1
|
Kiyono K, Mabuchi S, Otaka A, Iwasaki Y. Bone-targeting polyphosphodiesters that promote osteoblastic differentiation. J Biomed Mater Res A 2023; 111:714-724. [PMID: 36622032 DOI: 10.1002/jbm.a.37499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Polymers for pharmaceutical use have been attractive in medical treatments because of the conjugation of multifunctional components and their long circulation time in the blood stream. Bone-targeted drug delivery systems are also no exceptional, and several polymers have been proposed for the treatment of bone diseases, such as cancer metastasis and osteoporosis. Herein, we report that polyphosphodiesters (PPDEs) have a potential to enhance osteoblastic differentiation, and they have a targeting ability to bone tissues in vivo. Two types of PPDEs, poly (ethylene sodium phosphate) (PEP•Na) and poly (propylene sodium phosphate) (PPP•Na), have been synthesized. Regardless of the alkylene structure in the main chain of PPDEs, the gene expression of osteoblast-specific transcription factors and differentiation markers of mouse osteoblastic-like cells (MC3T3-E1 cells) cultured in a differentiation medium was significantly upregulated by the addition of PPDEs. Moreover, it was also clarified that the signaling pathway related to cytoplasmic calcium ions was activated by PPDEs. The mineralization of MC3T3-E1 cells has a similar trend with its gene expression and is synergistically enhanced by PPDEs with β-glycerophosphate. The biodistribution of fluorescence-labeled PPDEs was also determined after intravenous injection in mice. PPDEs accumulated well in the bone through the blood stream, whereas polyphosphotriesters (PPTEs) tended to be excreted from the kidneys. Hydrophilic PEP•Na showed a superior bone affinity as compared with PPP•Na. PPDEs could be candidate polymers for the restoration of bone remodeling and bone-targeting drug delivery platforms.
Collapse
Affiliation(s)
- Kenjiro Kiyono
- Department of Chemistry and Materials Engineering, Kansai University, Suita-shi, Osaka, Japan
| | - Shun Mabuchi
- Department of Chemistry and Materials Engineering, Kansai University, Suita-shi, Osaka, Japan
| | - Akihisa Otaka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
- ORDIST, Kansai University, Suita-shi, Osaka, Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, Suita-shi, Osaka, Japan
- ORDIST, Kansai University, Suita-shi, Osaka, Japan
| |
Collapse
|
2
|
Nifant’ev IE, Ivchenko PV. Design, Synthesis and Actual Applications of the Polymers Containing Acidic P-OH Fragments: Part 1. Polyphosphodiesters. Int J Mol Sci 2022; 23:14857. [PMID: 36499185 PMCID: PMC9738169 DOI: 10.3390/ijms232314857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Among natural and synthetic polymers, main-chain phosphorus-containing polyacids (PCPAs) (polyphosphodiesters), stand in a unique position at the intersection of chemistry, physics, biology and medicine. The structural similarity of polyphosphodiesters PCPAs to natural nucleic and teichoic acids, their biocompatibility, mimicking to biomolecules providing the 'stealth effect', high bone mineral affinity of polyphosphodiesters resulting in biomineralization at physiological conditions, and adjustable hydrolytic stability of polyphosphodiesters are the basis for various biomedical, industrial and household applications of this type of polymers. In the present review, we discuss the synthesis, properties and actual applications of polyphosphodiesters.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
3
|
Hiranphinyophat S, Iwasaki Y. Controlled biointerfaces with biomimetic phosphorus-containing polymers. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:301-316. [PMID: 34104114 PMCID: PMC8168784 DOI: 10.1080/14686996.2021.1908095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 06/02/2023]
Abstract
Phosphorus is a ubiquitous and one of the most common elements found in living organisms. Almost all molecules containing phosphorus in our body exist as analogs of phosphate salts or phosphoesters. Their functions are versatile and important, being responsible for forming the genetic code, cell membrane, and mineral components of hard tissue. Several materials inspired from these phosphorus-containing biomolecules have been recently developed. These materials have shown unique properties at the biointerface, such as nonfouling ability, blood compatibility, lubricity, mineralization induction capability, and bone affinity. Several unfavorable events occur at the interface of materials and living organisms because most of these materials have not been designed while taking host responses into account. These unfavorable events are directly linked to reducing functions and shorten the usable periods of medical devices. Biomimetic phosphorus-containing polymers can improve the reliability of materials in biological systems. In addition, phosphorus-containing biomimetic polymers are useful not only for improving the biocompatibility of material surfaces but also for adding new functions due to the flexibility in molecular design. In this review, we describe the recent advances in the control of biointerfacial phenomena with phosphorus-containing polymers. We especially focus on zwitterioninc phosphorylcholine polymers and polyphosphoesters.
Collapse
Affiliation(s)
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| |
Collapse
|
4
|
Iwasaki Y. Bone Mineral Affinity of Polyphosphodiesters. Molecules 2020; 25:E758. [PMID: 32050545 PMCID: PMC7036841 DOI: 10.3390/molecules25030758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
Biomimetic molecular design is a promising approach for generating functional biomaterials such as cell membrane mimetic blood-compatible surfaces, mussel-inspired bioadhesives, and calcium phosphate cements for bone regeneration. Polyphosphoesters (PPEs) are candidate biomimetic polymer biomaterials that are of interest due to their biocompatibility, biodegradability, and structural similarity to nucleic acids. While studies on the synthesis of PPEs began in the 1970s, the scope of their use as biomaterials has increased in the last 20 years. One advantageous property of PPEs is their molecular diversity due to the presence of multivalent phosphorus in their backbones, which allows their physicochemical and biointerfacial properties to be easily controlled to produce the desired molecular platforms for functional biomaterials. Polyphosphodiesters (PPDEs) are analogs of PPEs that have recently attracted interest due to their strong affinity for biominerals. This review describes the fundamental properties of PPDEs and recent research in the field of macromolecular bone therapeutics.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
| |
Collapse
|
5
|
Endocytosis of poly(ethylene sodium phosphate) by macrophages and the effect of polymer length on cellular uptake. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Kunomura S, Iwasaki Y. Immobilization of polyphosphoesters on poly(ether ether ketone) (PEEK) for facilitating mineral coating. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:861-876. [PMID: 31013199 DOI: 10.1080/09205063.2019.1595305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(ether ether ketone) (PEEK) is an alternative material to metals for orthopedic applications. However, the compatibility of PEEK with hard tissues needs to be improved. To address this issue, this study proposes a novel technique for PEEK surface modifications. A polyphosphodiester macromonomer (PEPMA·Na) was synthesized via the demethylation of polyphosphotriester macromonomer obtained via the ring-opening polymerization of cyclic phosphoesters using 2-hydroxypropyl methacrylamide as the initiator. The surface modification of PEEK was performed via photoinduced and self-initiated graft polymerization of PEPMA·Na without using any photoinitiators. The amount of phosphorus due to poly(PEPMA·Na) immobilized on PEEK increased with an increase in the photoirradiation time. The PEEK surface turned hydrophilic due to poly(PEPMA·Na) grafting, with almost similar advancing and receding contact angles, implying that the modified PEEK surface (PEEK-g-poly(PEPMA·Na)) was homogeneous. Specimens were mineral coated by simple static soaking in ×1.5 simulated body fluid (1.5SBF) and by an alternative process that included additional soaking steps in 200 mM CaCl2 aq. and 200 mM K2HPO4 aq. before static soaking in 1.5SBF. Specimens were immersed in 1.5SBF for 28 days in simple static soaking, after which the PEEK-g-poly(PEPMA·Na) surface was completely covered with spherical cauliflower-like mineral deposits that resembled octacalcium phosphate (OCP). Their structural similarities were confirmed via X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), and X-ray fluorescence (XRF) analyses. However, these mineral deposits were not observed on the bare PEEK surface. Due to the additional soaking steps (alternative soaking) undertaken before the static soaking of the specimens in 1.5SBF, the mineral coating on the PEEK-g-poly(PEPMA·Na) was dramatically accelerated and the surface was fully covered with mineral deposits in only one day of soaking. The mineral deposits resulting from both the soaking processes had similar structures. Compared with bare PEEK, osteoblastic MC3T3-E1 cells proliferated more actively on mineral-coated PEEK-g-poly(PEPMA·Na). Thus, the surface immobilization of poly(PEPMA·Na) on a PEEK surface is effective for mineral coating and may be useful to provide hard-tissue compatibility on PEEK.
Collapse
Affiliation(s)
- Shun Kunomura
- a Department of Chemistry and Materials Engineering , Faculty of Chemistry, Materials and Bioengineering, Kansai University , Osaka , Japan
| | - Yasuhiko Iwasaki
- a Department of Chemistry and Materials Engineering , Faculty of Chemistry, Materials and Bioengineering, Kansai University , Osaka , Japan
| |
Collapse
|
7
|
Noree S, Iwasaki Y. Thermally Assisted Generation of Protein-Poly(ethylene sodium phosphate) Conjugates with High Mineral Affinity. ACS OMEGA 2019; 4:3398-3404. [PMID: 31459555 PMCID: PMC6648864 DOI: 10.1021/acsomega.8b03585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/04/2019] [Indexed: 05/08/2023]
Abstract
Protein therapeutics has recently attracted interest in various medical treatments. However, the structure and function preservation in proteins under physiological conditions is still an important issue and reliable immobilization techniques are required. In this study, the thermally assisted complexation of proteins with amphiphilic polyphosphoesters is proposed as a new methodology for their durability improvement. Amphiphilic cholesterol-terminated poly(ethylene sodium phosphate) (CH-PEP·Na) was synthesized via the organocatalytic ring-opening polymerization of 2-methoxy-2-oxo-1,3,2-dioxaphospholane initiated by cholesterol as the hydrophobic molecule and followed by demethylation and neutralization. For the protein nanocarrier preparation, a complex of the amphiphilic CH-PEP·Na with bovine serum albumin (BSA) was formed through the hydrophobic interactions between the lipophilic moieties of the protein and the cholesteryl groups of the CH-PEP·Na chains, which were induced by thermal treatment at 90 °C. The resulting complex size ranged between 27 and 51 nm, as confirmed by dynamic light scattering. The complexes dispersed in an aqueous medium exhibited a high stability in size for up to 1 month of storage. CH-PEP·Na efficiently inhibited the thermal aggregation and sedimentation of BSA, unlike poly(ethylene sodium phosphate) (PEP·Na) and cholesterol-terminated poly(ethylene glycol) (CH-PEG). In addition, CH-PEP·Na was able to protect the complexed BSA against proteolytic digestion and the BSA-CH-PEP·Na complexes well adsorbed onto hydroxyapatite even in the presence of BSA (5.5 g/dL). Hence, thermally induced protein-CH-PEP·Na complexes can be a potential tool for the development of bone and dental applications.
Collapse
Affiliation(s)
- Susita Noree
- Graduate
School of Science and Engineering, Faculty of Chemistry, Materials
and Bioengineering, and ORDIST, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
| | - Yasuhiko Iwasaki
- Graduate
School of Science and Engineering, Faculty of Chemistry, Materials
and Bioengineering, and ORDIST, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
| |
Collapse
|
8
|
Bauer KN, Tee HT, Velencoso MM, Wurm FR. Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Hirano Y, Iwasaki Y. Bone-specific poly(ethylene sodium phosphate)-bearing biodegradable nanoparticles. Colloids Surf B Biointerfaces 2017; 153:104-110. [PMID: 28231498 DOI: 10.1016/j.colsurfb.2017.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Chemotherapy is the most reliable treatment for osteoporosis and osseous metastases. To facilitate better drug delivery for bone treatments, a novel preparation of polymeric nanoparticles with high affinity to bone has been prepared. Two-step synthesis of cholesteryl-functionalized poly(ethylene sodium phosphate) (Ch-PEPn·Na) was performed via ring-opening polymerization of cyclic phosphoesters and the demethylation. The molecular weight of Ch-PEPn·Na could be well controlled by changing the ratio of cholesterol and cyclic phosphoesters. Because Ch-PEPn·Na exhibits an amphiphilic nature in aqueous media, Ch-PEPn·Na-bearing nanoparticles (PEPn·Na NPs) were prepared by a solvent evaporation technique. The size of the nanoparticles investigated in the current study is approximately 100nm, which was determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to the presence of highly water-soluble polymer chains, dispersion of PEPn·Na NPs in aqueous media was stable for at least 1 week. Hemolytic activity of PEPn·Na NPs was found to be low and PEPn·Na NPs did not disintegrate mammalian cell membranes. Additionally, cytotoxicity of PEPn·Na NPs was not observed at concentrations below 100μg/mL. The adsorption of PEPn·Na NPs on hydroxyapatite (HAp) microparticles was studied in comparison with poly(ethylene glycol) nanoparticles (PEG NPs). Both PEPn·Na NPs and PEG NPs adsorbed well onto HAp microparticles in distilled water with binding equilibrium constants (KHAp) for PEPn·Na NPs and PEG NPs of 3.6×106 and 7.9×106, respectively. In contrast, only PEPn·Na NPs adsorbed onto HAp microparticles in a saline phosphate buffer. Moreover, the adsorption of PEPn·Na NPs onto HAp microparticles occurred even in the presence of 1.2mM calcium ions or low-pH media. The affinity of the nanoparticles to bovine bone slices was also studied, with the result that large quantities of adsorbed PEPn·Na NPs were observed on the slices by scanning electron microscope.
Collapse
Affiliation(s)
- Yuya Hirano
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka, 564-8680, Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka, 564-8680, Japan; ORDIST, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka, 564-0836, Japan.
| |
Collapse
|
10
|
Yilmaz ZE, Jérôme C. Polyphosphoesters: New Trends in Synthesis and Drug Delivery Applications. Macromol Biosci 2016; 16:1745-1761. [PMID: 27654308 DOI: 10.1002/mabi.201600269] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Indexed: 11/06/2022]
Abstract
Polymers with repeating phosphoester linkages in the backbone are biodegradable materials that emerge as a promising class of novel biomaterials, especially in the field of drug delivery systems. In contrast to aliphatic polyesters, the pentavalency of the phosphorus atom offers a large diversity of structures and as a consequence a wide range of properties for these materials. In this paper, it is focused on the synthesis of well-defined polyphosphoesters (PPEs) by organocatalyzed ring-opening polymerization, improving the functionalities by combination with click reactions, degradation of functional PPEs and their cytotoxicity, and inputs for applications in drug delivery.
Collapse
Affiliation(s)
- Zeynep Ergul Yilmaz
- Center for Education and Research on Macromolecules (CERM), University of Liège (ULg), CESAM-RU, Sart Tilman, Building B6a, Liège, B-4000, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), University of Liège (ULg), CESAM-RU, Sart Tilman, Building B6a, Liège, B-4000, Belgium
| |
Collapse
|
11
|
Moriyama R, Iwasaki Y, Miyoshi D. Stabilization of DNA Structures with Poly(ethylene sodium phosphate). J Phys Chem B 2015; 119:11969-77. [PMID: 26173001 DOI: 10.1021/acs.jpcb.5b03787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure and stability of biomolecules under molecular crowding conditions are of interest because such information clarifies how biomolecules behave under cell-mimicking conditions. The anionic surfaces of chromatin, which is composed of DNA strands and histone complexes, are concentrated in cell nuclei and thus generate a polyanionic crowding environment. In this study, we designed and synthesized an anionic polymer, poly(ethylene sodium phosphate) (PEP·Na), which has a nucleic acid phosphate backbone and created a cell nucleus-like environment. The effects of molecular crowding with PEP·Na on the thermodynamics of DNA duplexes, triplexes, and G-quadruplexes were systematically studied. Thermodynamic analysis demonstrated that PEP·Na significantly stabilized the DNA structures; e.g., a free energy change at 25 °C for duplex formation decreased from -6.6 to -12.8 kcal/mol with 20 wt % PEP·Na. Thermodynamic parameters further indicated that the factors for the stabilization of the DNA structures were dependent on sodium ion concentration. At lower polymer concentrations, the stabilization was attributed to a shielding of the electrostatic repulsion between DNA strands by the sodium ions of PEP·Na. In contrast, at higher polymer concentrations, the DNA structures were entropically stabilized by volume exclusion, which could be enhanced by electrostatic repulsion between phosphate groups in DNA strands and in PEP·Na. Additionally, increasing PEP·Na concentration resulted in increasing enthalpy of the DNA duplex but decreasing enthalpy of DNA G-quadruplex, indicating that the polymers also promoted dehydration of the DNA strands. Thus, polyanionic crowding affects the thermodynamics of DNA structures via the sodium ions, volume exclusion, and hydration. The stabilization of DNA by the cell nucleus-like polyanionic crowding provides new information regarding DNA structures and allows for modeling reactions in cell nuclei.
Collapse
Affiliation(s)
- Rui Moriyama
- Organization for Research and Development of Innovative Science and Technology, Kansai University , 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Yasuhiko Iwasaki
- Organization for Research and Development of Innovative Science and Technology, Kansai University , 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680, Japan.,Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University , 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan
| |
Collapse
|
12
|
Kootala S, Tokunaga M, Hilborn J, Iwasaki Y. Anti-Resorptive Functions of Poly(ethylene sodium phosphate) on Human Osteoclasts. Macromol Biosci 2015. [PMID: 26222677 DOI: 10.1002/mabi.201500166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteoporosis involves hyperactive osteoclasts. A large number of current drugs result in side effects affecting their efficacy in the clinic. Polyphosphoesters are unique polymeric biomaterials because of their biocompatibility, biodegradability, and bone affinity. We studied the viability and ability of human osteoclasts to resorb bone when dosed with poly(ethylene sodium phosphate) (PEP·Na). This did not trigger any change in osteoblast cell viability, however the polymer diminished human osteoclasts and their ability to resorb bone at concentrations as low as 10(-4) m · mL(-1). This is the first report to validate the possibility of using polyphosphoesters for selective inhibition of human osteoclast functions, indicating its potential to be used as an effective polymer prodrug for treatment of osteoporosis.
Collapse
Affiliation(s)
- Sujit Kootala
- Department of Chemistry, Polymer Chemistry, Uppsala University, Ångström Laboratory, S-75121 Uppsala, Sweden
| | - Masahiro Tokunaga
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Jöns Hilborn
- Department of Chemistry, Polymer Chemistry, Uppsala University, Ångström Laboratory, S-75121 Uppsala, Sweden.
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan.
| |
Collapse
|
13
|
Clément B, Molin DG, Jérôme C, Lecomte P. Synthesis of polyphosphodiesters by ring-opening polymerization of cyclic phosphates bearing allyl phosphoester protecting groups. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Benoït Clément
- Center for Education and Research on Macromolecules (CERM); University of Liège; B6a, Sart-Tilman 4000 Liège Belgium
| | - Daniel G. Molin
- BioMIMedics; Interreg EMR IV-A Consortium; Lead Partner Maastricht University; Universiteitssingel 50 6229ER Maastricht The Netherlands
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM); University of Liège; B6a, Sart-Tilman 4000 Liège Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM); University of Liège; B6a, Sart-Tilman 4000 Liège Belgium
| |
Collapse
|
14
|
Steinbach T, Wurm FR. Poly(phosphoester)s: A New Platform for Degradable Polymers. Angew Chem Int Ed Engl 2015; 54:6098-108. [DOI: 10.1002/anie.201500147] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 11/09/2022]
|
15
|
Steinbach T, Wurm FR. Polyphosphoester: eine neue Plattform für abbaubare Polymere. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Tamura A, Tokunaga M, Iwasaki Y, Yui N. Spontaneous Assembly into Pseudopolyrotaxane Between Cyclodextrins and Biodegradable Polyphosphoester Ionomers. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201300774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; 2-3-10 Kanda-Surugadai Chiyoda, Tokyo 101-0062 Japan
| | - Masahiro Tokunaga
- Department of Chemistry and Materials Engineering; Faculty of Chemistry, Materials and Bioengineering; Kansai University; 3-3-35 Yamate-cho Suita, Osaka 564-8680 Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering; Faculty of Chemistry, Materials and Bioengineering; Kansai University; 3-3-35 Yamate-cho Suita, Osaka 564-8680 Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; 2-3-10 Kanda-Surugadai Chiyoda, Tokyo 101-0062 Japan
| |
Collapse
|
17
|
Alexandrino EM, Ritz S, Marsico F, Baier G, Mailänder V, Landfester K, Wurm FR. Paclitaxel-loaded polyphosphate nanoparticles: a potential strategy for bone cancer treatment. J Mater Chem B 2014; 2:1298-1306. [DOI: 10.1039/c3tb21295e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Zhang S, Wang H, Shen Y, Zhang F, Seetho K, Zou J, Taylor JSA, Dove AP, Wooley KL. A Simple and Efficient Synthesis of an Acid-labile Polyphosphoramidate by Organobase-catalyzed Ring-Opening Polymerization and Transformation to Polyphosphoester Ionomers by Acid Treatment. Macromolecules 2013; 46:5141-5149. [PMID: 23997276 PMCID: PMC3755629 DOI: 10.1021/ma400675m] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The direct synthesis of an acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and an overall two-step preparation of polyphosphodiester ionomers (PPEI) by acid-assisted cleavage of the phosphoramidate bonds along the backbone of the polyphosphoramidate were developed in this study. The ultrafast organobase-catalyzed ring-opening polymerization of a cyclic phospholane methoxyethyl amidate monomer initiated by benzyl alcohol allowed for the preparation of well-defined polyphosphoramidates (PPA) with predictable molecular weights, narrow molecular weight distributions (PDI<1.10), and well-defined chain ends. Cleavage of the acid-labile phosphoramidate bonds on the polyphosphoramidate repeat units was evaluated under acidic conditions over a pH range of 1-5, and the complete hydrolysis produced polyphosphodiesters. The thermal properties of the resulting polyphosphoester ionomer acid and polyphosphoester ionomer sodium salt exhibited significant thermal stability. The parent PPA and both forms of the PPEIs showed low cytotoxicities toward HeLa cells and RAW 264.7 mouse macrophage cells. The synthetic methodology developed here has enriched the family of water-soluble polymers prepared by rapid and convenient organobase-catalyzed ring-opening polymerizations and straightforward chemical medication reactions, which are designed to be hydrolytically degradable and have promise for numerous biomedical and other applications.
Collapse
Affiliation(s)
- Shiyi Zhang
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Hai Wang
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - Yuefei Shen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Fuwu Zhang
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - Kellie Seetho
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - Jiong Zou
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - John-Stephen A. Taylor
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Andrew P. Dove
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Karen L. Wooley
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| |
Collapse
|