1
|
Sawai Y, Yamaguchi S, Inoue K, Kato-Kogoe N, Yamada K, Shimada N, Ito M, Nakano H, Ueno T. Enhancement of in vitro antibacterial activity and bioactivity of iodine-loaded titanium by micro-scale regulation using mixed-acid treatment. J Biomed Mater Res A 2024; 112:685-699. [PMID: 37955234 DOI: 10.1002/jbm.a.37647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Postoperative infection and subsequent device loss are serious complications in the use of titanium dental implants and plates for jawbone reconstruction. We have previously reported that NaOH-CaCl2 -thermal-ICl3 -treated titanium (NaCaThIo) has a nano-scale surface and exhibits antibacterial activity against Staphylococcus aureus. The present study examined the surface properties of mixed-acid treated and then iodine-treated titanium (MA-NaCaThIo), and evaluated oral antibacterial activity and cytotoxicity compared with the results obtained with NaCaThIo. MA-NaCaThIo formed a surface layer with a nano-scale network structure having microscale irregularities, and both the thickness of the surface layer (1.49 ± 0.16 μm) and the average surface roughness (0.35 ± 0.03 μm) were significantly higher than those of NaCaThIo. Furthermore, MA-NaCaThIo maintained high hydrophilicity with a contact angle of 7.5 ± 1.7° even after 4 weeks, as well as improved apatite formation, iodine ion release, and antibacterial activity against Prevotella intermedia compared to NaCaThIo. Cell culture test revealed that MA-NaCaThIo exhibited no cytotoxicity against MG-63 and Vero cells, while increased cell proliferation, ALP activity and mineralization of MG-63 compared to NaCaThIo. This treated titanium is expected to be useful for the development of next-generation titanium devices having both bone-bonding and antibacterial properties.
Collapse
Affiliation(s)
- Yasuhisa Sawai
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Kazuya Inoue
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Nahoko Kato-Kogoe
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazuto Yamada
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Nanako Shimada
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Morihiro Ito
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Hiroyuki Nakano
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Takaaki Ueno
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
2
|
Kido D, Komatsu K, Suzumura T, Matsuura T, Cheng J, Kim J, Park W, Ogawa T. Influence of Surface Contaminants and Hydrocarbon Pellicle on the Results of Wettability Measurements of Titanium. Int J Mol Sci 2023; 24:14688. [PMID: 37834133 PMCID: PMC10572547 DOI: 10.3390/ijms241914688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Hydrophilicity/hydrophobicity-or wettability-is a key surface characterization metric for titanium used in dental and orthopedic implants. However, the effects of hydrophilicity/hydrophobicity on biological capability remain uncertain, and the relationships between surface wettability and other surface parameters, such as topography and chemistry, are poorly understood. The objective of this study was to identify determinants of surface wettability of titanium and establish the reliability and validity of the assessment. Wettability was evaluated as the contact angle of ddH2O. The age of titanium specimens significantly affected the contact angle, with acid-etched, microrough titanium surfaces becoming superhydrophilic immediately after surface processing, hydrophobic after 7 days, and hydrorepellent after 90 days. Similar age-related loss of hydrophilicity was also confirmed on sandblasted supra-micron rough surfaces so, regardless of surface topography, titanium surfaces eventually become hydrophobic or hydrorepellent with time. On age-standardized titanium, surface roughness increased the contact angle and hydrophobicity. UV treatment of titanium regenerated the superhydrophilicity regardless of age or surface roughness, with rougher surfaces becoming more superhydrophilic than machined surfaces after UV treatment. Conditioning titanium surfaces by autoclaving increased the hydrophobicity of already-hydrophobic surfaces, whereas conditioning with 70% alcohol and hydrating with water or saline attenuated pre-existing hydrophobicity. Conversely, when titanium surfaces were superhydrophilic like UV-treated ones, autoclaving and alcohol cleaning turned the surfaces hydrorepellent and hydrophobic, respectively. UV treatment recovered hydrophilicity without exception. In conclusion, surface roughness accentuates existing wettability and can either increase or decrease the contact angle. Titanium must be age-standardized when evaluating surface wettability. Surface conditioning techniques significantly but unpredictably affect existing wettability. These implied that titanium wettability is significantly influenced by the hydrocarbon pellicle and other contaminants inevitably accumulated. UV treatment may be an effective strategy to standardize wettability by making all titanium surfaces superhydrophilic, thereby allowing the characterization of individual surface topography and chemistry parameters in future studies.
Collapse
Affiliation(s)
- Daisuke Kido
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral Diagnosis and General Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Toshikatsu Suzumura
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Jeong Kim
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
3
|
da Silva IR, Barreto ATDS, Seixas RS, Paes PNG, Lunz JDN, Thiré RMDSM, Jardim PM. Novel Strategy for Surface Modification of Titanium Implants towards the Improvement of Osseointegration Property and Antibiotic Local Delivery. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2755. [PMID: 37049048 PMCID: PMC10095684 DOI: 10.3390/ma16072755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The topography and chemical composition modification of titanium (Ti) implants play a decisive role in improving biocompatibility and bioactivity, accelerating osseointegration, and, thus, determining clinical success. In spite of the development of surface modification strategies, bacterial contamination is a common cause of failure. The use of systemic antibiotic therapy does not guarantee action at the contaminated site. In this work, we proposed a surface treatment for Ti implants that aim to improve their osseointegration and reduce bacterial colonization in surgery sites due to the local release of antibiotic. The Ti discs were hydrothermally treated with 3M NaOH solution to form a nanostructured layer of titanate on the Ti surface. Metronidazole was impregnated on these nanostructured surfaces to enable its local release. The samples were coated with poly(vinyl alcohol)-PVA films with different thickness to evaluate a possible control of drug release. Gamma irradiation was used to crosslink the polymer chains to achieve hydrogel layer formation and to sterilize the samples. The samples were characterized by XRD, SEM, FTIR, contact angle measurements, "in vitro" bioactivity, and drug release analysis. The alkaline hydrothermal treatment successfully produced intertwined, web-like nanostructures on the Ti surface, providing wettability and bioactivity to the Ti samples (Ti + TTNT samples). Metronidazole was successfully loaded and released from the Ti + TTNT samples coated or not with PVA. Although the polymeric film acted as a physical barrier to drug delivery, all groups reached the minimum inhibitory concentration for anaerobic bacteria. Thus, the surface modification method presented is a potential approach to improve the osseointegration of Ti implants and to associate local drug delivery with dental implants, preventing early infections and bone failure.
Collapse
Affiliation(s)
- Isabela Rocha da Silva
- COPPE/Program of Metallurgical and Materials Engineering (PEMM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| | - Aline Tavares da Silva Barreto
- Graduation Program in Nanobiosystems, Universidade Federal do Rio de Janeiro (UFRJ), Duque de Caxias 25240-005, RJ, Brazil
| | - Renata Santos Seixas
- COPPE/Program of Metallurgical and Materials Engineering (PEMM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| | - Paula Nunes Guimarães Paes
- Faculdade de Odontologia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, RJ, Brazil
| | - Juliana do Nascimento Lunz
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Xerem 25250-020, RJ, Brazil
| | - Rossana Mara da Silva Moreira Thiré
- COPPE/Program of Metallurgical and Materials Engineering (PEMM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| | - Paula Mendes Jardim
- COPPE/Program of Metallurgical and Materials Engineering (PEMM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| |
Collapse
|
4
|
Matos FG, Santana LCL, Cominotte MA, da Silva FS, Vaz LG, de Oliveira DP, Cirelli JA. Strontium-loaded titanium-15molybdenum surface improves physicochemical and biological properties in vitro. Biomed Phys Eng Express 2022; 8. [PMID: 35594845 DOI: 10.1088/2057-1976/ac71cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/20/2022] [Indexed: 11/11/2022]
Abstract
The titanium alloy composition and microdesign affect the dynamic interplay between the bone cells and titanium surface in the osseointegration process. The current study aimed to evaluate the surface physicochemical properties, electrochemical stability, and the metabolic response of the MC3T3-E1 cells (pre-osteoblast cell line) cultured onto titanium-15molybdenum (Ti-15Mo) discs treated with phosphoric acid (H3PO4) and sodium hydroxide (NaOH) and/or strontium-loading by the hydrothermal method. The x-ray dispersive energy spectroscopy (EDS) and x-ray diffraction (XRD) analysis showed no trace of impurities and the possible formation of hydrated strontium oxide (H2O2Sr), respectively. The confocal laser microscopy (CLSM) analysis indicated that titanium samples treated with strontium (Sr) showed greater surface roughness. The acid/alkali treatment prior to the hydrothermal Sr deposition improved the surface free energy and resistance to corrosion of the Ti-15Mo alloy. The acid/alkali treatment also provided greater retention of the Sr particles on the Ti-15Mo surfaces accordingly with inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. The AlamarBlue and fluorescence analysis indicated noncytotoxic effects against the MC3T3-E1 cells, which allowed cells' adhesion and proliferation, with greater cells' spreading in the Sr-loaded Ti-15Mo samples. These findings suggest that Sr deposition by the hydrothermal method has the potential to enhance the physicochemical properties of the Ti-15Mo previously etched with H3PO4and NaOH, and also improve the initial events related to cell-mediated bone deposition.
Collapse
Affiliation(s)
- Flávia Gomes Matos
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Luís Carlos Leal Santana
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Mariana Aline Cominotte
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | | | - Luís Geraldo Vaz
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Diego Pedreira de Oliveira
- Department of Materials Engineering-DEMa, Federal University of São Carlos-UFSCar, São Carlos, SP, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| |
Collapse
|
5
|
Zhong J, Li X, Yao Y, Zhou J, Cao S, Zhang X, Jian Y, Zhao K. Effect of acid-alkali treatment on serum protein adsorption and bacterial adhesion to porous titanium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:20. [PMID: 35107647 PMCID: PMC8810456 DOI: 10.1007/s10856-022-06646-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Modification of the titanium (Ti) surface is widely known to influence biological reactions such as protein adsorption and bacterial adhesion in vivo, ultimately controlling osseointegration. In this study, we sought to investigate the correlation of protein adsorption and bacterial adhesion with the nanoporous structure of acid-alkali-treated Ti implants, shedding light on the modification of Ti implants to promote osseointegration. We fabricated nontreated porous Ti (NTPT) by powder metallurgy and immersed it in mixed acids and NaOH to obtain acid-alkali-treated porous Ti (AAPT). Nontreated dense sample (NTDT) served as control. Our results showed that nanopores were formed after acid-alkali treatment. AAPT showed a higher specific surface area and became much more hydrophilic than NTPT and NTDT (p < 0.001). Compared to dense samples, porous samples exhibited a lower zeta potential and higher adsorbed protein level at each time point within 120 min (p < 0.001). AAPT formed a thicker protein layer by serum precoating than NTPT and NTDT (p < 0.001). The main adsorbed proteins on AAPT and NTPT were albumin, α1 antitrypsin, transferrin, apolipoprotein A1, complement C3 and haptoglobin α1 chain. The amounts of bacteria adhering to the serum-precoated samples were lower than those adhering to the nonprecoated samples (p < 0.05). Lower-molecular-weight proteins showed higher affinity to porous Ti. In conclusion, acid-alkali treatment facilitated protein adsorption by porous Ti, and the protein coating tended to prevent bacteria from adhering. These findings may be utilized for Ti implant modification aimed at reducing bacterial adhesion and enhancing osseointegration. Graphical abstract.
Collapse
Affiliation(s)
- Juan Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuelian Li
- Guangzhou Yuexiu Stomatological Hospital, Guangzhou, China
| | - Yitong Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jing Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shanshan Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinping Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Yutao Jian
- Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
6
|
Lei Z, Zhang H, Zhang E, You J, Ma X, Bai X. Antibacterial activities and cell responses of Ti-Ag alloys with a hybrid micro- to nanostructured surface. J Biomater Appl 2021; 34:1368-1380. [PMID: 32264765 DOI: 10.1177/0885328220905103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zeming Lei
- Hand Surgery Ward, Central Hospital Attached to Shenyang Medical College, Shenyang, China.,Department of Orthopedics and Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, China
| | - Hangzhou Zhang
- Department of Orthopedics and Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Erlin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (ATM), Education Ministry of China, School of Material Science and Engineering, Northeastern University, Shenyang, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, China
| | - Xiaoxue Ma
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xizhuang Bai
- Department of Orthopedics and Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110154. [DOI: 10.1016/j.msec.2019.110154] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 12/13/2022]
|
8
|
de Oliveira DP, Toniato TV, Ricci R, Marciano FR, Prokofiev E, Valiev RZ, Lobo AO, Jorge Júnior AM. Biological response of chemically treated surface of the ultrafine-grained Ti-6Al-7Nb alloy for biomedical applications. Int J Nanomedicine 2019; 14:1725-1736. [PMID: 30880976 PMCID: PMC6408917 DOI: 10.2147/ijn.s197099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Nanophase surface properties of titanium alloys must be obtained for a suitable biological performance, particularly to facilitate cell adhesion and bone tissue formation. Obtaining a bulk nanostructured material using severe plastic deformation is an ideal processing route to improve the mechanical performance of titanium alloys. By decreasing the grain size of a metallic material, a superior strength improvement can be obtained, while surface modification of a nanostructured surface can produce an attractive topography able to induce biological responses in osteoblastic cells. Methods Aiming to achieve such an excellent synergetic performance, a processing route, which included equal channel angular pressing (ECAP), hot and cold extrusion, and heat treatments, was used to produce a nanometric and ultrafine-grained (UFG) microstructure in the Ti-6Al-7Nb alloy (around of 200 nm). Additionally, UFG samples were surface-modified with acid etching (UFG-A) to produce a uniform micron and submicron porosity on the surface. Subsequently, alkaline treatment (UFG-AA) produced a sponge-like nanotopographic substrate able to modulate cellular interactions. Results After several kinds of biological tests for both treatment conditions (UFG-A and UFG-AA), the main results have shown that there was no cytotoxicity, expressed alkaline phosphatase activity and total protein amounts without statistical differences compared to control. However, the UFG-AA samples presented an attractive effect on the cell membranes, and cell adhesions were preferentially induced as compared with UFG-A. Both conditions demonstrated cell projections, but for UFG-AA, cells were more widely dispersed, and more quantities of filopodia formation could be observed. Conclusion Herein, the reasons for such behaviors are discussed, and further results are presented in addition to those mentioned above.
Collapse
Affiliation(s)
- Diego Pedreira de Oliveira
- Department of Materials Engineering, Federal University of São Carlos, São Carlos 13565-905, São Paulo, Brazil,
| | | | - Ritchelli Ricci
- Institute of Research and Development, University of Vale do Paraíba, São Paulo 12244-000, Brazil
| | | | - Egor Prokofiev
- Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Ruslan Z Valiev
- Saint Petersburg State University, Saint Petersburg 199034, Russia.,Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000, Russia
| | - Anderson Oliveira Lobo
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Department of Materials Engineering, UFPI - Federal University of Piauí, Teresina 64049-550, Piauí, Brazil,
| | - Alberto Moreira Jorge Júnior
- Department of Materials Engineering, Federal University of São Carlos, São Carlos 13565-905, São Paulo, Brazil, .,University of Grenoble Alpes, CNRS, Grenoble INP-LEPMI, and SIMAP Labs, Grenoble 38000, France,
| |
Collapse
|
9
|
Lei Z, Zhang H, Zhang E, You J, Ma X, Bai X. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:121-131. [DOI: 10.1016/j.msec.2018.06.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/12/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
|
10
|
Yao YT, Liu S, Swain MV, Zhang XP, Zhao K, Jian YT. Effects of acid-alkali treatment on bioactivity and osteoinduction of porous titanium: An in vitro study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:200-210. [PMID: 30423702 DOI: 10.1016/j.msec.2018.08.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/17/2018] [Accepted: 08/29/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND To elucidate the bioactivity and bone regeneration of porous titanium surfaces treated using acid-alkali combination, and to define the optimal alkali reaction time. METHODS Ten groups of porous Ti with at least 3 per group undergoing different acid-alkali treated time were prepared. The surface was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), bicinchoninic acid method (BCA), optical contact angle measurement and Raman spectrometry. Compression testing was performed with a universal testing machine. The bioactivity and osteoinduction were evaluated by a series of biological tests using a simulated body fluid (SBF) test, cell proliferation test, vinculin, ALP and OCN expression, and cell mineralization. RESULTS The acid-alkali treatment formed micro- and nano-scale structures on the sample surfaces. The alkali treatment for 12 h achieved the sharpest nano-scale surface relief and the most protein absorption. The treated porous surface was coated with a NaHTiO3 layer. The acid-alkali etching did not compromise the elastic modulus and compressive strength of the porous Ti samples. In addition to hydroxyapatite, a perovskite phase was also formed on the treated porous samples in SBF. Non-treated dense Ti showed more cell adhesion and proliferation (P < 0.05), while osteoinduction and mineralization were more pronounced on the treated porous sample (P < 0.05). CONCLUSION Acid-alkali treatment is an effective means of generating nano-scale relief on porous Ti surface, and is beneficial for bioactivity and bone regeneration. The 15 min acid and 12 h alkali etching is the optimal combination. The osteoinductive efficacy may be attributable to the surface physical chemistry and the formation of hydroxyapatite and perovskite layers, rather than direct cell adhesion and proliferation.
Collapse
Affiliation(s)
- Yi-Tong Yao
- Department of Prosthodontics, Hospital of Stomotology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shuai Liu
- Yuexiu District Dental Clinic, Guangzhou, China
| | - Michael V Swain
- Dental Materials, Bio-clinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Xin-Ping Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Ke Zhao
- Department of Prosthodontics, Hospital of Stomotology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Yu-Tao Jian
- Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Grecchi F, Bianchi AE, Siervo S, Grecchi E, Lauritano D, Carinci F. A new surgical and technical approach in zygomatic implantology. ORAL & IMPLANTOLOGY 2018; 10:197-208. [PMID: 29876045 DOI: 10.11138/orl/2017.10.2.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose Different surgical approaches for zygomatic implantology using new designed implants are reported. Material and methods The surgical technique is described and two cases reported. The zygomatic fixture has a complete extrasinus path in order to preserve the sinus membrane and to avoid any post-surgical sinus sequelae. Results The surgical procedure allows an optimal position of the implant and consequently an ideal emergence of the fixture on the alveolar crest. Conclusion The surgical procedures and the zygomatic implant design reduce remarkably the serious post-operative sequelae due to the intrasinus path of the zygomatic fixtures.
Collapse
Affiliation(s)
- F Grecchi
- Department of Maxillofacial Surgery, Galeazzi Hospital, Milan, Italy
| | - A E Bianchi
- Department of Maxillofacial Surgery, "Istituto Stomatologico Italiano", Milan, Italy
| | - S Siervo
- Department of Maxillofacial Surgery, "Istituto Stomatologico Italiano", Milan, Italy
| | - E Grecchi
- Department of Maxillofacial Surgery, Galeazzi Hospital, Milan, Italy
| | - D Lauritano
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - F Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Mandrillo PM, Fischetto G, Odorisio P, Cura F, Avantaggiato A, Carinci F. Effects of light-emitting diode (led 640nm) on human gingival fibroblasts: a comparative in vitro study. ACTA ACUST UNITED AC 2018; 10:151-161. [PMID: 29876040 DOI: 10.11138/orl/2017.10.2.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose The light-emitting diodes (LEDs) have been applied in oral surgery for tissue stimulation and wound healing. Several Authors have highlighted that fibroblasts subjected to phototherapy have an increased viability, proliferation, biomodulation of inflammatory cytokines and genes expression. It remains to be determined which are the best irradiation parameters (energy, wavelength, power) for each type of cell in order to obtain the best bio-stimulation. The aim of this study was to investigate the effects of LED irradiation on primary human gingival fibroblast cells (HGF) on DSP, ELN, HAS1, ELANE, HYAL1, RPL13 genes activation using Real Time PCR. These genes activation is directly connected with elastin protein production and HGF functionality. Materials and methods Human gingival tissue biopsies were obtained from three healthy patients during extraction of teeth. The gingival pieces were fragmented with a scalpel and transferred in culture dishes for allow the cells growth. Human gingival fibroblasts at the second passage were seeded on multiple 6-well plates and were stimulated with three different light-emitting diodes (LEDs) fixture. After irradiation, the cells were trypsinized, harvested and lysed for RNA extraction. Genes expression was quantified using Real Time PCR. Results We didn't found significant differences in genes activation of HGF of the three different LEDs. The LED irradiation seems to be directly correlated with the elastin and hyaluronoglucosaminidase 1 genes activation that are directly connected with proteins production and HGF functionality. Conclusions HGF show an increased deposition of elastin as well as enhanced expression of collagen type I, which is the main protein related to the synthesis and of the collagen-rich matrix.
Collapse
Affiliation(s)
| | | | | | - F Cura
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - A Avantaggiato
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - F Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Tettamanti L, Andrisani C, Bassi MA, Vinci R, Silvestre-Rangil J, Tagliabue A. Post extractive implant: evaluation of the critical aspects. ORAL & IMPLANTOLOGY 2018; 10:119-128. [PMID: 29876037 DOI: 10.11138/orl/2017.10.2.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose Nowadays, implant supported prosthetic rehabilitation is a reliable procedure to replace compromised or untreatable teeth. The purpose of this review is to explore the concept of post extractive implant and the indications for clinical practice through an analysis of recent studies in the literature. All the main factors that could influence the outcome of this treatment will also be considered. Materials and methods Focusing on the extraction-socket healing time, three different implant insertion protocols have been defined: Immediate implant placement (IIP), Early implant placement (EIP), Delayed implant placement (DIP). The entity of bone remodeling can be associated with different factors: three dimensional implant position, presence/absence of platform switching, absence of facial bony wall, inter implant/tooth distance. Results All the studies in literature agreed that implant primary stability is the main condition for a successful osseointegration of dental implants. Primary implant stability is influenced by many factors including local bone quality and quantity, implant macro-design, soft tissue conditions and rehabilitation, surgical technique, prosthetic load timing, oral hygiene. Conclusions There is insufficient evidence in literature to determine possible advantages or disadvantages of IIP, EIP or DIP. Studies suggest that IIP and EIP may be at higher risks of implant failures and complications than delayed implants; on the other hand the aesthetic outcome might be better when placing implants just after teeth extraction.
Collapse
Affiliation(s)
- L Tettamanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | - R Vinci
- Oral Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | | | - A Tagliabue
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
14
|
Tettamanti L, Andrisani C, Bassi MA, Vinci R, Silvestre-Rangil J, Tagliabue A. Immediate loading implants: review of the critical aspects. ACTA ACUST UNITED AC 2017; 10:129-139. [PMID: 29876038 DOI: 10.11138/orl/2017.10.2.129] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose Modern dentistry have witnessed, a rapid and continuing evolution. Concerning the implant-rehabilitation protocols, they have been redefined in order to satisfy patient's increasing expectations in terms of comfort, aesthetic and shorter treatment period. The purpose of this review is to explore the concept of implant immediate loading and the indications for clinical practice. All the critical aspects that could influence the outcomes of this treatment will also be considered. Materials and methods Three protocols for implant load timing have been classified: immediate loading implants (ILI); early loading implants (ELI); and conventional loading implants (CLI). Two subclassifications point out the different loading modality: 1) Occlusal loading or Non-Occlusal loading, 2) Direct loading or Progressive loading. Micromovements have been considered, since the start of implant dentistry, one of the main risk for the success of osseointegration. The determinant and most accessible parameter to assess the primary stability is the implant insertion torque value. To achieve the necessary torque value to perform immediate loading, it is therefore important to evaluate the bone density at the implant site. Computerized tomography (CT) has been regarded as the best radiographic method to evaluate the residual bone. Results The clinical success of this technique is highly dependent on many factors: patient selection, bone quality and quantity, implant number and design, implant primary stability, occlusal loading and clinician's surgical ability. Among these, implant primary stability is undoubtedly the most important. Conclusion Studies on ILI show that successful outcome can be expected, if the previous criteria are fulfilled. It seems that ILI demonstrate a greater risk for implant failure when compared to CLI, although the survival rates were high for both the procedures. The use of different surgical procedures, type of prostheses, loading times and have very different study designs. This lack of homogeneity limits the relevance of the conclusions that can be drawn.
Collapse
Affiliation(s)
- L Tettamanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | - R Vinci
- Oral Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | | | - A Tagliabue
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
15
|
Tettamanti L, Cura F, Andrisani C, Bassi MA, Silvestrerangil J, Tagliabue A. A new implant-abutment connection for bacterial microleakage prevention: an in vitro study. ACTA ACUST UNITED AC 2017; 10:172-180. [PMID: 29876042 DOI: 10.11138/orl/2017.10.2.172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose The aim of our study is to evaluate the ability of a new type of implant (Konus Implant System®, Industrie biomediche e farmaceutiche, Italy) to isolate the internal of an implant-abutment connection from the external environment. Materials and methods To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Implants were immerged in a bacterial culture for twenty-four hours and then bacteria amount was measured inside implant-abutment interface with Real-time PCR. Results Bacteria were detected inside all studied implants, with a median percentage of 18% for Porphiromonas Gingivalis and 19% for Tannerella Forsythia. Conclusion The reported results are similar to previous work. Konus Implant System® showed bacterial leakage similar respect others implant systems (18% Porphiromonas Gingivalis, 19% Tannerella Forsitya versus 20% of Bicon© and Ankylos ® systems). In spite of the limits of our study, none two-piece implant system has been demonstrated to perfectly close the gap between implant and abutment.
Collapse
Affiliation(s)
- L Tettamanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - F Cura
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | | | | | - A Tagliabue
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
16
|
Tettamanti L, Lauritano D, Nardone M, Gargari M, Silvestre-Rangil J, Gavoglio P, Tagliabue A. Pregnancy and periodontal disease: does exist a two-way relationship? ACTA ACUST UNITED AC 2017; 10:112-118. [PMID: 29876036 DOI: 10.11138/orl/2017.10.2.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Periodontal disease (PD) is an inflammatory disease of the tissues supporting the teeth. PD affects 65 million adults over the age of 30 years in the USA, and worldwide 5 to 70% of adults. Women who develop PD during pregnancy, it's estimated 1 woman in 5, may have a higher risk of adverse pregnancy outcomes. PD during pregnancy starts by dental plaque and is increased by the action of pregnancy hormones. In order to study the effect of PD on adverse pregnancy outcomes, we have performed this narrative review summarising the current studies about the influence of PD on pregnancy. Periodontal pockets are a reservoir of oral microbiota. Modifications in oral microbiota may be considered as a potential mechanism for developing PD during pregnancy. PD is surely caused by bacteria, but the progression and worsening are due to a host immune response. The inflammation caused by PD is not limited to the oral cavity. It is hypothesized that episodes of bacteraemia and dissemination of endotoxins from periodontal pockets can induce the activation of the systemic immune response. In conclusion our narrative review shows that there's no relationship between PD and adverse pregnancy outcomes, and PD treatment during pregnancy does not confer a general protection against adverse pregnancy outcomes.
Collapse
Affiliation(s)
- L Tettamanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - D Lauritano
- Department of Translational Medicine and Surgery, Neuroscience Center of Milan, University of Milano Bicocca, Monza, Italy
| | - M Nardone
- Ministry of Public Health, Rome, Italy
| | - M Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - P Gavoglio
- Department of DI.S.T.BI.M.O., University of Genova, Genova, Italy
| | - A Tagliabue
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
17
|
Matos AO, Ricomini-Filho AP, Beline T, Ogawa ES, Costa-Oliveira BE, de Almeida AB, Nociti Junior FH, Rangel EC, da Cruz NC, Sukotjo C, Mathew MT, Barão VA. Three-species biofilm model onto plasma-treated titanium implant surface. Colloids Surf B Biointerfaces 2017; 152:354-366. [DOI: 10.1016/j.colsurfb.2017.01.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/11/2022]
|
18
|
Sabatini S, Ricci M, Candotto V, Lauritano D, Nardi GM. Effects of the application of high-pressure oxygen on the treatment of periodontal disease in diabetic patients. ACTA ACUST UNITED AC 2017; 10:412-423. [PMID: 29682259 DOI: 10.11138/orl/2017.10.4.412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Purpose In this study we wanted to observe the improvement in the healing of periodontal tissues in a group of diabetic patients treated with traditional methods compared to another group treated with the addition of oxygen.The potential of oxygen has long been known in the field of plastic surgery, where it is used to treat burns and skin lesions. Materials and methods This study consists in a split mouth study which involved 30 patients. We carefully treated them with periodontal therapy using manual and mechanical instrumentation. Then, we applied oxygen in half mouth according to randomization list. Finally we checked up patients after some weeks. Results Our results highlight that all areas treated with oxygen application healed more rapidly and better than no treated areas. Conclusions All in all, we have demonstrated that oxygen can improve the outcome of non-surgical periodontal treatment in diabetic subjects.
Collapse
Affiliation(s)
- S Sabatini
- Department of Oral and Maxillofacial Sciences, "Sapienza" University of Rome, Rome, Italy
| | - M Ricci
- Private practice, Sarzana (SP), Italy
| | - V Candotto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - D Lauritano
- Department of Medicine and Surgery, University of Milano "Bicocca", Monza, Italy
| | - G M Nardi
- Department of Dental and Maxillofacial Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
19
|
Marques IDSV, Alfaro MF, Saito MT, da Cruz NC, Takoudis C, Landers R, Mesquita MF, Nociti Junior FH, Mathew MT, Sukotjo C, Barão VAR. Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces. Biointerphases 2016; 11:031008. [PMID: 27514370 PMCID: PMC4982872 DOI: 10.1116/1.4960654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022] Open
Abstract
Biofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were (1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation (MAO) to improve the surface properties of biomedical implants, (2) to investigate the TiO2 layer stability under wear and corrosion, and (3) to evaluate human mesenchymal stem cells (hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group (p < 0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops (-0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops (-0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces.
Collapse
Affiliation(s)
- Isabella da Silva Vieira Marques
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Fernanda Alfaro
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, Illinois 60612
| | - Miki Taketomi Saito
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Nilson Cristino da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Christos Takoudis
- Departments of Chemical Engineering and Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., SEO 218, Chicago, Illinois 60607
| | - Richard Landers
- Institute of Physics Gleb Wataghin, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo 13083-859, Brazil
| | - Marcelo Ferraz Mesquita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Francisco Humberto Nociti Junior
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, Illinois 61107
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, Illinois 60612
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
20
|
Xiao M, Chen YM, Biao MN, Zhang XD, Yang BC. Bio-functionalization of biomedical metals. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:1057-1070. [PMID: 27772705 DOI: 10.1016/j.msec.2016.06.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/18/2016] [Accepted: 06/22/2016] [Indexed: 12/27/2022]
Abstract
Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions.
Collapse
Affiliation(s)
- M Xiao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Y M Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - M N Biao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - X D Zhang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - B C Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu, 610064, China.
| |
Collapse
|
21
|
Xiao M, Biao M, Chen Y, Xie M, Yang B. Regulating the osteogenic function of rhBMP 2 by different titanium surface properties. J Biomed Mater Res A 2016; 104:1882-93. [PMID: 26991341 DOI: 10.1002/jbm.a.35719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein 2 (BMP-2) is important for regulating the osteogenic differentiation of mesenchymal stem cells and the response of bone tissue. It adsorbs on the surface of biomedical implants immediately and plays a role of mediator between the materials surfaces and the host cells. Studies usually connect the material surface properties and the new bone formation directly. However, interaction between the adsorbed BMP-2 on the implant surface and the cells in the tissue is the key to explaining the osteogenic properties of the material. So, in this article, we investigated the conformational and functional changes induced by the surface modified titanium metals. We found that the α-helix and β-sheet structure of rhBMP-2 can be well maintained on the anodic oxidation treated titanium surface. The osteogenic function of rhBMP-2 can sustain for a relatively long time even though there is less amount adhere to the surface compared with that on the acid alkali treated titanium. Surface properties, especially the morphology enable a larger amount of rhBMP-2 to adsorb to the surface of the acid alkali treated titanium, but the conformation of the protein is severely influenced. The percentage of α-helix structure is also significantly decreased so that the efficacy of rhBMP-2 is only maintained in the early time. This study indicated that different surface modification of the surface could regulate the structure of rhBMP-2 and then further influence its osteogenic function. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1882-1893, 2016.
Collapse
Affiliation(s)
- Ming Xiao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, China.,National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Meina Biao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, China.,National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Yangmei Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, China.,National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Meiju Xie
- Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, China.,National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| |
Collapse
|
22
|
Guo Q, Mather JP, Yang P, Boden M, Mather PT. Fabrication of Polymeric Coatings with Controlled Microtopographies Using an Electrospraying Technique. PLoS One 2015; 10:e0129960. [PMID: 26090663 PMCID: PMC4475032 DOI: 10.1371/journal.pone.0129960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/13/2015] [Indexed: 11/27/2022] Open
Abstract
Surface topography of medical implants provides an important biophysical cue on guiding cellular functions at the cell-implant interface. However, few techniques are available to produce polymeric coatings with controlled microtopographies onto surgical implants, especially onto implant devices of small dimension and with complex structures such as drug-eluting stents. Therefore, the main objective of this study was to develop a new strategy to fabricate polymeric coatings using an electrospraying technique based on the uniqueness of this technique in that it can be used to produce a mist of charged droplets with a precise control of their shape and dimension. We hypothesized that this technique would allow facile manipulation of coating morphology by controlling the shape and dimension of electrosprayed droplets. More specifically, we employed the electrospraying technique to coat a layer of biodegradable polyurethane with tailored microtopographies onto commercial coronary stents. The topography of such stent coatings was modulated by controlling the ratio of round to stretched droplets or the ratio of round to crumped droplets under high electric field before deposition. The shape of electrosprayed droplets was governed by the stability of these charged droplets right after ejection or during their flight in the air. Using the electrospraying technique, we achieved conformal polymeric coatings with tailored microtopographies onto conductive surgical implants. The approach offers potential for controlling the surface topography of surgical implant devices to modulate their integration with surrounding tissues.
Collapse
Affiliation(s)
- Qiongyu Guo
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, United States of America
| | - Jason P. Mather
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, United States of America
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Pine Yang
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, United States of America
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Mark Boden
- Boston Scientific Corporation, Marlborough, Massachusetts, United States of America
| | - Patrick T. Mather
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, United States of America
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
23
|
Wang G, Moya S, Lu Z, Gregurec D, Zreiqat H. Enhancing orthopedic implant bioactivity: refining the nanotopography. Nanomedicine (Lond) 2015; 10:1327-41. [DOI: 10.2217/nnm.14.216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Advances in nanotechnology open up new possibilities to produce biomimetic surfaces that resemble the cell in vivo growth environment at a nanoscale level. Nanotopographical changes of biomaterials surfaces can positively impact the bioactivity and ossointegration properties of orthopedic and dental implants. This review introduces nanofabrication techniques currently used or those with high potential for use as surface modification of biomedical implants. The interactions of nanotopography with water, proteins and cells are also discussed, as they largely determine the final success of the implants. Due to the well-documented effects of surface chemistry and microtopography on the bioactivity of the implant, we here elaborate on the ability of the nanofabrication techniques to combine the dual (multi) modification of surface chemistry and/or microtopography.
Collapse
Affiliation(s)
- Guocheng Wang
- Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, Paseo Miramón 182 C, 20009 Donostia-San Sebastian, Spain
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Sergio Moya
- Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, Paseo Miramón 182 C, 20009 Donostia-San Sebastian, Spain
| | - ZuFu Lu
- Biomaterials & Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney, NSW 2006, Australia
| | - Danijela Gregurec
- Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, Paseo Miramón 182 C, 20009 Donostia-San Sebastian, Spain
| | - Hala Zreiqat
- Biomaterials & Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
24
|
Oliveira DP, Palmieri A, Carinci F, Bolfarini C. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti-6Al-4V-ELI. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 51:248-55. [PMID: 25842132 DOI: 10.1016/j.msec.2015.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 02/13/2015] [Accepted: 03/09/2015] [Indexed: 11/17/2022]
Abstract
Surface modifications of titanium alloys are useful methods to enhance the biological stability of intraosseous implants and to promote a well succeeded osseointegration in the early stages of implantation. This work aims to investigate the influence of chemically modified surfaces of Ti-6Al-4V-ELI (extra-low interstitial) on the gene expression of human osteoblastic (HOb) cells. The surface treatments by acid etching or acid etching plus alkaline treatment were carried out to modify the topography, effective area, contact angle and chemical composition of the samples. The surface morphology was investigated using: scanning electron microscopy (SEM) and confocal laser-scanning microscope (CLSM). Roughness measurements and effective surface area were obtained using the CLSM. Surface composition was analysed by energy dispersive X-ray spectroscopy (EDX) and by X-Ray Diffraction (XRD). The expression levels of some bone related genes (ALPL, COL1A1, COL3A1, SPP1, RUNX2, and SPARC) were analysed using real-time Reverse Transcription Polymerase Chain Reaction (real-time RT-PCR). The results showed that all the chemical modifications studied in this work influenced the surface morphology, wettability, roughness, effective area and gene expression of human osteoblasts. Acid phosphoric combined to alkaline treatment presented a more accelerated gene expression after 7days while the only phosphoric etching or chloride etching combined to alkaline treatment presented more effective responses after 15days.
Collapse
Affiliation(s)
- D P Oliveira
- Department of Materials Engineering, Federal University of São Carlos, São Carlos, Brazil.
| | - A Palmieri
- Department of D.M.C.C.C., Section of Maxillofacial and Plastic Surgery, University of Ferrara, Ferrara, Italy
| | - F Carinci
- Department of D.M.C.C.C., Section of Maxillofacial and Plastic Surgery, University of Ferrara, Ferrara, Italy
| | - C Bolfarini
- Department of Materials Engineering, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
25
|
Terriza A, Vilches-Pérez JI, González-Caballero JL, Orden EDL, Yubero F, Barranco A, Gonzalez-Elipe AR, Vilches J, Salido M. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction. MATERIALS 2014; 7:1687-1708. [PMID: 28788538 PMCID: PMC5453252 DOI: 10.3390/ma7031687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 01/05/2023]
Abstract
New biomaterials for Guided Bone Regeneration (GBR), both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB®) HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide) (PLGA) membrane foil functionalized by a very thin film (around 15 nm) of TiO2 (i.e., TiO2/PLGA membranes), designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors.
Collapse
Affiliation(s)
- Antonia Terriza
- Nanotechnology on Surfaces Laboratory, Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, E-41092 Seville, Spain.
| | - José I Vilches-Pérez
- Facultad de Medicina, Universidad de Cádiz, Servicios Centrales de Investigación en Ciencias de la Salud, Dr. Marañon 3. 11002 Cádiz, Spain.
| | - Juan L González-Caballero
- Facultad de Medicina, Universidad de Cádiz, Servicios Centrales de Investigación en Ciencias de la Salud, Dr. Marañon 3. 11002 Cádiz, Spain.
| | - Emilio de la Orden
- Facultad de Medicina, Universidad de Cádiz, Servicios Centrales de Investigación en Ciencias de la Salud, Dr. Marañon 3. 11002 Cádiz, Spain.
| | - Francisco Yubero
- Nanotechnology on Surfaces Laboratory, Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, E-41092 Seville, Spain.
| | - Angel Barranco
- Nanotechnology on Surfaces Laboratory, Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, E-41092 Seville, Spain.
| | - Agustín R Gonzalez-Elipe
- Nanotechnology on Surfaces Laboratory, Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, E-41092 Seville, Spain.
| | - José Vilches
- Facultad de Medicina, Universidad de Cádiz, Servicios Centrales de Investigación en Ciencias de la Salud, Dr. Marañon 3. 11002 Cádiz, Spain.
| | - Mercedes Salido
- Facultad de Medicina, Universidad de Cádiz, Servicios Centrales de Investigación en Ciencias de la Salud, Dr. Marañon 3. 11002 Cádiz, Spain.
| |
Collapse
|