1
|
Park J, Rhoo KY, Kim Y, Kim YS, Paik SR. Cell-Division-Independent Rapid Expression of DNA Delivered with α-Synuclein-Gold Nanoparticle Conjugates. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14846-14858. [PMID: 40014054 DOI: 10.1021/acsami.4c17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Gene delivery is a primary technology employed in diverse areas of biomedical science, from gene therapy to gene editing, cancer treatment, and stem cell research. Here, we introduce a gene delivery system utilizing an intrinsically disordered protein of α-synuclein (αS) demonstrated to interact with lipid membranes by transforming its original random structure to an α-helix. Since the helix bundle formation is a signature of cell-penetrating peptides for membrane translocation, a multitude of αS(Y136C)s replacing tyrosine at the C-terminus with cysteine were covalently attached onto gold nanoparticles (AuNPs) in a specific orientation with the helix-forming basic N-termini exposed outward. The resulting αS(Y136C)-AuNP conjugates were found to exhibit a rapid gene expression without causing cytotoxicity when the gene of the enhanced green fluorescent protein (EGFP) was delivered with the conjugates into the cells. Based on inhibition studies toward endocytosis and mitosis, the αS(Y136C)-AuNP/DNA complex was demonstrated to take both endosomal and non-endosomal intracellular transport pathways. The DNA translocation into the nucleus was independent of cell division. This nondisruptive and rapid DNA transfection by αS(Y136C)-AuNPs allowed a successful delivery of granzyme A gene leading to cellular pyroptosis. Modifications of αS(Y136C)-AuNP/DNA complex, such as antibody immobilization and replacement of DNA with biological suprastructures including RNA, protein, and nonbiological fusion materials, would allow the intracellular delivery system to be applied in diverse areas of future biotechnology.
Collapse
Affiliation(s)
- Jeongha Park
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kun Yil Rhoo
- Interdisciplinary Program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunsoo Kim
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Seung R Paik
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer 2025; 24:45. [PMID: 39953480 PMCID: PMC11829561 DOI: 10.1186/s12943-025-02233-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Extracellular vesicles (EVs), nanoscale vesicles secreted by cells, have attracted considerable attention in recent years due to their role in tumor immunomodulation. These vesicles facilitate intercellular communication by transporting proteins, nucleic acids, and other biologically active substances, and they exhibit a dual role in tumor development and immune evasion mechanisms. Specifically, EVs can assist tumor cells in evading immune surveillance and attack by impairing immune cell function or modulating immunosuppressive pathways, thereby promoting tumor progression and metastasis. Conversely, they can also transport and release immunomodulatory factors that stimulate the activation and regulation of the immune system, enhancing the body's capacity to combat malignant diseases. This dual functionality of EVs presents promising avenues and targets for tumor immunotherapy. By examining the biological characteristics of EVs and their influence on tumor immunity, novel therapeutic strategies can be developed to improve the efficacy and relevance of cancer treatment. This review delineates the complex role of EVs in tumor immunomodulation and explores their potential implications for cancer therapeutic approaches, aiming to establish a theoretical foundation and provide practical insights for the advancement of future EVs-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
3
|
Jiang S, Zu C, Wang B, Zhong Y. Enhancing DNA Vaccine Delivery Through Stearyl-Modified Cell-Penetrating Peptides: Improved Antigen Expression and Immune Response In Vitro and In Vivo. Vaccines (Basel) 2025; 13:94. [PMID: 39852873 PMCID: PMC11768954 DOI: 10.3390/vaccines13010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Inefficient cellular uptake is a significant limitation to the efficacy of DNA vaccines. In this study, we introduce S-Cr9T, a stearyl-modified cell-penetrating peptide (CPP) designed to enhance DNA vaccine delivery by forming stable complexes with plasmid DNA, thereby protecting it from degradation and promoting efficient intracellular uptake. METHODS AND RESULTS In vitro studies showed that S-Cr9T significantly improved plasmid stability and transfection efficiency, with optimal performance at an N/P ratio of 0.25. High-content imaging revealed that the S-Cr9T-plasmid complex stably adhered to the cell membrane, leading to enhanced plasmid uptake and transfection. In vivo, S-Cr9T significantly increased antigen expression and triggered a robust immune response, including a threefold increase in IFN-γ secretion and several hundred-fold increases in antibody levels compared to control groups. CONCLUSIONS These findings underscore the potential of S-Cr9T to enhance DNA vaccine efficacy, offering a promising platform for advanced gene therapy and vaccination strategies.
Collapse
Affiliation(s)
- Sheng Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
| | - Cheng Zu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yiwei Zhong
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Puttasiddaiah R, Basavegowda N, Lakshmanagowda NK, Raghavendra VB, Sagar N, Sridhar K, Dikkala PK, Bhaswant M, Baek KH, Sharma M. Emerging Nanoparticle-Based Diagnostics and Therapeutics for Cancer: Innovations and Challenges. Pharmaceutics 2025; 17:70. [PMID: 39861718 PMCID: PMC11768644 DOI: 10.3390/pharmaceutics17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer. These methods seek to completely eradicate all cancer cells while having the fewest possible unintended impacts on healthy cell types. Owing to the lack of target selectivity, the majority of medications have substantial side effects. On the other hand, nanomaterials have transformed the identification, diagnosis, and management of cancer. Nanostructures with biomimetic properties have been grown as of late, fully intent on observing and treating the sickness. These nanostructures are expected to be consumed by growth in areas with profound disease. Furthermore, because of their extraordinary physicochemical properties, which incorporate nanoscale aspects, a more prominent surface region, explicit geometrical features, and the ability to embody different substances within or on their outside surfaces, nanostructures are remarkable nano-vehicles for conveying restorative specialists to their designated regions. This review discusses recent developments in nanostructured materials such as graphene, dendrimers, cell-penetrating peptide nanoparticles, nanoliposomes, lipid nanoparticles, magnetic nanoparticles, and nano-omics in the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Rachitha Puttasiddaiah
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | | | - Niju Sagar
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| |
Collapse
|
5
|
Leckie J, Yokota T. Potential of Cell-Penetrating Peptide-Conjugated Antisense Oligonucleotides for the Treatment of SMA. Molecules 2024; 29:2658. [PMID: 38893532 PMCID: PMC11173757 DOI: 10.3390/molecules29112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
6
|
Choi S, Lee IY, Kim MJ, Lee SK, Lee KY. Multi-Functional Polymer Nanoparticles with Enhanced Adipocyte Uptake and Adipocytolytic Efficacy. Macromol Biosci 2024; 24:e2300312. [PMID: 37902246 DOI: 10.1002/mabi.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Indexed: 10/31/2023]
Abstract
Multi-functional polymer nanoparticles have been widely utilized to improve cellular uptake and enhance therapeutic efficacy. In this study, it is hypothesized that the cellular uptake of poly(D,L-lactide-co-glycolide) (PLG) nanoparticles loaded with calcium carbonate minerals into adipocytes can be improved by covalent modification with nona-arginine (R9 ) peptide. It is further hypothesized that the internalization mechanism of R9 -modified PLG nanoparticles by adipocytes may be contingent on the concentration of R9 peptide present in the nanoparticles. R9 -modified PLG nanoparticles followed the direct penetration mechanism when the concentration of R9 peptide in the nanoparticles reached 38 µM. Notably, macropinocytosis is the major endocytic mechanism when the R9 peptide concentration is ≤ 26 µM. The endocytic uptake of the nanoparticles effectively generated carbon dioxide gas at an endosomal pH, resulting in significant adipocytolytic effects in vitro, which are further supported by the findings in an obese mouse model induced by high-fat diet. Gas-generating PLG nanoparticles, modified with R9 peptide, demonstrated localized reduction of adipose tissue (reduction of 13.1%) after subcutaneous injection without significant side effects. These findings highlight the potential of multi-functional polymer nanoparticles for the development of effective and targeted fat reduction techniques, addressing both health and cosmetic considerations.
Collapse
Affiliation(s)
- Suim Choi
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - In Young Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min Ju Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang-Kyung Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kuen Yong Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
7
|
Wu J, Roesger S, Jones N, Hu CMJ, Li SD. Cell-penetrating peptides for transmucosal delivery of proteins. J Control Release 2024; 366:864-878. [PMID: 38272399 DOI: 10.1016/j.jconrel.2024.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Enabling non-invasive delivery of proteins across the mucosal barriers promises improved patient compliance and therapeutic efficacies. Cell-penetrating peptides (CPPs) are emerging as a promising and versatile tool to enhance protein and peptide permeation across various mucosal barriers. This review examines the structural and physicochemical attributes of the nasal, buccal, sublingual, and oral mucosa that hamper macromolecular delivery. Recent development of CPPs for overcoming those mucosal barriers for protein delivery is summarized and analyzed. Perspectives regarding current challenges and future research directions towards improving non-invasive transmucosal delivery of macromolecules for ultimate clinical translation are discussed.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sophie Roesger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
8
|
Asrorov AM, Wang H, Zhang M, Wang Y, He Y, Sharipov M, Yili A, Huang Y. Cell penetrating peptides: Highlighting points in cancer therapy. Drug Dev Res 2023; 84:1037-1071. [PMID: 37195405 DOI: 10.1002/ddr.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023]
Abstract
Cell-penetrating peptides (CPPs), first identified in HIV a few decades ago, deserved great attention in the last two decades; especially to support the penetration of anticancer drug means. In the drug delivery discipline, they have been involved in various approaches from mixing with hydrophobic drugs to the use of genetically conjugated proteins. The early classification as cationic and amphipathic CPPs has been extended to a few more classes such as hydrophobic and cyclic CPPs so far. Developing potential sequences utilized almost all methods of modern science: choosing high-efficiency peptides from natural protein sequences, sequence-based comparison, amino acid substitution, obtaining chemical and/or genetic conjugations, in silico approaches, in vitro analysis, animal experiments, etc. The bottleneck effect in this discipline reveals the complications that modern science faces in drug delivery research. Most CPP-based drug delivery systems (DDSs) efficiently inhibited tumor volume and weight in mice, but only in rare cases reduced their levels and continued further processes. The integration of chemical synthesis into the development of CPPs made a significant contribution and even reached the clinical stage as a diagnostic tool. But constrained efforts still face serious problems in overcoming biobarriers to reach further achievements. In this work, we reviewed the roles of CPPs in anticancer drug delivery, focusing on their amino acid composition and sequences. As the most suitable point, we relied on significant changes in tumor volume in mice resulting from CPPs. We provide a review of individual CPPs and/or their derivatives in a separate subsection.
Collapse
Affiliation(s)
- Akmal M Asrorov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
- Department of Natural Substances Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yonghui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mirkomil Sharipov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | - Abulimiti Yili
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, China
| |
Collapse
|
9
|
Tyler J, Ralston CY, Rad B. Sneaking in SpyCatcher using cell penetrating peptides for in vivoimaging. NANOTECHNOLOGY 2023; 34:425101. [PMID: 37336203 PMCID: PMC10396330 DOI: 10.1088/1361-6528/acdf65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
In vivoimaging of protein complexes is a powerful method for understanding the underlying biological function of these key biomolecules. Though the engineering of small, high affinity nanobodies have become more prevalent, the off-rates of these tags may result in incomplete or partial labeling of proteins in live cells. The SpyCatcher003 and SpyTag split protein system allow for irreversible, covalent binding to a short target peptide unlike nanobody-affinity based probes. However, delivering these tags into a cell without disrupting its normal function is a key challenge. Cell penetrating peptides (CPPs) are short peptide sequences that facilitate the transduction of otherwise membrane-impermeable 'cargo' , such as proteins, into cells. Here we report on our efforts to engineer and characterize CPP-SpyCatcher003 fusions as modular imaging probes. We selected three CPPs, CUPID, Pentratin, and pVEC, to engineer fusion protein probes for superresolution microscopy, with the aim to eliminate prior permeabilization treatments that could introduce imaging artifacts. We find that fusing the CPP sequences to SpyCatcher003 resulted in dimer and multimer formation as determined by size exclusion chromatography, dynamic light scattering, and SDS resistant dimers on SDS-PAGE gels. By isolating and labeling the monomeric forms of the engineered protein, we show these constructs retained their ability to bind SpyTag and all three CPP sequences remain membrane active, as assessed by CD spectroscopy in the presence of SDS detergent. Using fluorescence and super resolution Lattice structured illumination microscopy (Lattice SIM) imaging we show that the CPPs did not enhance uptake of SpyCatcher byE. coli,however withCaulobacter crescentuscells, we show that Penetratin, and to a lesser degree CUPID, does enhance uptake. Our results demonstrate the ability of the CPP-SpyCatcher003 to label targets within living cells, providing the groundwork for using split protein systems for targetedin vivoimaging.
Collapse
Affiliation(s)
- James Tyler
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Corie Y Ralston
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
- Molecular Biophysics and Integrated Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Behzad Rad
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
10
|
Gu Y, Wu L, Hameed Y, Nabi-Afjadi M. Overcoming the challenge: cell-penetrating peptides and membrane permeability. BIOMATERIALS AND BIOSENSORS 2023; 2. [DOI: 10.58567/bab02010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
<p>Cell-penetrating peptides (CPPs) have emerged as a promising strategy for enhancing the membrane permeability of bioactive molecules, particularly in the treatment of central nervous system diseases. CPPs possess the ability to deliver a diverse array of bioactive molecules into cells using either covalent or non-covalent approaches, with a preference for non-covalent methods to preserve the biological activity of the transported molecules. By effectively traversing various physiological barriers, CPPs have exhibited significant potential in preclinical and clinical drug development. The discovery of CPPs represents a valuable solution to the challenge of limited membrane permeability of bioactive molecules and will continue to exert a crucial influence on the field of biomedical science.</p>
Collapse
Affiliation(s)
- Yuan Gu
- The Statistics Department, The George Washington University, Washington, United States
| | - Long Wu
- Department of Surgery, University of Maryland, Baltimore, United States
| | - Yasir Hameed
- Department of Applied Biological Sciences, Tokyo University of Science, Tokyo, Japan
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Babazadeh SM, Zolfaghari MR, Zargar M, Baesi K, Hosseini SY, Ghaemi A. Interleukin-24-mediated antitumor effects against human glioblastoma via upregulation of P38 MAPK and endogenous TRAIL-induced apoptosis and LC3-II activation-dependent autophagy. BMC Cancer 2023; 23:519. [PMID: 37280571 DOI: 10.1186/s12885-023-11021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Melanoma differentiation-associated gene 7 (Mda-7) encodes IL-24, which can induce apoptosis in cancer cells. A novel gene therapy approach to treat deadly brain tumors, recombinant mda-7 adenovirus (Ad/mda-7) efficiently kills glioma cells. In this study, we investigated the factors affecting cell survival and apoptosis and autophagy mechanisms that destroy glioma cells by Ad/IL-24. METHODS Human glioblastoma U87 cell line was exposed to a multiplicity of infections of Ad/IL-24. Antitumor activities of Ad/IL-24 were assessed by cell proliferation (MTT) and lactate dehydrogenase (LDH) release analysis. Using flow cytometry, cell cycle arrest and apoptosis were investigated. Using the ELISA method, the tumor necrosis factor (TNF-α) level was determined as an apoptosis-promoting factor and Survivin level as an anti-apoptotic factor. The expression levels of TNF-related apoptosis inducing ligand(TRAIL) and P38 MAPK genes were assessed by the Reverse transcription-quantitative polymerase chain reaction(RT‑qPCR) method. The expression levels of caspase-3 and protein light chain 3-II (LC3-II) proteins were analyzed by flow cytometry as intervening factors in the processes of apoptosis and autophagy in the cell death signaling pathway, respectively. RESULTS The present findings demonstrated that transduction of IL-24 inhibited cell proliferation and induced cell cycle arrest and cell apoptosis in glioblastoma. Compared with cells of the control groups, Ad/IL24-infected U87 cells exhibited significantly increased elevated caspase-3, and TNF-α levels, while the survivin expression was decreased. TRAIL was shown to be upregulated in tumor cells after Ad/IL-24 infection and studies of the apoptotic cascade regulators indicate that Ad/IL-24 could further enhance the activation of apoptosis through the TNF family of death receptors. In the current study, we demonstrate that P38 MAPK is significantly activated by IL-24 expression. In addition, the overexpression of mda-7/IL-24 in GBM cells induced autophagy, which was triggered by the upregulation of LC3-II. CONCLUSIONS Our study demonstrates the antitumor effect of IL-24 on glioblastoma and may be a promising therapeutic approach for GBM cancer gene therapy.
Collapse
Affiliation(s)
- Seyedeh Maliheh Babazadeh
- Department of Microbiology, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Mohammad Reza Zolfaghari
- Department of Microbiology, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran.
| | - Mohsen Zargar
- Department of Microbiology, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sayed Younes Hosseini
- Bacteriology and Virology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Ghaemi
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
Tavakoli S, Firoozpour L, Davoodi J. The synergistic effect of chimeras consisting of N-terminal smac and modified KLA peptides in inducing apoptosis in breast cancer cell lines. Biochem Biophys Res Commun 2023; 655:138-144. [PMID: 36934589 DOI: 10.1016/j.bbrc.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Drug resistance is one of the most important obstacles in effective cancer therapy triggered through various mechanisms. One of these mechanisms is caused by the upregulation of Inhibitor of Apoptosis Proteins (IAPs). IAPs, inhibit apoptosis through direct and/or indirect caspase inhibition, which themselves are antagonized by an endogenous protein called Second Mitochondrial-derived Activator of Caspases, Smac/Diablo, mediated by the presence of a tetrapeptide IAP binding motif at its N-terminus. Accordingly, Smac-based peptides are under intense investigation as anti-cancer drugs and have reached Phase 2 clinical trials, although, Smac based peptides or mimetics alone have not been effective as anti-cancer agents. On the other hand, KLA peptide has shown major toxicity against cancer cells through the induction of apoptosis. Consequently, we designed an anti-cancer chimera by fusing an octa-peptide from the N-terminus of mature Smac protein to a modified proapoptotic KLA peptide (KLAKLCKKLAKLCK) to be called Smac-KLA. This chimera, therefore, possesses both proapoptotic and anti-IAP activities. In addition, we dimerized this chimera via intermolecular disulfide bonds in order to enhance their cellular permeability. Both the Smac-KLA monomeric and dimeric peptides exhibited cytotoxic activity against both MCF-7 and MDA-MB231 breast cancer cell lines at low micromolar concentrations. Importantly, the dimerization of the chimeras enhanced their potency 2-4- fold due to higher cellular uptake.
Collapse
Affiliation(s)
- Somayeh Tavakoli
- Institute of Biochemistry and Biophysics, University of Tehran, Postal code: 1417614335, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Postal code: 1417614335, Tehran, Iran.
| |
Collapse
|
13
|
Das A, Deka D, Banerjee A, Radhakrishnan AK, Zhang H, Sun XF, Pathak S. A Concise Review on the Role of Natural and Synthetically Derived Peptides in Colorectal Cancer. Curr Top Med Chem 2022; 22:2571-2588. [PMID: 35578849 DOI: 10.2174/1568026622666220516105049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/20/2023]
Abstract
Colorectal cancer being the second leading cause of cancer-associated deaths has become a significant health concern around the globe. Though there are various cancer treatment approaches, many of them show adverse effects and some compromise the health of cancer patients. Hence, significant efforts are being made for the evolution of a novel biological therapeutic approach with better efficacy and minimal side effects. Current research suggests that the application of peptides in colorectal cancer therapeutics holds the possibility of the emergence of an anticancer reagent. The primary beneficial factors of peptides are their comparatively rapid and easy process of synthesis and the enormous potential for chemical alterations that can be evaluated for designing novel peptides and enhancing the delivery capacity of peptides. Peptides might be utilized as agents with cytotoxic activities or as a carrier of a specific drug or as cytotoxic agents that can efficiently target the tumor cells. Further, peptides can also be used as a tool for diagnostic purposes. The recent analysis aims at developing peptides that have the potential to efficiently target the tumor moieties without harming the nearby normal cells. Additionally, decreasing the adverse effects, and unfolding the other therapeutic properties of potential peptides, are also the subject matter of in-depth analysis. This review provides a concise summary of the function of both natural and synthetically derived peptides in colorectal cancer therapeutics that are recently being evaluated and their potent applications in the clinical field.
Collapse
Affiliation(s)
- Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| |
Collapse
|
14
|
Amanat M, Nemeth CL, Fine AS, Leung DG, Fatemi A. Antisense Oligonucleotide Therapy for the Nervous System: From Bench to Bedside with Emphasis on Pediatric Neurology. Pharmaceutics 2022; 14:2389. [PMID: 36365206 PMCID: PMC9695718 DOI: 10.3390/pharmaceutics14112389] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 09/05/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are disease-modifying agents affecting protein-coding and noncoding ribonucleic acids. Depending on the chemical modification and the location of hybridization, ASOs are able to reduce the level of toxic proteins, increase the level of functional protein, or modify the structure of impaired protein to improve function. There are multiple challenges in delivering ASOs to their site of action. Chemical modifications in the phosphodiester bond, nucleotide sugar, and nucleobase can increase structural thermodynamic stability and prevent ASO degradation. Furthermore, different particles, including viral vectors, conjugated peptides, conjugated antibodies, and nanocarriers, may improve ASO delivery. To date, six ASOs have been approved by the US Food and Drug Administration (FDA) in three neurological disorders: spinal muscular atrophy, Duchenne muscular dystrophy, and polyneuropathy caused by hereditary transthyretin amyloidosis. Ongoing preclinical and clinical studies are assessing the safety and efficacy of ASOs in multiple genetic and acquired neurological conditions. The current review provides an update on underlying mechanisms, design, chemical modifications, and delivery of ASOs. The administration of FDA-approved ASOs in neurological disorders is described, and current evidence on the safety and efficacy of ASOs in other neurological conditions, including pediatric neurological disorders, is reviewed.
Collapse
Affiliation(s)
- Man Amanat
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christina L. Nemeth
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amena Smith Fine
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doris G. Leung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
16
|
Chen Y, Xiong SH, Li F, Kong XJ, Ouyang DF, Zheng Y, Yu H, Hu YJ. Delivery of therapeutic small interfering RNA: The current patent-based landscape. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:150-161. [PMID: 35847171 PMCID: PMC9263868 DOI: 10.1016/j.omtn.2022.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Implementing small interfering RNA (siRNA) is a promising therapy because it silences disease-related genes theoretically. However, the efficient delivery of siRNA is challenging, which limits its therapeutic applications. Various pharmaceutical delivery systems containing key technologies have been developed and patented, which are of great concern to developers in the field. Despite numerous studies devoted to siRNA-delivery technologies, few researchers have systematically examined relevant patents. Patents, as bridges connecting academic progress with applicable innovation, encapsulate cumulative technological innovations and provide valuable information for academic research and commercial development. This study aims to analyze advances in therapeutic siRNA delivery technology from a patent perspective. A total of 11,509 patent documents from 3,309 patent families were collected, classified into 10 technological categories, and comprehensively analyzed. An overall patent landscape of siRNA delivery was presented from the temporal, spatial, organizational, and technological dimensions. This work is expected to help researchers and developers in the field of siRNA delivery form a basis for decision-making by combining our findings with supplementary data.
Collapse
|
17
|
Zhang L, Bai X, Wang R, Xu L, Ma J, Xu Y, Lu Z. Advancements in the studies of novel nanomaterials for inner ear drug delivery. Nanomedicine (Lond) 2022; 17:1463-1475. [PMID: 36189895 DOI: 10.2217/nnm-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hearing loss is currently one of the most prevalent sensory disorders worldwide. Because both the blood-labyrinth barrier and the limited blood circulation in the inner ear restrain the effective delivery of most drugs to the inner ear tissues, current treatments for hearing loss are limited to mainly medication, hearing devices and cochlear surgery for therapeutic purposes, whereas treatments lack a noninvasive targeted drug-delivery system. With the continuously rapid development of new nanomaterials, the nanodelivery systems are expected to provide a potentially effective method of clinical treatment for hearing loss. This paper reviews the advantages and disadvantages of the commonly used drug-delivery methods and novel nanomaterials for inner ears as well as advancements in the targeted treatment of hearing loss.
Collapse
Affiliation(s)
- Li Zhang
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Xiaohui Bai
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Lulu Xu
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Jingyu Ma
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Yue Xu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Zhiming Lu
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| |
Collapse
|
18
|
Advances on Delivery of Cytotoxic Enzymes as Anticancer Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123836. [PMID: 35744957 PMCID: PMC9230553 DOI: 10.3390/molecules27123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Cancer is one of the most serious human diseases, causing millions of deaths worldwide annually, and, therefore, it is one of the most investigated research disciplines. Developing efficient anticancer tools includes studying the effects of different natural enzymes of plant and microbial origin on tumor cells. The development of various smart delivery systems based on enzyme drugs has been conducted for more than two decades. Some of these delivery systems have been developed to the point that they have reached clinical stages, and a few have even found application in selected cancer treatments. Various biological, chemical, and physical approaches have been utilized to enhance their efficiencies by improving their delivery and targeting. In this paper, we review advanced delivery systems for enzyme drugs for use in cancer therapy. Their structure-based functions, mechanisms of action, fused forms with other peptides in terms of targeting and penetration, and other main results from in vivo and clinical studies of these advanced delivery systems are highlighted.
Collapse
|
19
|
Szabó I, Yousef M, Soltész D, Bató C, Mező G, Bánóczi Z. Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics 2022; 14:pharmaceutics14050907. [PMID: 35631493 PMCID: PMC9146218 DOI: 10.3390/pharmaceutics14050907] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
Cell-penetrating peptides (CPP) are promising tools for the transport of a broad range of compounds into cells. Since the discovery of the first members of this peptide family, many other peptides have been identified; nowadays, dozens of these peptides are known. These peptides sometimes have very different chemical–physical properties, but they have similar drawbacks; e.g., non-specific internalization, fast elimination from the body, intracellular/vesicular entrapment. Although our knowledge regarding the mechanism and structure–activity relationship of internalization is growing, the prediction and design of the cell-penetrating properties are challenging. In this review, we focus on the different modifications of well-known CPPs to avoid their drawbacks, as well as how these modifications may increase their internalization and/or change the mechanism of penetration.
Collapse
Affiliation(s)
- Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary;
- Correspondence: (I.S.); (Z.B.)
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Dóra Soltész
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Csaba Bató
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary;
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
- Correspondence: (I.S.); (Z.B.)
| |
Collapse
|
20
|
A review of glucoregulatory hormones potentially applicable to the treatment of Alzheimer’s disease: mechanism and brain delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Gupta N, Malviya R. Role of Polysaccharides Mimetic Components in Targeted Cancer Treatment. Curr Drug Targets 2022; 23:856-868. [PMID: 35156570 DOI: 10.2174/1389450123666220214121505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Organic or inorganic compounds are synthesized or formulated in a manner that they completely show their therapeutic actions like as a natural polysaccharide in the body. Polysaccharides, the major type of natural polymers, are efficiently biologically active, non-toxic, hydrophilic, and biodegradable and show various properties. In this manuscript, the main focus is on delivering anticancer drugs with the help of mimetic components of polysaccharides. All data collected for this manuscript was from PubMed, Elsevier, Taylor, and Francis Bentham science journals. Most chemotherapeutics are therapeutically toxin to the human body, have a narrow therapeutic index, sluggish pharmaceutical delivery mechanisms, and are poorly soluble in water. The use of mimetic components of polysaccharides leads to the enhancement of the solubility of drugs in the biological environment. The manuscript summarizes the use of mimetic components of polysaccharides along with anticancer agents which are capable to inhibit the growth of cancerous cells in the body which shows lesser adverse effects in the biological system compared to other therapies.
Collapse
Affiliation(s)
- Nandan Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Rusiecka I, Gągało I, Kocić I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue Barriers 2022; 10:1965418. [PMID: 34402743 PMCID: PMC8794253 DOI: 10.1080/21688370.2021.1965418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022] Open
Abstract
This review concentrates on the research concerning conjugates of anticancer drugs with versatile cell-penetrating peptides (CPPs). For a better insight into the relationship between the components of the constructs, it starts with the characteristic of the peptides and considers its following aspects: mechanisms of cellular internalization, interaction with cancer-modified membranes, selectivity against tumor tissue. Also, CPPs with anticancer activity have been distinguished and summarized with their mechanisms of action. With respect to the conjugates, the preclinical studies (in vitro, in vivo) indicated that they possess several merits in comparison to the parent drugs. They concerned not only better cellular internalization but also other improvements in pharmacokinetics (e.g. access to the brain tissue) and pharmacodynamics (e.g. overcoming drug resistance). The anticancer activity of the conjugates was usually superior to that of the unconjugated drug. Certain anticancer CPPs and conjugates entered clinical trials.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
23
|
The application progress of peptides in drug delivery systems in the past decade. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Liu Y, Chen L, Shi Q, Zhao Q, Ma H. Tumor Microenvironment-Responsive Polypeptide Nanogels for Controlled Antitumor Drug Delivery. Front Pharmacol 2021; 12:748102. [PMID: 34776965 PMCID: PMC8578677 DOI: 10.3389/fphar.2021.748102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Tumor microenvironment-responsive polypeptide nanogels belong to a biomaterial with excellent biocompatibility, easily adjustable performance, biodegradability, and non-toxic properties. They are developed for selective delivery of antitumor drugs into target organs to promote tumor cell uptake, which has become an effective measure of tumor treatment. Endogenous (such as reduction, reactive oxygen species, pH, and enzyme) and exogenous (such as light and temperature) responsive nanogels can release drugs in response to tumor tissues or cells to improve drug distribution and reduce drug side effects. This article systematically introduces the research progress in tumor microenvironment-responsive polypeptide nanogels to deliver antitumor drugs and provides a reference for the development of antitumor nanoformulations.
Collapse
Affiliation(s)
- Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Linjiao Chen
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Qingyang Shi
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Qing Zhao
- Department of Obstetrics, First Hospital, Jilin University, Changchun, China
| | - Hongshuang Ma
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Huang S, Ren D, Wu X, Li M, Yu X, Nie X, Wang Y, Wang Y. Glycyrrhetinic Acid and TAT Peptide Modified Dual-functional Liposomes for Treatment of Hepatocellular Cancer. Curr Top Med Chem 2021; 20:2493-2505. [PMID: 32703132 DOI: 10.2174/1568026620666200722110244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/15/2020] [Accepted: 03/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Surgery remains the front-line therapeutic strategy to treat early hepatocellular carcinoma (HCC). However, the 5-year recurrence rates of HCC patients are high. 10- Hydroxycamptothecin (10-HCPT) is a known anti-HCC agent but its poor solubility and bioavailability have limited its clinical use. OBJECTIVE In this study, we developed a novel nanoliposome encapsulated 10-hydroxycamptothecin modified with glycyrrhetinic acid (GA) and TAT peptide (GA/TAT-HCPT-LP) for the treatment of HCC. Dual modified GA and TAT can enhance tumor targeting and tumor penetration. METHODS The GA/TAT-HCPT-LP NPs were synthesized using the thin-film dispersion method. GA/TAT-HCPT-LP were characterized for particle size, zeta potential and morphology. Drug release from the GA/TAT-HCPT-LP liposomes was measured by dialysis. Cell-uptake was assessed by microscopy and flow cytometry. Cell proliferation, migration and apoptosis were measured to evaluate in vitro antitumor activity of GA/TAT-HCPT-LP via CCK-8 assays, Transwell assays, and flow cytometry, respectively. The in vivo distribution of GA/TAT-HCPT-LP was evaluated in HCC animal models. Tumor- bearing mouse models were used to assess the in vivo therapeutic efficacy of GA/TAT-HCPT-LP. RESULTS The mean particle size and mean zeta potential of GA/TAT-HCPT-LP were 135.55 ± 2.76 nm and -4.57 ± 0.23 mV, respectively. Transmission electron micrographs (TEM) showed that the GA/TAT-HCPT-LP had a near spherical shape and a double-membrane structure. GA/TAT-HCPT-LP led to slow and continuous drug release, and could bind to HepG2 cells more readily than other groups. Compared to control groups, treatment with GA/TAT-HCPT-LP had a significantly large effect on inhibiting cell proliferation, tumor cell migration and cell apoptosis. In vivo assays showed that GA/TATHCPT- LP selectively accumulated in tumor tissue with obvious antitumor efficacy. CONCLUSION In conclusion, the synthesized GA/TAT-HCPT-LP could effectively target tumor cells and enhance cell penetration, highlighting its potential for hepatocellular cancer therapy.
Collapse
Affiliation(s)
- Sixi Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006 Guangzhou, China
| | - Di Ren
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006 Guangzhou, China
| | - Xinrong Wu
- General Hospital of Southern Theater Command, PLA, 510006 Guangzhou, China
| | - Ming Li
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, China
| | - Xuesong Yu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, China
| | - Xiaoling Nie
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006 Guangzhou, China
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, 510006 Guangzhou, China
| | - Yan Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006 Guangzhou, China
| |
Collapse
|
26
|
Thankarajan E, Jadhav S, Luboshits G, Gellerman G, Patsenker L. Quantification of Drug Release Degree In Vivo Using Antibody-Guided, Dual-NIR-Dye Ratiometric System. Anal Chem 2021; 93:8265-8272. [PMID: 34080851 DOI: 10.1021/acs.analchem.1c01104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent dyes linked to drug delivery systems provide important real-time information on the efficacy of drug delivery. However, the quantitative monitoring of drug distribution is challenging because of interferences from the biological sample and instrumental setup. To improve quantification of anticancer drug delivery followed by drug release in tumor, we equipped an antibody-drug conjugate (ADC) with a turn-on near-infrared (NIR) dye, sensitive to drug release, and a reference NIR dye. In this study, chlorambucil (CLB) was chosen as a model anticancer drug and Trastuzumab monoclonal antibody specific to Her2 receptors overexpressed in many tumors was taken as the carrier. The advantage of the obtained dual-dye ratiometric system for drug release monitoring was demonstrated in mice model.
Collapse
Affiliation(s)
- Ebaston Thankarajan
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Suchita Jadhav
- Ariel Center for Applied Cancer Research, The Faculty of Engineering, Ariel University, Ariel 40700, Israel
| | - Galia Luboshits
- Ariel Center for Applied Cancer Research, The Faculty of Engineering, Ariel University, Ariel 40700, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
27
|
Wei Y, Zhang C, Zhang M, Niu Q, Hui F, Liu Z, Xu X. Insight of Synergistic Effect between CPP and Cargo on the Facilitation Mechanisms of R7-PTX Translocation: Experiments and Molecular Simulations. Eur J Pharm Sci 2021; 161:105790. [PMID: 33689859 DOI: 10.1016/j.ejps.2021.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022]
Abstract
In our previous study, a novel cell penetrating peptide (CPP) R7 (Arg-Arg-Arg-Arg-Arg-Trp-Trp, RRRRRWW) has been developed to help cellular internalization of paclitaxel (PTX) through the non-covalent interaction with CPP. However, the facilitation mechanism of R7 mediated PTX translocation is not clear. Here the uptake pathways of R7 and R7-PTX were investigated by in vitro test and molecular simulations. In vitro experiments reveal that both R7 and R7-PTX complex translocate through the direct translocation and clathrin mediated endocytosis and associate with the macropinocytosis pathway at high CPP concentration. The translocation of R7(0.1 mM)-PTX complex further involves the lipid raft/caveolae mediated endocytosis. The simulation results show that the synergistic effect between R7 and PTX not only changes the penetration energy barrier but also activates the macropinocytosis and lipid raft/caveolae mediated pathway, resulting in the improvement in the translocation. The presence of heparin also improves the R7 and R7-PTX translocation. These studies provide a theoretical basis for understanding PTX delivery facilitated by the synergistic effect between CPP and cargo and paves a way for CPP design.
Collapse
Affiliation(s)
- Yuping Wei
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan Province, 473061, P.R. China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Caiying Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan Province, 473061, P.R. China
| | - Man Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan Province, 473061, P.R. China; Department of Oncology, Nanyang First People's Hospital, Henan Province, 473002, P.R. China
| | - Qionghong Niu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan Province, 473061, P.R. China
| | - Fengli Hui
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan Province, 473061, P.R. China
| | - Zi Liu
- Biochemical Engineering Research Centre, Anhui University of Technology, Ma'anshan, Anhui Province, 243032, P.R. China; Department of Chemical Biology, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui Province, 243032, P.R. China
| | - Xia Xu
- Biochemical Engineering Research Centre, Anhui University of Technology, Ma'anshan, Anhui Province, 243032, P.R. China; Department of Chemical Biology, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui Province, 243032, P.R. China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China.
| |
Collapse
|
28
|
Setayesh-Mehr Z, Poorsargol M. Toxic proteins application in cancer therapy. Mol Biol Rep 2021; 48:3827-3840. [PMID: 33895972 DOI: 10.1007/s11033-021-06363-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Ribosome inactivating proteins (RIPs) as family of anti-cancer drugs recently received much attention due to their interesting anti-cancer mechanism. In spite of small drugs, RIPs use the large-size effect (LSE) to prevent the efflux process governed by drug resistance transporters (DRTs) which prevents inside of the cells against drug transfection. There are many clinical translation obstacles that severely restrict their applications especially their delivery approach to the tumor cells. As the main goal of this review, we will focus on trichosanthin (TCS) and gelonin (Gel) and other types, especially scorpion venom-derived RIPs to clarify that they are struggling with what types of bio-barriers and these challenges could be solved in cancer therapy science. Then, we will try to highlight recent state-of-the-arts in delivery of RIPs for cancer therapy.
Collapse
Affiliation(s)
- Zahra Setayesh-Mehr
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.
| | - Mahdiye Poorsargol
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
29
|
Vurro F, Jabalera Y, Mannucci S, Glorani G, Sola-Leyva A, Gerosa M, Romeo A, Romanelli MG, Malatesta M, Calderan L, Iglesias GR, Carrasco-Jiménez MP, Jimenez-Lopez C, Perduca M. Improving the Cellular Uptake of Biomimetic Magnetic Nanoparticles. NANOMATERIALS 2021; 11:nano11030766. [PMID: 33803544 PMCID: PMC8002967 DOI: 10.3390/nano11030766] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
Magnetococcus marinus magnetosome-associated protein MamC, expressed as recombinant, has been proven to mediate the formation of novel biomimetic magnetic nanoparticles (BMNPs) that are successful drug nanocarriers for targeted chemotherapy and hyperthermia agents. These BMNPs present several advantages over inorganic magnetic nanoparticles, such as larger sizes that allow the former to have larger magnetic moment per particle, and an isoelectric point at acidic pH values, which allows both the stable functionalization of BMNPs at physiological pH value and the molecule release at acidic (tumor) environments, simply based on electrostatic interactions. However, difficulties for BMNPs cell internalization still hold back the efficiency of these nanoparticles as drug nanocarriers and hyperthermia agents. In the present study we explore the enhanced BMNPs internalization following upon their encapsulation by poly (lactic-co-glycolic) acid (PLGA), a Food and Drug Administration (FDA) approved molecule. Internalization is further optimized by the functionalization of the nanoformulation with the cell-penetrating TAT peptide (TATp). Our results evidence that cells treated with the nanoformulation [TAT-PLGA(BMNPs)] show up to 80% more iron internalized (after 72 h) compared to that of cells treated with BMNPs (40%), without any significant decrease in cell viability. This nanoformulation showing optimal internalization is further characterized. In particular, the present manuscript demonstrates that neither its magnetic properties nor its performance as a hyperthermia agent are significantly altered due to the encapsulation. In vitro experiments demonstrate that, following upon the application of an alternating magnetic field on U87MG cells treated with BMNPs and TAT-PLGA(BMNPs), the cytotoxic effect of BMNPs was not affected by the TAT-PLGA enveloping. Based on that, difficulties shown in previous studies related to poor cell uptake of BMNPs can be overcome by the novel nanoassembly described here.
Collapse
Affiliation(s)
- Federica Vurro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia Mannucci
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Giulia Glorani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (A.S.-L.); (M.P.C.-J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Marco Gerosa
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Alessandro Romeo
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Guillermo R. Iglesias
- Department of Applied Physic, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - María P. Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (A.S.-L.); (M.P.C.-J.)
| | - Concepcion Jimenez-Lopez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
- Correspondence: (C.J.-L.); (M.P.); Tel.: +34-958-249-833 (C.J.-L.); +39-045-802-7984 (M.P.)
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
- Correspondence: (C.J.-L.); (M.P.); Tel.: +34-958-249-833 (C.J.-L.); +39-045-802-7984 (M.P.)
| |
Collapse
|
30
|
Kitamatsu M, Yuasa H, Ohtsuki T, Michiue H. Complementary leucine zippering system for effective intracellular delivery of proteins by cell-penetrating peptides. Bioorg Med Chem 2021; 33:116036. [PMID: 33497939 DOI: 10.1016/j.bmc.2021.116036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
A heterodimeric leucine zipper composed of a pair of leucine zipper peptides containing acidic or basic amino acid residues at appropriate positions in each peptide was used as a molecular glue to connect protein cargos to a cell-penetrating peptide (CPP) carrier. To investigate the hybridization properties by fluorescence experiments, we prepared an enhanced green fluorescent protein (EGFP) fused with an acidic leucine zipper (LzK), EGFP-LzK, and a basic leucine zipper (LzE) modified with a CPP, LzE-CPP. The LzK and LzE formed a 1:1 hybrid when EGFP-LzK and LzE-CPP were mixed in phosphate buffer saline, thereby conjugating the EGFP with the CPP. The formation of the 1:1 hybrid was confirmed by fluorescence spectra and fluorescence titration curves. Results from fluorescence microscopy experiments showed that EGFP was successfully delivered into cells by conjugating with the CPP via formation of the LzK/LzE hybrid. We also fused the apoptotic protein p53 with LzK (p53-LzK) and investigated the inhibition of cell proliferation of various cell lines by incubation with the p53-LzK/LzE-CPP hybrid. This hybrid was found to localize in nuclei and successfully inhibited cell-specific proliferation. The LzE/LzK zipper system inhibited cell proliferation more efficiently than the directly fused conjugate, p53-CPP. Our method will be a useful drug delivery system for delivering bioactive proteins to treat various diseases.
Collapse
Affiliation(s)
- Mizuki Kitamatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Hiroki Yuasa
- Department of Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, kita-ku, Okayama 700-8558, Japan
| | - Takashi Ohtsuki
- Department of Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
31
|
Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. Methods 2020; 191:87-94. [PMID: 32717290 DOI: 10.1016/j.ymeth.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
Cre-loxP recombination system is a powerful tool for genome engineering. One of its applications is found in genetic mouse models that often require to induce Cre recombination in preimplantation embryos. Here, we describe a technically simple, affordable and highly efficient protocol for Cre protein delivery into mouse zygotes by electroporation. We show that electroporation based delivery of Cre has no negative impact on embryo survival and the method can be easily combined with in vitro fertilization resulting in a significantly faster generation of desired models. Lastly, we demonstrate that Cre protein electroporation is suitable for allelic conversion in primary cells derived from conditional mouse models.
Collapse
|
32
|
Priwitaningrum DL, Jentsch J, Bansal R, Rahimian S, Storm G, Hennink WE, Prakash J. Apoptosis-inducing peptide loaded in PLGA nanoparticles induces anti-tumor effects in vivo. Int J Pharm 2020; 585:119535. [PMID: 32534162 DOI: 10.1016/j.ijpharm.2020.119535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 01/17/2023]
Abstract
Induction of apoptosis in tumor cells specifically within the complex tumor microenvironment is highly desirable to kill them efficiently and to enhance the effects of chemotherapy. Second mitochondria-derived activator of caspase (Smac) is a key pro-apoptotic pathway which can be activated with a Smac mimetic peptide. However, in vivo application of peptides is hampered by several limitations such as poor pharmacokinetics, rapid elimination, enzymatic degradation, and insufficient intracellular delivery. In this study, we developed a nanosystem to deliver a Smac peptide to tumor by passive targeting. We first synthesized a chimeric peptide that consists of the 8-mer Smac peptide and a 14-mer cell penetrating peptide (CPP) and then encapsulated the Smac-CPP into polymeric nanoparticles (Smac-CPP-NPs). In vitro, Smac-CPP-NPs were rapidly internalized by 4T1 mammary tumor cells and subsequently released Smac-CPP into the cells, as shown with fluorescence microscopy. Furthermore, Smac-CPP-NPs induced apoptosis in tumor cells, as confirmed with cell viability and caspase 3/7 assays. Interestingly, combination of Smac-CPP-NPs with doxorubicin (dox), a clinically used cytostatic drug, showed combined effects in vitro in 4T1 cells. The effect was significantly better than that of SMAC-CPP-NPs alone as well as empty nanoparticles and dox. In vivo, co-treatment with Smac-CPP-NPs and free dox reduced the tumor growth to 85%. Furthermore, the combination of Smac-CPP-NPs and free dox showed reduced proliferating tumor cells (Ki-67 staining) and increased apoptotic cells (cleaved caspase-3 staining) in tumors. In conclusion, the present study demonstrates that the intracellular delivery of Smac-mimetic peptide using nanoparticle system can be an interesting strategy to attenuate the tumor growth and to potentiate the therapeutic efficacy of chemotherapy in vivo.
Collapse
Affiliation(s)
- Dwi L Priwitaningrum
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Faculty of Pharmacy, University of Sumatera Utara, Medan, Indonesia
| | - Julian Jentsch
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Sima Rahimian
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sumatera Utara, Medan, Indonesia
| | - Jai Prakash
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
33
|
Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol 2020; 11:697. [PMID: 32508641 PMCID: PMC7251059 DOI: 10.3389/fphar.2020.00697] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides (fewer than 30 amino acids) that have been predominantly used in basic and preclinical research during the last 30 years. Since they are not only capable of translocating themselves into cells but also facilitate drug or CPP/cargo complexes to translocate across the plasma membrane, they have potential applications in the disease diagnosis and therapy, including cancer, inflammation, central nervous system disorders, otologic and ocular disorders, and diabetes. However, no CPPs or CPP/cargo complexes have been approved by the US Food and Drug Administration (FDA). Many issues should be addressed before translating CPPs into clinics. In this review, we summarize recent developments and innovations in preclinical studies and clinical trials based on using CPP for improved delivery, which have revealed that CPPs or CPP-based delivery systems present outstanding diagnostic therapeutic delivery potential.
Collapse
Affiliation(s)
- Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
34
|
Abstract
The development of peptide-based drugs, which are usually synthetic analogues of endogenous peptides, is currently one of the most topical directions in drug development. Among them, antitumor peptide-based drugs are of great interest. Anticancer peptides can be classified into three main groups based on their mechanism of action: inhibitory, necrosis-inducing and pro-apoptotic peptides. As an antitumor therapy, peptides are considered to have at least the same efficacy as chemotherapy or surgical treatment, but offer advantages in terms of safety and tolerability, given that chemotherapy is usually characterized by severe adverse effects, and surgery carries additional risks for patients. Short peptides have a number of benefits over other molecules. First, compared with full-length proteins and antibodies, short peptides are less immunogenic, more stable ex-vivo (prolonged storage at room temperature), and have better tumor or organ permeability. Moreover, the production of such short peptide-based drugs is more cost effective. Second, in comparison with small organic molecules, peptides have higher efficacy and specificity. Finally, due to the fact that the main products of peptide metabolism are amino acids, these drugs are usually characterized by lower toxicity. Short peptides have a highly selective mechanism of action, thereby demonstrating low toxicity. Furthermore, with the addition of different stabilizing structural modifications, as well as novel drug delivery systems, the peptide-based drugs are proving to be promising therapeutics for cancer mono- or polytherapy. However, challenges remain including that endogenous and synthetic peptide molecules can be oncogenic. Therefore, it is important to investigate whether peptides contribute to tumor growth. In order to answer such questions, numerous preclinical and clinical studies of peptide-based therapeutics are currently being conducted.
Collapse
|
35
|
Bhatt H, Ghosh B, Biswas S. Cell-Penetrating Peptide and α-Tocopherol-Conjugated Poly(amidoamine) Dendrimers for Improved Delivery and Anticancer Activity of Loaded Paclitaxel. ACS APPLIED BIO MATERIALS 2020; 3:3157-3169. [DOI: 10.1021/acsabm.0c00179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| |
Collapse
|
36
|
Saung MT, Ke X, Howard GP, Zheng L, Mao HQ. Particulate carrier systems as adjuvants for cancer vaccines. Biomater Sci 2020; 7:4873-4887. [PMID: 31528923 DOI: 10.1039/c9bm00871c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To overcome the immunosuppressive milieu of malignancy and lack of well-defined antigens, potent adjuvants are needed for cancer immunotherapy. Numerous small molecular immunomodulators have the potential to fulfill this role. To enhance the immune response and decrease the toxicity, particulate systems including nanoparticles and macroparticles have been increasingly proposed as carriers for cancer antigen and adjuvant delivery. These systems have the potential to co-deliver the antigens and adjuvants simultaneously in the same particle. In addition, the particles can be engineered for localized and targeted delivery, whether it be to the cellular or sub-cellular level. These properties limit systemic side effects and improve delivery efficiency, and thus enhance the vaccine's immune response. In particular, the particles can be constructed to mimic the size and surface patterns of microbes, organisms to which we have evolved a strong immune response. The release characteristics of the particles can likewise be controlled to simulate the body's response to infections. Boosting the immune response of vaccines by virtue of their intrinsic immunostimulatory properties, these particles can be dosing-sparing and have the potential to reduce production cost of vaccines. As the interest in personalized cancer vaccines increases with their encouraging outcomes in clinical trials, particulate carrier systems have the potential to play an important role in optimizing cancer vaccines.
Collapse
Affiliation(s)
- May Tun Saung
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
37
|
Robinson K, Tiriveedhi V. Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Front Oncol 2020; 10:265. [PMID: 32195185 PMCID: PMC7066112 DOI: 10.3389/fonc.2020.00265] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Development of multidrug resistance (MDR) still remains a major obstacle to the long-term success of cancer therapy. P-glycoprotein (P-gp) is a well-identified membrane transporter with capability to efflux drug molecules out of the cancer cell leading to reduced efficiency of chemotherapy. Cancer cells upregulate P-gp expression as an adaptive response to evade chemotherapy mediated cell death. While several P-gp inhibitors have been discovered by in silico and pre-clinical studies, very few have successfully passed all phases of the clinical trials. Studies show that application of P-gp inhibitors in cancer therapy regimen following development of MDR achieved limited beneficial outcomes. While, the non-specific substrate binding to P-gp has made the drug-design a challenge, a bigger perplexing challenge comes from its role in tumor immunology. Expression of P-gp was noted immune cell phenotypes with apparently antagonistic functionality. Both pro-tumor MΦ2-macrophages and, anti-tumor NK-cell and Th17/CD4+T cell subsets have shown enhanced expression of P-gp. While drug based inhibition of P-gp in pro-tumor immune cell phenotypes could promote tumor elimination, however, it would not be a rational choice to exert inhibition of P-gp on anti-tumor immune cell phenotypes. This mutually exclusive paradigm of P-gp functionality requires a more comprehensive and detailed understanding of its role in tumor microenvironment with active interplay of cancer and immune cells in the tumor mileu. In this review, we focus on the current understanding of the role of P-gp in cancer cells and immune cells and finally attempt to highlight some caveats in the current understanding of its role in comprehensive tumor microenvironment along with challenges in the development of P-gp inhibitors toward anti-cancer therapy.
Collapse
Affiliation(s)
- Kianna Robinson
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
38
|
Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:101-123. [PMID: 31976201 PMCID: PMC6964662 DOI: 10.3762/bjnano.11.10] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/18/2019] [Indexed: 05/19/2023]
Abstract
In today's modern era of medicine, macromolecular compounds such as proteins, peptides and nucleic acids are dethroning small molecules as leading therapeutics. Given their immense potential, they are highly sought after. However, their application is limited mostly due to their poor in vivo stability, limited cellular uptake and insufficient target specificity. Cell-penetrating peptides (CPPs) represent a major breakthrough for the transport of macromolecules. They have been shown to successfully deliver proteins, peptides, siRNAs and pDNA in different cell types. In general, CPPs are basic peptides with a positive charge at physiological pH. They are able to translocate membranes and gain entry to the cell interior. Nevertheless, the mechanism they use to enter cells still remains an unsolved piece of the puzzle. Endocytosis and direct penetration have been suggested as the two major mechanisms used for internalization, however, it is not all black and white in the nanoworld. Studies have shown that several CPPs are able to induce and shift between different uptake mechanisms depending on their concentration, cargo or the cell line used. This review will focus on the major internalization pathways CPPs exploit, their characteristics and regulation, as well as some of the factors that influence the cellular uptake mechanism.
Collapse
Affiliation(s)
- Ivana Ruseska
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
| |
Collapse
|
39
|
Asrorov AM, Gu Z, Min KA, Shin MC, Huang Y. Advances on Tumor-Targeting Delivery of Cytotoxic Proteins. ACS Pharmacol Transl Sci 2019; 3:107-118. [PMID: 32259092 DOI: 10.1021/acsptsci.9b00087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Indexed: 12/11/2022]
Abstract
Great attention has been paid to cytotoxic proteins (e.g., ribosome-inactivating proteins, RIPs) possessing high anticancer activities; unlike small drugs, cytotoxic proteins can effectively retain inside the cells and avoid drug efflux mediated by multidrug resistance transporters due to the large-size effect. However, the clinical translation of these proteins is severely limited because of various biobarriers that hamper their effective delivery to tumor cells. Hence, in order to overcome these barriers, many smart drug delivery systems (DDS) have been developed. In this review, we will introduce two representative type I RIPs, trichosanthin (TCS) and gelonin (Gel), and overview the major biobarriers for protein-based cancer therapy. Finally, we outline advances on the development of smart DDS for effective delivery of these cytotoxic proteins for various applications in cancer treatment.
Collapse
Affiliation(s)
- Akmal M Asrorov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 83, M. Ulughbek Street, Tashkent 100125, Uzbekistan
| | - Zeyun Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Korea
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
40
|
Bhatt H, Kiran Rompicharla SV, Ghosh B, Torchilin V, Biswas S. Transferrin/α-tocopherol modified poly(amidoamine) dendrimers for improved tumor targeting and anticancer activity of paclitaxel. Nanomedicine (Lond) 2019; 14:3159-3176. [PMID: 31855118 PMCID: PMC6939222 DOI: 10.2217/nnm-2019-0128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aim: Transferrin anchored, poly(ethylene glycol) (PEG) and α-tocopheryl succinate (α-TOS) conjugated generation 4 dendrimer has been prepared in order to develop a tumor targeted delivery system of a hydrophobic chemotherapeutic agent, paclitaxel (PTX). Materials & methods: The dendrimers were characterized physicochemically for size, ζ and encapsulation ability. The cellular uptake, cytotoxicity potential and apoptosis of prepared nanoconstruct were evaluated in human cervical epithelial cells monolayer and 3D spheroids. Results & conclusion: G4-TOS-PEG-Tf demonstrated increased cellular uptake, cytotoxicity and apoptotic potential of PTX compared with free PTX and G4-TOS-PEG-PTX. G4-TOS-PEG-Tf-PTX inhibited growth of human cervical epithelial cells spheroids significantly. The newly developed dendrimers hold promise as an efficient delivery system for PTX or other hydrophobic chemotherapeutic agents for targeted delivery to tumors.
Collapse
Affiliation(s)
- Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology & Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India,Author for correspondence: Tel.: +91 40 66303630;
| |
Collapse
|
41
|
Gong Z, Doolin MT, Adhikari S, Stroka KM, Karlsson AJ. Role of charge and hydrophobicity in translocation of cell‐penetrating peptides into
Candida albicans
cells. AIChE J 2019. [DOI: 10.1002/aic.16768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zifan Gong
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
| | - Mary T. Doolin
- Fischell Department of Bioengineering University of Maryland College Park Maryland
| | - Sayanee Adhikari
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering University of Maryland College Park Maryland
| | - Amy J. Karlsson
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
- Fischell Department of Bioengineering University of Maryland College Park Maryland
| |
Collapse
|
42
|
Covalent conjugates of granulin-epithelial precursor-siRNA with arginine-rich peptide for improved stability and intracellular delivery in hepatoma cells. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0028-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Ramírez PG, Del Pópolo MG, Vila JA, Szleifer I, Longo GS. Adsorption and insertion of polyarginine peptides into membrane pores: The trade-off between electrostatics, acid-base chemistry and pore formation energy. J Colloid Interface Sci 2019; 552:701-711. [PMID: 31176053 DOI: 10.1016/j.jcis.2019.05.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022]
Abstract
The mechanism that arginine-rich cell penetrating peptides (ARCPPs) use to translocate lipid membranes is not entirely understood. In the present work, we develop a molecular theory that allows to investigate the adsorption and insertion of ARCPPs on membranes bearing hydrophilic pores. This method accounts for size, shape, conformation, protonation state and charge distribution of the peptides; it also describes the state of protonation of acidic membrane lipids. We present a systematic investigation of the effect of pore size, peptide concentration and sequence length on the extent of peptide adsorption and insertion into the pores. We show that adsorption on the intact (non-porated) lipid membrane plays a key role on peptide translocation. For peptides shorter than nona-arginine, adsorption on the intact membrane increases significantly with chain length, but it saturates for longer peptides. However, this adsorption behavior only occurs at relatively low peptide concentrations; increasing peptide concentration favors adsorption of the shorter molecules. Adsorption of longer peptides increases the intact membrane negative charge as a result of further deprotonation of acidic lipids. Peptide insertion into the pores depends non-monotonically on pore radius, which reflects the short range nature of the effective membrane-peptide interactions. The size of the pore that promotes maximum adsorption depends on the peptide chain length. Peptide translocation is a thermally activated process, so we complement our thermodynamic approach with a simple kinetic model that allows to rationalize the ARCPPs translocation rate in terms of the free energy gain of adsorption, and the energy cost of creating a transmembrane pore with peptides in it. Our results indicate that strategies to improve translocation efficiency should focus on enhancing peptide adsorption.
Collapse
Affiliation(s)
- Pedro G Ramírez
- Instituto de Matemática Aplicada San Luis (IMASL), UNSL-CONICET, San Luis, Argentina
| | - Mario G Del Pópolo
- IICB-CONICET & Facultad de Ciencias Exactas y Naturales (FCEN), UNCuyo, Mendoza, Argentina
| | - Jorge A Vila
- Instituto de Matemática Aplicada San Luis (IMASL), UNSL-CONICET, San Luis, Argentina
| | - I Szleifer
- Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston IL, USA
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| |
Collapse
|
44
|
Pottash AE, Kuffner C, Noonan-Shueh M, Jay SM. Protein-based vehicles for biomimetic RNAi delivery. J Biol Eng 2019; 13:19. [PMID: 30891095 PMCID: PMC6390323 DOI: 10.1186/s13036-018-0130-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022] Open
Abstract
Broad translational success of RNA interference (RNAi) technology depends on the development of effective delivery approaches. To that end, researchers have developed a variety of strategies, including chemical modification of RNA, viral and non-viral transfection approaches, and incorporation with delivery vehicles such as polymer- and lipid-based nanoparticles, engineered and native proteins, extracellular vesicles (EVs), and others. Among these, EVs and protein-based vehicles stand out as biomimetically-inspired approaches, as both proteins (e.g. Apolipoprotein A-1, Argonaute 2, and Arc) and EVs mediate intercellular RNA transfer physiologically. Proteins specifically offer significant therapeutic potential due to their biophysical and biochemical properties as well as their ability to facilitate and tolerate manipulation; these characteristics have made proteins highly successful translational therapeutic molecules in the last two decades. This review covers engineered protein vehicles for RNAi delivery along with what is currently known about naturally-occurring extracellular RNA carriers towards uncovering design rules that will inform future engineering of protein-based vehicles.
Collapse
Affiliation(s)
- Alex Eli Pottash
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Christopher Kuffner
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Madeleine Noonan-Shueh
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Steven M Jay
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA.,2Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA.,3Program in Molecular and Cellular Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
45
|
Ho K, Morfin C, Slowinska K. The Limitations of Collagen/CPP Hybrid Peptides as Carriers for Cancer Drugs to FaDu Cells. Molecules 2019; 24:E676. [PMID: 30769789 PMCID: PMC6412366 DOI: 10.3390/molecules24040676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 01/20/2023] Open
Abstract
The in vitro efficacy of cancer prodrugs varies significantly between malignant cell lines. The most commonly identified problems relate to delivery: uptake mechanism, endosomal entrapment, and drug release. Here we present the study of collagen/cell penetrating hybrid (COL/CPP) peptide carriers intended to deliver paclitaxel to the hypopharyngeal carcinoma (FaDu) cells. Confocal microscopy imaging revealed the surprising response of FaDu cell to COL/CPP in comparison to previously studied cancer cell lines: hybrid peptides that carry both COL and CPP domain adsorb on the FaDu cell surface. While the CPP domain was design to facilitate the cellular uptake, in the case of FaDu cells, it also induced detrimental interactions with the cell membrane. Despite surface adsorption, the colocalization study with endosomal markers EEA1 and LAMP1 reveals that COL/CPP is internalized via endosomal pathway, peptides are able to escape before lysosome formation and release paclitaxel. Therefore, the main obstacle for paclitaxel delivery to FaDu cells appears to be related to cell surface properties. This behavior seems specific to FaDu cells, and could be linked to previously reported overexpression of T5, heparanase splice variants that produces protein lacking enzymatic activity of heparanase. This results in increased concentration of HSPG on FaDu cell surface, and possibly creates a barrier for cellular uptake of highly charged COL/CPP.
Collapse
Affiliation(s)
- Kevin Ho
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
| | - Cristobal Morfin
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
| | - Katarzyna Slowinska
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
| |
Collapse
|
46
|
Al-azzawi S, Masheta D. Designing a drug delivery system for improved tumor treatment and targeting by functionalization of a cell-penetrating peptide. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-018-00424-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Rasoolian M, Kheirollahi M, Hosseini SY. MDA-7/interleukin 24 (IL-24) in tumor gene therapy: application of tumor penetrating/homing peptides for improvement of the effects. Expert Opin Biol Ther 2019; 19:211-223. [PMID: 30612497 DOI: 10.1080/14712598.2019.1566453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION MDA-7/Interleukin-24 (IL-24), as a pleiotropic cytokine, exhibits a specific tumor suppression property that has attracted a great deal of attention. While its anti-tumor induction is mostly attributed to endogenous gene expression, attachment of secreted MDA-7/IL-24 to cognate receptors also triggers the death of cancerous cell via different pathways. Therefore, precise targeting of secreted MDA-7/IL-24 to tumor cells would render it more efficacy and specificity. AREAS COVERED In order to target soluble cytokines, particularly MDA-7/IL-24 to the neighbor tumor sites and enhance their therapeutic efficiency, fusing with cell penetrating peptides (CPPs) or Tumor homing peptides (THPs) seems logical due to the improvement of their bystander effects. Although the detailed anti-tumor mechanisms of endogenous mda-7/IL-24 have been largely investigated, the significance of the secreted form in these activities and methods of its improving by CPPs or THPs need more discussion. EXPERT OPINION While the employment of CPPs/THPs for the improvement of cytokine gene therapy is desirable, to create fusions of CPPs/THPs with MDA-7/IL-24, some hurdles are not avoidable. Regarding our expertise, herein, the importance of CPPs/THPs, needs for their elegant designing in a fusion structure, and their applications in cytokine gene therapy are discussed with a special focus on mda-7/IL-24.
Collapse
Affiliation(s)
- Mohammad Rasoolian
- a Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Majid Kheirollahi
- a Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran.,b Department of Genetics and Molecular Biology, Pediatrics Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Seyed Younes Hosseini
- c Bacteriology and Virology Department, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
48
|
Bellat V, Ting R, Southard TL, Vahdat L, Molina H, Fernandez J, Aras O, Stokol T, Law B. Functional Peptide Nanofibers with Unique Tumor Targeting and Enzyme-Induced Local Retention Properties. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1803969. [PMID: 30505260 PMCID: PMC6261308 DOI: 10.1002/adfm.201803969] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Indexed: 05/19/2023]
Abstract
An effective tumoral delivery system should show minimal removal by the reticuloendothelial system (RES), promote tumor uptake and penetration, and minimize on-site clearance. This study reports the design and synthesis of advanced self-assembling peptide nanofiber precursor (NFP) analogues. The peptidic nature of NFP offers the design flexibility for on-demand customization with imaging agents and surface charges while maintaining a set size, allowing for real-time monitoring of kinetic and dynamic tumoral delivery by multimodal fluorescence/positron emission tomography/computed tomography (fluo/PET/CT) imaging, for formulation optimization. The optimized glutathione (GSH)-NFP displays a reduced capture by the RES as well as excellent tumor targeting and tissue invasion properties compared to naive NFP. Inside a tumor, GSH-NFP can structurally transform into ten times larger interfibril networks, serving as in situ depot that promotes weeks-long local retention. This nanofiber, which can further be designed to release the active pharmacophores within a tumor microenvironment, displays a superior therapeutic efficacy for inhibiting disease progression and improving the survival of animals bearing triple-negative breast cancer tumors compared to free drug and liposome formulation of the drug, in addition to a favorable toxicity profile.
Collapse
Affiliation(s)
- Vanessa Bellat
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69 Street, New York, NY 10021, USA,
| | - Richard Ting
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69 Street, New York, NY 10021, USA,
| | - Teresa L Southard
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Upper Tower Road, Ithaca, New York, NY 14853, USA
| | - Linda Vahdat
- Breast Medicine, Memorial Sloan-Kettering Cancer Center, 300 East 66 Street, New York, NY 10065, USA
| | - Henrik Molina
- Proteomic Resource Center, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Joseph Fernandez
- Proteomic Resource Center, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Omer Aras
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Upper Tower Road, Ithaca, New York, NY 14853, USA
| | - Benedict Law
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69 Street, New York, NY 10021, USA,
| |
Collapse
|
49
|
GRP75 modulates oncogenic Dbl-driven endocytosis derailed via the CHIP-mediated ubiquitin degradation pathway. Cell Death Dis 2018; 9:971. [PMID: 30250167 PMCID: PMC6155137 DOI: 10.1038/s41419-018-1039-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
Abstract
Chaperone-assisted proteasome degradation of oncogenic protein acts as an upstream signal controlling tumorigenesis and progression. The understanding of the co-regulation of chaperone and oncoprotein of endocytosis pathways is extremely limited. In this study, we showed for the first time that proto-Dbl (dbl proto-oncogene product) is co-enriched with mitochondrial chaperone GRP75 in endocytosis vesicles from ovarian cancer cells. onco-Dbl, produced by oncogenic mutation/degradation of proto-Dbl, markedly enhanced cellular macropinocytosis but suppressed clathrin-mediated endocytosis and clathrin-independent endocytosis pathways, presenting a derailed endocytosis phenotype. GRP75 was associated with proto-Dbl inside cells and modulated Dbl-driven endocytosis derailed by a co-regulatory mode. In spite of not being a component of the Hsc70/Hsp90/proto-Dbl complex, the degradation of proto-Dbl was promoted by GRP75 through the CHIP-mediated ubiquitin–proteasome pathway, of which GRP75 acts as a cooperator with CHIP but also acts as a competitor to Hsc70 and Hsp90 in the multiple chaperones-assisted pro-folding/pro-degradation machinery. Knockdown or inhibition of GRP75 attenuated proto-Dbl degradation and reduced the onco-Dbl level, which differentially impaired Rho GTPases activation and therefore shifted the endocytosis-derailed phenotype. Our data uncovered a novel GRP75-Dbl endocytosis regulatory axis and provided an alternative using chaperone inhibitor to shut down the oncoprotein-driven endocytosis derailment mechanism.
Collapse
|
50
|
Niu X, Gao Z, Qi S, Su L, Yang N, Luan X, Li J, Zhang Q, An Y, Zhang S. Macropinocytosis activated by oncogenic Dbl enables specific targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. Int J Nanomedicine 2018; 13:4895-4911. [PMID: 30214196 PMCID: PMC6122892 DOI: 10.2147/ijn.s171361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Successful implementation of gene therapy heavily relies on efficiently delivering genetic materials and specific targeting into cells. Oncogene-driven endocytosis stimulates nutrient uptake and also develops an endocytosis-mediated defense against therapeutic agents. Cell-penetrating peptides, typically HIV-Tat, are well known for efficient delivery of nucleic acid drugs but lack targeting specificity. Various passive targeting strategies were pursued to enhance the tumor targeting efficiency; however, they are still limited by complicated cellular endocytosis routes and the heterogeneity of cancer types. METHODS Tat/pDNA complexes were noncovalently compacted and their physiochemical properties were determined. The siRNA pool and pLV-RNAi-GFP lentivirus were used to knock down dbl oncogene (originally isolated from diffuse B-cell lymphoma) expression, and its overexpression was performed by plasmid transient transfection. The cellular uptake of fluorescent ligands was quantified by confocal imaging and flow cytometry analysis. The transgene efficiency was determined by the Luciferase expression assay. Rho GTPase activation was checked by the GST-Rho GTPase-binding domain pull-down assay. RESULTS pGL3 plasmid DNA was noncovalently compacted with the Tat peptide into nano-size complexes at high N/P ratios. Macropinocytosis, a clathrin- and caveolin-independent endocytosis process, was shown to contribute to the uptake of middle-sized (∼600 nm) Tat/pGL3 complexes. Cell-type-specific variation in macropinocytosis was essentially controlled by the action of the Dbl oncogene. Onco-Dbl presentation constantly induced a high level of macropinocytosis activity in ovarian cancer cells. Onco-Dbl overexpression hyperstimulated macropinocytosis enhancement in cells mainly through actin cytoskeleton reorganization mediated by the PH domain and Rac1 activation. The Dbl-driven Rho GTPase signaling collectively determined the cell-type-specific macropinocytosis phenotype. CONCLUSION Such an aspect can be exploited to selectively confer targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. Our work provides a novel alternative for targeted delivery of cell-penetrating peptide-based nucleic acid drugs into certain tumor types if specific endocytosis pathways are used.
Collapse
Affiliation(s)
- Xiuran Niu
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Zhihui Gao
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Shanshan Qi
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Linjia Su
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Nan Yang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Xiuli Luan
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Jia Li
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Qing Zhang
- Department of Clinical Laboratory, Cancer Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| |
Collapse
|