1
|
Antimicrobial Nanostructured Coatings: A Gas Phase Deposition and Magnetron Sputtering Perspective. MATERIALS 2020; 13:ma13030784. [PMID: 32046363 PMCID: PMC7040917 DOI: 10.3390/ma13030784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
Counteracting the spreading of multi-drug-resistant pathogens, taking place through surface-mediated cross-contamination, is amongst the higher priorities in public health policies. For these reason an appropriate design of antimicrobial nanostructured coatings may allow to exploit different antimicrobial mechanisms pathways, to be specifically activated by tailoring the coatings composition and morphology. Furthermore, their mechanical properties are of the utmost importance in view of the antimicrobial surface durability. Indeed, the coating properties might be tuned differently according to the specific synthesis method. The present review focuses on nanoparticle based bactericidal coatings obtained via magneton-spattering and supersonic cluster beam deposition. The bacteria–NP interaction mechanisms are first reviewed, thus making clear the requirements that a nanoparticle-based film should meet in order to serve as a bactericidal coating. Paradigmatic examples of coatings, obtained by magnetron sputtering and supersonic cluster beam deposition, are discussed. The emphasis is on widening the bactericidal spectrum so as to be effective both against gram-positive and gram-negative bacteria, while ensuring a good adhesion to a variety of substrates and mechanical durability. It is discussed how this goal may be achieved combining different elements into the coating.
Collapse
|
2
|
Michalska M, Gambacorta F, Divan R, Aranson IS, Sokolov A, Noirot P, Laible PD. Tuning antimicrobial properties of biomimetic nanopatterned surfaces. NANOSCALE 2018; 10:6639-6650. [PMID: 29582025 DOI: 10.1039/c8nr00439k] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nature has amassed an impressive array of structures that afford protection from microbial colonization/infection when displayed on the exterior surfaces of organisms. Here, controlled variation of the features of mimetics derived from etched silicon allows for tuning of their antimicrobial efficacy. Materials with nanopillars up to 7 μm in length are extremely effective against a wide range of microbial species and exceed the performance of natural surfaces; in contrast, materials with shorter/blunter nanopillars (<2 μm) selectively killed specific species. Using a combination of microscopies, the mechanisms by which bacteria are killed are demonstrated, emphasizing the dependence upon pillar density and tip geometry. Additionally, real-time imaging reveals how cells are immobilized and killed rapidly. Generic or selective protection from microbial colonization could be conferred to surfaces [for, e.g., internal medicine, implants (joint, dental, and cosmetic), food preparation, and the agricultural industry] patterned with these materials as coatings.
Collapse
Affiliation(s)
- Martyna Michalska
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Dwivedi C, Pandey I, Pandey H, Patil S, Mishra SB, Pandey AC, Zamboni P, Ramteke PW, Singh AV. In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor. J Biomed Mater Res A 2017; 106:641-651. [PMID: 28986947 DOI: 10.1002/jbm.a.36268] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/21/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
Abstract
Diabetic wounds are susceptible to microbial infection. The treatment of these wounds requires a higher payload of growth factors. With this in mind, the strategy for this study was to utilize a novel payload comprising of Eudragit RL/RS 100 nanofibers carrying the bacterial inhibitor gentamicin sulfate (GS) in concert with recombinant human epidermal growth factor (rhEGF); an accelerator of wound healing. GS containing Eudragit was electrospun to yield nanofiber scaffolds, which were further modified by covalent immobilization of rhEGF to their surface. This novel fabricated nanoscaffold was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The thermal behavior of the nanoscaffold was determined using thermogravimetric analysis and differential scanning calorimetry. In the in vitro antibacterial assays, the nanoscaffolds exhibited comparable antibacterial activity to pure gentemicin powder. In vivo work using female C57/BL6 mice, the nanoscaffolds induced faster wound healing activity in dorsal wounds compared to the control. The paradigm in this study presents a robust in vivo model to enhance the applicability of drug delivery systems in wound healing applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 641-651, 2018.
Collapse
Affiliation(s)
- Charu Dwivedi
- Department of Biological Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.,Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad, 211002, India
| | - Ishan Pandey
- Department of Clinical Laboratory Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211001, India.,Department of Microbiology, Motilal Nehru Medical College (MLNMC), Allahabad, 211001, India
| | - Himanshu Pandey
- Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad, 211002, India.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Sandip Patil
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Kanpur, 208016, India
| | | | - Avinash C Pandey
- Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad, 211002, India
| | - Paolo Zamboni
- Vascular Disease Center, University of Ferrara, Ferrara, Italy
| | - Pramod W Ramteke
- Department of Biological Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Ajay Vikram Singh
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| |
Collapse
|
4
|
Vikram Singh A, Gharat T, Batuwangala M, Park B, Endlein T, Sitti M. Three‐dimensional patterning in biomedicine: Importance and applications in neuropharmacology. J Biomed Mater Res B Appl Biomater 2017; 106:1369-1382. [DOI: 10.1002/jbm.b.33922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Ajay Vikram Singh
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Tanmay Gharat
- Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteNew York New York12180
| | - Madu Batuwangala
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Byung‐Wook Park
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Thomas Endlein
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Metin Sitti
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| |
Collapse
|
5
|
Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties. PLoS One 2017; 12:e0175428. [PMID: 28399162 PMCID: PMC5388474 DOI: 10.1371/journal.pone.0175428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
The considerable morbidity associated with hospitalized patients and clinics in developed countries due to biofilm formation on biomedical implants and surgical instruments is a heavy economic burden. An alternative to chemically treated surfaces for bactericidal activity started emerging from micro/nanoscale topographical cues in the last decade. Here, we demonstrate a putative antibacterial surface using copper nanowhiskers deposited by molecular beam epitaxy. Furthermore, the control of biological response is based on hydrophobic pinning of water droplets in the Wenzel regime, causing mechanical injury and cell death. Scanning electron microscopy images revealed the details of the surface morphology and non-contact mode laser scanning of the surface revealed the microtopography-associated quantitative parameters. Introducing the bacterial culture over nanowhiskers produces mechanical injury to cells, leading to a reduction in cell density over time due to local pinning of culture medium to whisker surfaces. Extended culture to 72 hours to observe biofilm formation revealed biofilm inhibition with scattered microcolonies and significantly reduced biovolume on nanowhiskers. Therefore, surfaces patterned with copper nanowhiskers can serve as potential antibiofilm surfaces. The topography-based antibacterial surfaces introduce a novel prospect in developing mechanoresponsive nanobiomaterials to reduce the risk of medical device biofilm-associated infections, contrary to chemical leaching of copper as a traditional bactericidal agent.
Collapse
|
6
|
Pendyala P, Grewal HS, Kim HN, Cho IJ, Yoon ES. Individual Role of the Physicochemical Characteristics of Nanopatterns on Tribological Surfaces. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30590-30600. [PMID: 27739687 DOI: 10.1021/acsami.6b10123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoscale patterns have dimensions that are comparable to the length scales affected by intermolecular and surface forces. In this study, we systematically investigated the individual roles of curvature, surface energy, lateral stiffness, material, and pattern density in the adhesion and friction of nanopatterns. We fabricated cylindrical and mushroom-shaped polymer pattern geometries containing flat- and round-topped morphologies using capillary force lithography and nanodrawing techniques. We showed that the curvature, surface energy, and density of the patterns predominantly influenced the adhesive interactions, whereas lateral stiffness dominated friction by controlling the geometrical interaction between the indenter and pillar during sliding. Interestingly, in contrast to previous studies, cylindrical and mushroom-shaped pillars showed similar adhesion characteristics but very different frictional properties. Using fracture mechanics analysis, we showed that this phenomenon is due to a larger ratio of the mushroom flange thickness (t) to the radius of the pillar stem (ρ), and we proposed a design criterion for mushroom patterns to exhibit a geckolike effect. The most important result of our work is the discovery of a linear master curve in the graph of adhesion versus friction for pillars with similar lateral stiffness values that is independent of curvature, material, surface energy, and pattern density. These results will aid in the identification of simple pattern parameters that can be scaled to tune adhesion and friction and will help broaden the understanding of nanoscale topographical interactions.
Collapse
Affiliation(s)
- Prashant Pendyala
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST) , Seoul 02792, Republic of Korea
| | - Harpreet S Grewal
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University , Uttar Pradesh 201314, India
| | - Hong Nam Kim
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST) , Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST) , Seoul 02792, Republic of Korea
| | - Eui-Sung Yoon
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST) , Seoul 02792, Republic of Korea
| |
Collapse
|