conducted to identify the presence of mefenamic acid and measure the kinetic rates of CO2 sorption. Additionally, a high-pressure T1-T2 relaxation-relaxation correlation spectroscopy (RRCOSY) study was conducted to estimate the relative amount of mefenamic acid in the aerogel's pores, and a high-pressure nuclear Overhauser effect spectoscopy (NOESY) study was conducted to investigate the conformational preference of mefenamic acid released from the aerogel. The results indicate that mefenamic acid is affected by the chemical environment of the aerogel, altering the ratio of mefenamic acid conformers from 75% to 25% in its absence to 22% to 78% in the presence of aerogel.
Collapse
Affiliation(s)
- Ilya Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Valentina Sobornova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Valeriya Mulloyarova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 198504, Russia
| | - Konstantin Belov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Alexey Dyshin
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Luís Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Peter Tolstoy
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 198504, Russia
| | - Michael Kiselev
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia
| |
Collapse
|
3
|
Conte M, De Feo MS, Sidrak MMA, Corica F, Gorica J, Filippi L, Schillaci O, De Vincentis G, Frantellizzi V. Radiolabeled Dendrimer Coated Nanoparticles for Radionuclide Imaging and Therapy: A Systematic Review. Pharmaceutics 2023; 15:pharmaceutics15030867. [PMID: 36986728 PMCID: PMC10051715 DOI: 10.3390/pharmaceutics15030867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Dendrimers are nanoscale-size polymers with a globular structure. They are composed of an internal core and branching dendrons with surface active groups which can be functionalized for medical applications. Different complexes have been developed for imaging and therapeutic purposes. This systematic review aims to summarize the development of newer dendrimers for oncological applications in nuclear medicine. METHODS An online literature search was conducted on Pubmed, Scopus, Medline, Cochrane Library, and Web Of Science databases selecting published studies from January 1999 to December 2022. The accepted studies considered the synthesis of dendrimer complexes for oncological nuclear medicine imaging and therapy. RESULTS 111 articles were identified; 69 articles were excluded because they did not satisfy the selection criteria. Thus, nine duplicate records were removed. The remaining 33 articles were included and selected for quality assessment. CONCLUSION Nanomedicine has led researchers to create novel nanocarriers with high affinity for the target. Dendrimers represent feasible imaging probes and therapeutic agents since, through the functionalization of external chemical groups and thanks to the possibility to carry pharmaceuticals, it can be possible to exploit different therapeutic strategies and develop a useful weapon for oncological treatments.
Collapse
Affiliation(s)
- Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Marko Magdi Abdou Sidrak
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Ferdinando Corica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Joana Gorica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| |
Collapse
|
4
|
Biomedical applications of silica-based aerogels: a comprehensive review. Macromol Res 2023. [DOI: 10.1007/s13233-023-00142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Aramideh A, Ashjari M, Niazi Z. Effects of natural polymers for enhanced silica-based mesoporous drug carrier. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Singh N, Vinjamur M, Mukhopadhyay M. Insights into Adsorptive Drug Loading on Silica Aerogels from Supercritical CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13075-13083. [PMID: 36257024 DOI: 10.1021/acs.langmuir.2c01694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This work gives an insight into the process of adsorptive drug loading in silica aerogels from supercritical CO2 (scCO2). A prevalent method for such loading entails bringing the aerogels into contact with the drug-scCO2 solution followed by slow or isothermal depressurization. Our previous work established that drug precipitates during depressurization. Consequently, the adsorptive drug loading measured by the prevalent method includes precipitation. An alternative method is presented for accurate measurement of adsorption avoiding precipitation. To illustrate the disparity between the two methods, the concentration dependence of drug loadings in scCO2, obtained by both methods, is compared for fenofibrate, ibuprofen, and benzoic acid. A mechanism is proposed, and a mathematical model is developed for comparing the adsorptive drug loadings by both methods. The loading obtained by the present method is found to be much less than that by the prevalent method, though both correlate well with the formalism of the Langmuir adsorption equation with the same equilibrium constant at low concentrations. Equations are developed for the concentration dependence of drug loadings measured by both methods at all concentrations in scCO2.
Collapse
Affiliation(s)
- Neha Singh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra400076, India
| | - Madhu Vinjamur
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra400076, India
| | - Mamata Mukhopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra400076, India
| |
Collapse
|
7
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
8
|
Jabbari-Gargari A, Moghaddas J, Jafarizadeh-Malmiri H, Hamishehkar H. Ambient pressure drug loading on trimethylchlorosilane silylated silica aerogel in aspirin controlled-release system. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1989420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Asieh Jabbari-Gargari
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Transport Phenomena Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| | - Jafarsadegh Moghaddas
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Transport Phenomena Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| | | | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes. Pharmaceutics 2021; 13:pharmaceutics13070950. [PMID: 34202794 PMCID: PMC8309060 DOI: 10.3390/pharmaceutics13070950] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Conventional administration of drugs is limited by poor water solubility, low permeability, and mediocre targeting. Safe and effective delivery of drugs and therapeutic agents remains a challenge, especially for complex therapies, such as cancer treatment, pain management, heart failure medication, among several others. Thus, delivery systems designed to improve the pharmacokinetics of loaded molecules, and allowing controlled release and target specific delivery, have received considerable attention in recent years. The last two decades have seen a growing interest among scientists and the pharmaceutical industry in mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS). This interest is due to the unique physicochemical properties, including high loading capacity, excellent biocompatibility, and easy functionalization. In this review, we discuss the current state of the art related to the preparation of drug-loaded MSNs and their analysis, focusing on the newest advancements, and highlighting the advantages and disadvantages of different methods. Finally, we provide a concise outlook for the remaining challenges in the field.
Collapse
|
10
|
Othman AM, Ghobashy MM, Abd El‐Sattar NEA. Radiation synthesis of porous calcium silicate aerogel derived from polyacrylamide hydrogel as thermal insulator. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2021; 98:593-604. [DOI: 10.1007/s10971-021-05534-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/09/2021] [Indexed: 09/02/2023]
|
11
|
Bio-nanocomposite Polymer Hydrogels Containing Nanoparticles for Drug Delivery: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00207-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Ganonyan N, Bar G, Gvishi R, Avnir D. Gradual hydrophobization of silica aerogel for controlled drug release. RSC Adv 2021; 11:7824-7838. [PMID: 35423309 PMCID: PMC8695093 DOI: 10.1039/d1ra00671a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/01/2022] Open
Abstract
We report on the successful fine-tuning of silica aerogel hydrophobicity, through a gas-phase surface modification process. Aerogel hydrophobicity is a widely discussed matter, as it contributes to the aerogel's preservation and determines its functionality. Still, a general procedure for tuning the hydrophobicity, without affecting other aerogel properties was missing. In the developed procedure, silica aerogel was modified with trimethylchlorosilane vapor for varying durations, resulting in gradual hydrophobicity, determined by solid-state NMR and contact angle measurements. The generality of this post-synthesis treatment allows its application on a variety of aerogel materials, while having minimum effect on their porosity and transparency. We demonstrate the applicability of the gradual hydrophobization by tuning drug release rates from the silica aerogel. Two chlorhexidine salts - widely employed as antiseptic agents - were used as model drugs, one representing a soluble drug, and the other an insoluble drug; they were entrapped in silica aerogel, following hydrophobization to varying degrees. The drug release patterns showed that depending on the degree, hydrophobization can increase or decrease release kinetics, compared to the unmodified aerogel. This arises from the effect of the hydrophobic degree on pore structure, diffusional rates and wetting of the aerogel carrier. We suggest the use of the gradual hydrophobization process for other drug-aerogel systems, as well as for other aerogel applications, such as transparent insulation panels, contaminate sorbents or catalysis supports.
Collapse
Affiliation(s)
- Nir Ganonyan
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Galit Bar
- Applied Physics Division, Soreq Nuclear Research Center Yavne 8180000 Israel
| | - Raz Gvishi
- Applied Physics Division, Soreq Nuclear Research Center Yavne 8180000 Israel
| | - David Avnir
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
13
|
García-González CA, Sosnik A, Kalmár J, De Marco I, Erkey C, Concheiro A, Alvarez-Lorenzo C. Aerogels in drug delivery: From design to application. J Control Release 2021; 332:40-63. [PMID: 33600880 DOI: 10.1016/j.jconrel.2021.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/28/2022]
Abstract
Aerogels are the lightest processed solid materials on Earth and with the largest empty volume fraction in their structure. Composition versatility, modularity, and feasibility of industrial scale manufacturing are behind the fast emergence of aerogels in the drug delivery field. Compared to other 3D materials, the high porosity (interconnected mesopores) and high specific surface area of aerogels may allow faster loading of small-molecule drugs, less constrained access to inner regions of the matrix, and more efficient interactions of the biological milieu with the polymer matrix. Processing in supercritical CO2 medium for both aerogel production (drying) and drug loading (impregnation) has remarkable advantages such as absence of an oxidizing environment, clean manufacture, and easiness for the scale-up under good manufacturing practices. The aerogel solid skeleton dictates the chemical affinity to the different drugs, which in turn determines the loading efficiency and the release pattern. Aerogels can be used to increase the solubility of BCS Class II and IV drugs because the drug can be deposited in amorphous state onto the large surface area of the skeleton, which facilitates a rapid contact with the body fluids, dissolution, and release. Conversely, tuning the aerogel structure by functionalization with drug-binding moieties or stimuli-responsive components, application of coatings and incorporation of drug-loaded aerogels into other matrices may enable site-specific, stimuli-responsive, or prolonged drug release. The present review deals with last decade advances in aerogels for drug delivery. An special focus is paid first on the loading efficiency of active ingredients and release kinetics under biorelevant conditions. Subsequent sections deal with aerogels intended to address specific therapeutic demands. In addition to oral delivery, the physical properties of the aerogels appear to be very advantageous for mucosal administration routes, such as pulmonary, nasal, or transdermal. A specific section devoted to recent achievements in gene therapy and theranostics is also included. In the last section, scale up strategies and life cycle assessment are comprehensively addressed.
Collapse
Affiliation(s)
- Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - József Kalmár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Can Erkey
- Chemical and Biological Engineering Department, Koç University, 34450 Sarıyer, Istanbul, Turkey
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Ibrahim SM, Yin TY, Misran M. Arabic Gum Grafted PEGDMA Hydrogels: Synthesis, Physico-Chemical Characterization and In-vitro Release of Hydrophobic Drug. Macromol Res 2021. [DOI: 10.1007/s13233-020-8166-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Huang D, Wang C, Shen Y, Shi L. Influences of heating rate on the nano-porous structure of silica aerogel. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2020.1729907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dongmei Huang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, China
| | - Chaoyi Wang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, China
| | - Yiming Shen
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, China
| | - Long Shi
- Civil and Infrastructure Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Guastaferro M, Reverchon E, Baldino L. Agarose, Alginate and Chitosan Nanostructured Aerogels for Pharmaceutical Applications: A Short Review. Front Bioeng Biotechnol 2021; 9:688477. [PMID: 34055766 PMCID: PMC8149959 DOI: 10.3389/fbioe.2021.688477] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/16/2023] Open
Abstract
In this short review, drug delivery systems, formed by polysaccharide-based (i.e., agarose, alginate, and chitosan) aerogels, are analyzed. In particular, the main papers, published in the period 2011-2020 in this research field, have been investigated and critically discussed, in order to highlight strengths and weaknesses of the traditional production techniques (e.g., freeze-drying and air evaporation) of bio-aerogels with respect to supercritical CO2 assisted drying. Supercritical CO2 assisted drying demonstrated to be a promising technique to produce nanostructured bio-aerogels that maintain the starting gel volume and shape, when the solvent removal occurs at negligible surface tension. This characteristic, coupled with the possibility of removing also cross-linking agent residues from the aerogels, makes these advanced devices safe and suitable as carriers for controlled drug delivery applications.
Collapse
|
17
|
Wang J, Wang J. Advances on Dimensional Structure Designs and Functional Applications of Aerogels. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20110531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Meng P, Xu Y, Yan C, Xu J. One-Minute Synthesis of a Supramolecular Hydrogel from Suspension-Gel Transition and the Derived Crystalline, Elastic, and Photoactive Aerogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53125-53133. [PMID: 33169961 DOI: 10.1021/acsami.0c16009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solutions or sols are commonly employed as the starting materials for the preparation of supramolecular hydrogels; however, suspension-based synthesis has been much less reported because of inhomogeneity and quick sedimentation of large particles in a suspension. Further, it remains a technical challenge to derive supramolecular aerogels directly from the parental hydrogels owing to the ease of structural collapse during water removal. Herein, we report a suspension-gel transition for the ultrafast synthesis of a new supramolecular hydrogel simply by adding AgNO3 into the aqueous suspension of cyanuric acid-melamine (CAM) aggregates. With the activation of preadded ammonia, Ag ions instantly reacted with the CAM particles, transforming into N-Ag(I)-N coordinating bonded supramolecular nanofibers; simultaneously, the suspension converted to a hydrogel without the use of polymer cross-linkers or external stimulus. Upon simple freeze-drying, a highly crystalline fibrous aerogel with a cellular network was obtained, which possessed a porosity up to 99.7% and a density as low as 4.8 mg/cm3, enabling remarkable oil uptake capacities (100 times of its weight). The supramolecular aerogel demonstrated intrinsic elasticity, which should arise from the cellular structure and elastic character of the nanofiber skeletons. Notably, the aerogel showed high compatibility to incorporate a range of external substances for further functionalization exemplified by polymeric carbon nitride (PCN, a metal-free semiconductor) included gels. The loaded PCN resulted in enhanced mechanical strength and endowed the aerogel unique photoactivity, i.e., in situ reducing Ag(I) into Ag nanoparticles upon light illumination and thus forming a plasmonic shell over the aerogel with potential applications in sensing and catalysis.
Collapse
Affiliation(s)
- Peng Meng
- School of Chemistry and Physics, Queensland University of Technology, Brisbane QLD 4000, Australia
| | - Yanan Xu
- Institute for Future Environments, Queensland University of Technology, Brisbane QLD 4000, Australia
| | - Cheng Yan
- School of Mechanical Medical and Process Engineering, Queensland University of Technology, Brisbane QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane QLD 4000, Australia
| | - Jingsan Xu
- School of Chemistry and Physics, Queensland University of Technology, Brisbane QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane QLD 4000, Australia
| |
Collapse
|
19
|
Kepsutlu B, Wycisk V, Achazi K, Kapishnikov S, Pérez-Berná AJ, Guttmann P, Cossmer A, Pereiro E, Ewers H, Ballauff M, Schneider G, McNally JG. Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings. ACS NANO 2020; 14:2248-2264. [PMID: 31951375 DOI: 10.1021/acsnano.9b09264] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here, we use cryo soft X-ray tomography (cryo-SXT), which delivers 3D ultrastructural volumes of intact cells without chemical fixation or staining, to gain insight about nanoparticle uptake for nanomedicine. We initially used dendritic polyglycerol sulfate (dPGS) with potential diagnostic and therapeutic applications in inflammation. Although dPGS-coated gold nanoparticle (dPGS-AuNP) uptake followed a conventional endocytic/degradative pathway in human lung epithelial cell lines (A549), with cryo-SXT, we detected ∼5% of dPGS-AuNPs in the cytoplasm, a level undetectable by confocal light microscopy. We also observed ∼5% of dPGS-AuNPs in a rarely identified subcellular site, namely, lipid droplets, which are important for cellular energy metabolism. Finally, we also found substantial changes in the quantity of cytoplasmic organelles upon dPGS-AuNP uptake over the 1-6 h incubation period; the number of small vesicles and mitochondria significantly increased, and the number of multivesicular bodies and the number and volume of lipid droplets significantly decreased. Although nearly all organelle numbers at 6 h were still significantly different from controls, most appeared to be returning to normal levels. To test for generality, we also examined cells after uptake of gold nanoparticles coated with a different agent, polyethylenimine (PEI), used for nucleic acid delivery. PEI nanoparticles did not enter lipid droplets, but they induced similar, albeit less pronounced, changes in the quantity of cytoplasmic organelles. We confirmed these changes in organelle quantities for both nanoparticle coatings by confocal fluorescence microscopy. We suggest this cytoplasmic remodeling could reflect a more common cellular response to coated gold nanoparticle uptake.
Collapse
Affiliation(s)
- Burcu Kepsutlu
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Virginia Wycisk
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Katharina Achazi
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Sergey Kapishnikov
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Ana Joaquina Pérez-Berná
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Peter Guttmann
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Antje Cossmer
- Division 1.1 - Inorganic Trace Analysis , Federal Institute for Materials Research and Testing (BAM) , Richard-Willstätter-Str. 11 , 12489 Berlin , Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Helge Ewers
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Chemistry and Biochemisty, Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , Thielallee 63 , 14195 Berlin , Germany
| | - Matthias Ballauff
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - Gerd Schneider
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - James G McNally
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| |
Collapse
|
20
|
Wang Y, Kao Z, Zhang T, Zhang Y, Qin L, Zhang Z, Zhou B, Wu G, Shen J, Du A. Diffusion of Resveratrol in Silica Alcogels. Molecules 2019; 24:E3931. [PMID: 31683567 PMCID: PMC6864716 DOI: 10.3390/molecules24213931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 11/24/2022] Open
Abstract
The trans-resveratrol (RSV)-loaded silica aerogel (RLSA) was prepared by the sol-gel method, adding the drug during the aging process, solvent replacement and freeze drying. A series of characterizations showed that RSV stays in the silica aerogel in two ways. First, RSV precipitates due to minimal solubility in water during the solvent replacement process. After freeze drying, the solvent evaporates and the RSV recrystallizes. It can be seen from scanning electron microscope (SEM) and transmission electron microscope (TEM) images that the recrystallized RSV with micron-sized long rod-shaped is integrated with the dense silica network skeleton. Second, from small-angle X-ray scattering (SAXS) results, a portion of the RSV molecules is not crystallized and the size is extremely small. This can be attached to the primary and secondary particles of silica to enhance its network structure and inhibit shrinkage, which is why the volume and pore size of RLSA is larger. In addition, the diffusion of RSV in silica alcogel was studied by a one-dimensional model. The apparent diffusion coefficients of inward diffusion, outward diffusion and internal diffusion were calculated by fitting the time- and position-dependent concentration data. It was found that the outward diffusion coefficient (5.25 × 10-10 m2/s) is larger than the inward (2.93 × 10-10 m2/s), which is probably due to the interface effect. The diffusion coefficients obtained for different concentrations in the same process (inward diffusion) are found to be different. This suggests that the apparent diffusion coefficient obtained is affected by molecular adsorption.
Collapse
Affiliation(s)
- Yuxiang Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zeyu Kao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Ting Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yujun Zhang
- Sports and Health Research Center, Department of Physical education, Tongji University, Shanghai 200092, China.
| | - Lili Qin
- Sports and Health Research Center, Department of Physical education, Tongji University, Shanghai 200092, China.
| | - Zhihua Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Bin Zhou
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Guangming Wu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jun Shen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Ai Du
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
21
|
Permeation of beta-defensin-3 encapsulated with polyethylene glycol in lung surfactant models at air-water interface. Colloids Surf B Biointerfaces 2019; 182:110357. [DOI: 10.1016/j.colsurfb.2019.110357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 11/21/2022]
|
22
|
Sriram G, Uthappa UT, Kigga M, Jung HY, Altalhi T, Brahmkhatri V, Kurkuri MD. Xerogel activated diatoms as an effective hybrid adsorbent for the efficient removal of malachite green. NEW J CHEM 2019. [DOI: 10.1039/c9nj00015a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface of a naturally available diatom was modified using a xerogel for the enhanced removal of malachite green from aqueous media.
Collapse
Affiliation(s)
- Ganesan Sriram
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-university), Jain Global Campus
- Bengaluru
- India
| | - U. T. Uthappa
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-university), Jain Global Campus
- Bengaluru
- India
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-university), Jain Global Campus
- Bengaluru
- India
| | - Ho-Young Jung
- Department of Environment and Energy Engineering
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University
- Taif
- Saudi Arabia
| | - Varsha Brahmkhatri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-university), Jain Global Campus
- Bengaluru
- India
| | - Mahaveer D. Kurkuri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-university), Jain Global Campus
- Bengaluru
- India
| |
Collapse
|
23
|
Polyethylene glycol–gum acacia-based multidrug delivery system for controlled delivery of anticancer drugs. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2642-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Topaloğlu Yazıcı D, Yener A. Processing polymer nanocomposites with natural additives for medical applications. JOURNAL OF POLYMER ENGINEERING 2018. [DOI: 10.1515/polyeng-2017-0452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of this study is to analyze the effect of natural additive incorporation on processing nanocomposites and their effect on the functional characteristics of nanocomposites such as water uptake characteristics, drug adsorption and dissolution behaviors. Chitosan and montmorillonite were processed with olive oil and glycerin natural additives. In order to compare the processing results, the structure and the morphology of the polymer nanocomposites were examined by using infrared spectra, X-ray diffractograms and electron microscope images. Processing with nontoxic and healthful olive oil as a hydrophobizing agent overcame the high water uptake properties of the polymer nanocomposites and eliminated the use of other expensive chemicals. The nanocomposites without additives adsorbed the highest amounts of methylene blue at equilibrium. In vitamin B12 dissolution studies, not only the additives but also the reinforcement affected the results. Obviously, it can be seen that both the natural additive types and the reinforcement modification effects governed the drug adsorption and dissolution behaviors of the new tailored polymer nanocomposites. Moreover, the additives also improved the processing and handling abilities of these polymer nanocomposites. According to the results, these nanocomposites are promising candidates for medical applications like as a carrier for drug delivery and for skin treatment studies.
Collapse
Affiliation(s)
- Demet Topaloğlu Yazıcı
- Department of Chemical Engineering, Faculty of Engineering and Architecture , Eskişehir Osmangazi University , 26480 Eskişehir , Turkey
| | - Arzu Yener
- Department of Chemical Engineering, Faculty of Engineering and Architecture , Eskişehir Osmangazi University , 26480 Eskişehir , Turkey
| |
Collapse
|
25
|
Synthesis and characterization of silica aerogel as a promising drug carrier system. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Uthappa UT, Sriram G, Brahmkhatri V, Kigga M, Jung HY, Altalhi T, Neelgund GM, Kurkuri MD. Xerogel modified diatomaceous earth microparticles for controlled drug release studies. NEW J CHEM 2018. [DOI: 10.1039/c8nj01238e] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alternative facile approach for the surface modification of naturally available diatoms with xerogel for controlled drug release applications.
Collapse
Affiliation(s)
- U. T. Uthappa
- Centre for Nano and Material Sciences
- Jain University
- Bengaluru-562112
- India
| | - G. Sriram
- Centre for Nano and Material Sciences
- Jain University
- Bengaluru-562112
- India
| | - Varsha Brahmkhatri
- Centre for Nano and Material Sciences
- Jain University
- Bengaluru-562112
- India
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences
- Jain University
- Bengaluru-562112
- India
| | - Ho-Young Jung
- Department of Environment and Energy Engineering
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Tariq Altalhi
- Department of Chemistry
- Faculty of Science
- Taif University
- Taif
- Saudi Arabia
| | | | | |
Collapse
|
27
|
Aguiar LG, Iwakura DC, Semeano ATS, Li RWC, Souza EF, Gruber J, Giudici R. Controlled release of an optically active compound by hydrogels of acrylic acid and its online detection. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.23038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Leandro G. Aguiar
- Departamento de Engenharia Quı́mica; Escola de Engenharia de Lorena; Universidade de São Paulo; Estrada Municipal do Campinho s/n, CEP 12602-810 Lorena SP Brazil
| | - Daniel C. Iwakura
- Departamento de Engenharia Química; Escola Politécnica; Universidade de São Paulo; Av. Prof. Luciano Gualberto, trav. 3, No 380 CEP 05508-900 São Paulo SP Brazil
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo SP Brazil
| | - Ana T. S. Semeano
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo SP Brazil
| | - Rosamaria W. C. Li
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo SP Brazil
- Centro Universitário Estácio Radial de São Paulo; Campus Vila dos Remédios; São Paulo SP Brazil
| | - Esmar F. Souza
- Departamento de Engenharia Química; Escola Politécnica; Universidade de São Paulo; Av. Prof. Luciano Gualberto, trav. 3, No 380 CEP 05508-900 São Paulo SP Brazil
| | - Jonas Gruber
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo SP Brazil
| | - Reinaldo Giudici
- Departamento de Engenharia Química; Escola Politécnica; Universidade de São Paulo; Av. Prof. Luciano Gualberto, trav. 3, No 380 CEP 05508-900 São Paulo SP Brazil
| |
Collapse
|
28
|
Smirnova I, Gurikov P. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels. Annu Rev Chem Biomol Eng 2017; 8:307-334. [DOI: 10.1146/annurev-chembioeng-060816-101458] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Pavel Gurikov
- Institute of Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany
| |
Collapse
|
29
|
A novel composite hydrogel initiated by Spinacia oleracea L. extract on Hela cells for localized photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1448-1455. [DOI: 10.1016/j.msec.2017.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/17/2016] [Accepted: 03/02/2017] [Indexed: 01/11/2023]
|
30
|
Lai WF, Rogach AL. Hydrogel-Based Materials for Delivery of Herbal Medicines. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11309-11320. [PMID: 28244320 DOI: 10.1021/acsami.6b16120] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herbal medicine, as an integral component of oriental medicine, has assimilated into the lives of Asian people for millennia. The therapeutic efficiency of herbal extracts and ingredients has, however, been limited by various factors, including the lack of targeting capacity and poor bioavailability. Hydrogels are hydrophilic polymer networks that can imbibe a substantial amount of fluids. They are biocompatible, and may enable sustained drug release. Hydrogels, therefore, have attracted widespread studies in pharmaceutical formulation. This article first reviews the latest progress in the development of hydrogel-based materials as carriers of herbal medicines, followed by a discussion of the relationships between hydrogel properties and carrier performance. Finally, the promising potential of using hydrogels to combine medicinal herbs with synthetic drugs in one single treatment will be highlighted as an avenue for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Pharmacy, Health Science Center, Shenzhen University , Shenzhen 518060, China
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University , Hong Kong
| | - Andrey L Rogach
- Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong , Hong Kong
| |
Collapse
|
31
|
Cinay GE, Erkoc P, Alipour M, Hashimoto Y, Sasaki Y, Akiyoshi K, Kizilel S. Nanogel-Integrated pH-Responsive Composite Hydrogels for Controlled Drug Delivery. ACS Biomater Sci Eng 2017; 3:370-380. [PMID: 33465934 DOI: 10.1021/acsbiomaterials.6b00670] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel pH-sensitive hydrogel system consisting of poly(methacrylic acid-g-ethylene glycol) (P(MAA-g-EG)) and acryloyl group modified-cholesterol-bearing pullulan (CHPOA) nanogels was developed for the controlled delivery of an anticonvulsant drug, pregabalin (PGB). Here, the hydrophilic hydrogel network provides the pH-sensitive swelling behavior, whereas nanogel components form separate reservoirs for the delivery of drugs with different hydrophobicities. These nanocarrier-integrated hybrid gels were synthesized through both surface-initiated and bulk photopolymerization approaches. The swelling and drug release behavior of these pH-responsive hydrogels synthesized by different photopolymerization approaches at visible and UV light wavelenghts were studied at acidic and basic pH values. Nanogel-integrated hydrogels exhibited higher swelling behavior compared to plain hydrogels in reversible swelling experiments. Similarly, the presence of nanogels in hydrogel network enhanced the loading and release percentages of PGB and the release was analyzed to describe the mode of transport through the network. In vitro cytotoxicity assay suggests that hydrogels in altered groups are nontoxic. This is the first report about the visible light-induced synthesis of a pH-responsive network incorporated CHPOA nanogels. Responsive and multifunctional properties of this system could be used for pH-triggered release of therapeutic molecules for clinical applications.
Collapse
Affiliation(s)
| | | | | | - Yoshihide Hashimoto
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 606-8501, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 606-8501, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
32
|
Zhang Y, Wang J, Wei Y, Zhang X. Robust urethane-bridged silica aerogels available for water-carved aerosculptures. NEW J CHEM 2017. [DOI: 10.1039/c6nj03414d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel in situ bridged silica precursors were used to synthesize robust aerogels for aerosculptures carved with aqueous solvents.
Collapse
Affiliation(s)
- Yulu Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| | - Jin Wang
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| | - Yong Wei
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| |
Collapse
|
33
|
Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv Colloid Interface Sci 2016; 236:1-27. [PMID: 27321857 DOI: 10.1016/j.cis.2016.05.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 02/03/2023]
Abstract
Aerogels are an exceptional group of nanoporous materials with outstanding physicochemical properties. Due to their unique physical, chemical, and mechanical properties, aerogels are recognized as promising candidates for diverse applications including, thermal insulation, catalysis, environmental cleaning up, chemical sensors, acoustic transducers, energy storage devices, metal casting molds and water repellant coatings. Here, we have provided a comprehensive overview on the synthesis, processing and drying methods of the mostly investigated types of aerogels used in the biological and biomedical contexts, including silica aerogels, silica-polymer composites, polymeric and biopolymer aerogels. In addition, the very recent challenges on these aerogels with regard to their applicability in biomedical field as well as for personalized medicine applications are considered and explained in detail.
Collapse
|
34
|
Mirzaei M, Mehravi B, Ardestani MS, Ziaee SAM, Pourghasem P. In Vitro Evaluation of Gd(3+)-Anionic Linear Globular Dendrimer-Monoclonal Antibody: Potential Magnetic Resonance Imaging Contrast Agents for Prostate Cancer Cell Imaging. Mol Imaging Biol 2016; 17:770-6. [PMID: 25917749 DOI: 10.1007/s11307-015-0841-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Early stage prostate cancer diagnosis is of high global interest. Magnetic resonance imaging (MRI) is a non-invasive modality for early cancer diagnosis, in particular for prostate cancer detection. The research aim is to synthesize a nanodendrimer and its conjugate with C595 monoclonal antibody (mAb C595), against prostate cancer, followed by its chelating with Gd(3+). PROCEDURES Anti-MUC-1 mAb C595 was conjugated to an anionic linear globular dendrimer (ALGDG2). The polyethylene glycol core and citric acid shell were synthesized followed by loading with Gd(3+) to make novel contrast agents for functional MRI. The in vitro behavior and MRI parameters of the nanoconjugate were investigated performing several studies such as cell toxicity and TNF-alpha evaluations. The investigation of magnetic resonance imaging parameters indicated how well nanoconjugate performs in (1)H-NMR and (17)O-NMR in vitro. RESULTS Results showed a potential specific MRI activity by improving the swelling responses cell binding. The MTT (2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide) assay demonstrated that this contrast agent had significant cytotoxicity on prostate cancer cells. CONCLUSIONS These results showed that Gd(3+)-ALGDG2-C595 is a potential prostate molecular imaging agent and could be considered as an ideal functional nanoprobe. Additionally, further investigations by clinical trials are in the pipeline.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Labbafinejad Medical Center, Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, 9th Boustan, Pasdaran Ave, Tehran, Iran.
| | - Bita Mehravi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mohsen Ziaee
- Labbafinejad Medical Center, Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, 9th Boustan, Pasdaran Ave, Tehran, Iran.
| | - Peyman Pourghasem
- Labbafinejad Medical Center, Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, 9th Boustan, Pasdaran Ave, Tehran, Iran
| |
Collapse
|
35
|
In Vitro Release Kinetics and Transferrin Saturation Study of Intravenous Iron Sucrose Entrapped in Poly(ethylene glycol)-Assisted Silica Xerogel. Appl Biochem Biotechnol 2015; 178:1351-62. [DOI: 10.1007/s12010-015-1951-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
36
|
Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:2054-2130. [PMID: 28347111 PMCID: PMC5304774 DOI: 10.3390/nano5042054] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs) were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed.
Collapse
Affiliation(s)
- Fuli Zhao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Dan Yao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ruiwei Guo
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
37
|
Wang J, Zhang X. Binary Crystallized Supramolecular Aerogels Derived from Host-Guest Inclusion Complexes. ACS NANO 2015; 9:11389-11397. [PMID: 26513140 DOI: 10.1021/acsnano.5b05281] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aerogels with low density and high porosity show outstanding properties such as large surface area and low thermal and acoustic conductivity. However, great challenges remain to convert hydrophilic polymer based hydrogels to corresponding aerogels. Here, we report a structurally new type of aerogels, supramolecular aerogels (SMAs), derived from supramolecular hydrogels formed by self-assembling of poly(ethylene glycol) and α-/γ-cyclodextrin. The SMAs posses a characteristic binary crystallized nanosheet structure due to their supramolecular cross-linking nature, and their specific surface areas and nanosheet structures are tunable. Furthermore, we demonstrated application of the aerogels as solid-solid phase change materials with tunable latent heat, reversible melting-crystallization cycle while keeping the microstructure of the SMAs unchanged.
Collapse
Affiliation(s)
- Jin Wang
- Suzhou Institute of Nano-tech & Nano-bionics, Chinese Academy of Sciences , Suzhou 215123, P. R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech & Nano-bionics, Chinese Academy of Sciences , Suzhou 215123, P. R. China
- School of Materials Science & Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China
| |
Collapse
|
38
|
Ulker Z, Erkey C. Experimental and theoretical investigation of drug loading to silica alcogels. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Controlled antiseptic/eosin release from chitosan-based hydrogel modified fibrous substrates. Carbohydr Polym 2015; 131:306-14. [DOI: 10.1016/j.carbpol.2015.05.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
|
41
|
Cevik O, Gidon D, Kizilel S. Visible-light-induced synthesis of pH-responsive composite hydrogels for controlled delivery of the anticonvulsant drug pregabalin. Acta Biomater 2015; 11:151-61. [PMID: 25242648 DOI: 10.1016/j.actbio.2014.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/26/2014] [Accepted: 09/12/2014] [Indexed: 11/16/2022]
Abstract
We report here a novel method for the synthesis of a pH-responsive composite using visible light. Formation of the pH-responsive layer is based on poly(methacrylic acid-g-ethylene glycol) as the macromer, eosin Y as the photoinitiator and triethanolamine as the co-initiator. The hydrogel was functionalized with hydrophobic domains through incorporation of crosslinked styrene-butadiene-styrene (SBS) copolymer into the pH-responsive prepolymer. Swelling ratios were decreased with the addition of SBS, and resulted in high hydrogel crosslink density. The composite allowed for controlled release of an anticonvulsant model drug, pregabalin, under neutral pH condition and the release was analyzed to describe the mode of transport through the network. In vitro human fibroblast survival assay and in vivo rabbit implantation experiments demonstrated that this hybrid network is not toxic and has desirable biocompatibility properties. This is the first report about the synthesis of a pH-responsive network incorporating crosslinked SBS synthesized under visible light. The approach for multifunctional membranes could allow the incorporation of molecules with specific functionalities so that sequential molecule delivery in response to specific stimuli could be achieved.
Collapse
Affiliation(s)
- Ozlem Cevik
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Dogan Gidon
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey.
| |
Collapse
|
42
|
Murillo-Cremaes N, Subra-Paternault P, Saurina J, Roig A, Domingo C. Compressed antisolvent process for polymer coating of drug-loaded aerogel nanoparticles and study of the release behavior. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3260-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Ulker Z, Erkey C. An emerging platform for drug delivery: aerogel based systems. J Control Release 2014; 177:51-63. [PMID: 24394377 DOI: 10.1016/j.jconrel.2013.12.033] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
Abstract
Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation.
Collapse
Affiliation(s)
- Zeynep Ulker
- Department of Chemical and Biological Engineering, Koc University, 34450 Sarıyer, Istanbul, Turkey
| | - Can Erkey
- Department of Chemical and Biological Engineering, Koc University, 34450 Sarıyer, Istanbul, Turkey.
| |
Collapse
|
44
|
Ulker Z, Erkey C. A novel hybrid material: an inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Adv 2014. [DOI: 10.1039/c4ra09089f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This novel layered hybrid aerogel will pave the way for development of drug delivery devices with superior properties.
Collapse
|
45
|
Three-dimensional optofluidic waveguides in hydrophobic silica aerogels via supercritical fluid processing. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2012.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Mirzaei M, Mohagheghi M, Shahbazi-Gahrouei D. Synthesis and Development of Gd<sup>3+</sup>-ALGDG<sub>2</sub>-C595 as MR Imaging Contrast Agent. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbnb.2013.41004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|