1
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
2
|
Pan ZZ, Lv W, Yang QH, Nishihara H. Aligned Macroporous Monoliths by Ice-Templating. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Wei Lv
- Shenzhen Geim Graphene Center, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Quan-Hong Yang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- Institute of Multidisciplinary Research for Advance Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
3
|
Vila-Parrondo C, García-Astrain C, Liz-Marzán LM. Colloidal systems toward 3D cell culture scaffolds. Adv Colloid Interface Sci 2020; 283:102237. [PMID: 32823220 DOI: 10.1016/j.cis.2020.102237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Three-dimensional porous scaffolds are essential for the development of tissue engineering and regeneration, as biomimetic supports to recreate the microenvironment present in natural tissues. To successfully achieve the growth and development of a specific kind of tissue, porous matrices should be able to influence cell behavior by promoting close cell-cell and cell-matrix interactions. To achieve this goal, the scaffold must fulfil a set of conditions, including ordered interconnected porosity to promote cell diffusion and vascularization, mechanical strength to support the tissue during continuous ingrowth, and biocompatibility to avoid toxicity. Among various building approaches to the construction of porous matrices, selected strategies afford hierarchical scaffolds with such defined properties. The control over porosity, microstructure or morphology, is crucial to the fabrication of high-end, reproducible scaffolds for the target application. In this review, we provide an insight into recent advances toward the colloidal fabrication of hierarchical scaffolds. After identifying the main requirements for scaffolds in biomedical applications, conceptual building processes are introduced. Examples of tissue regeneration applications are provided for different scaffold types, highlighting their versatility and biocompatibility. We finally provide a prospect about the current state of the art and limitations of porous scaffolds, along with challenges that are to be addressed, so these materials consolidate in the fields of tissue engineering and drug delivery.
Collapse
|
4
|
Gerasimenko AY, Zhurbina NN, Cherepanova NG, Semak AE, Zar VV, Fedorova YO, Eganova EM, Pavlov AA, Telyshev DV, Selishchev SV, Glukhova OE. Frame Coating of Single-Walled Carbon Nanotubes in Collagen on PET Fibers for Artificial Joint Ligaments. Int J Mol Sci 2020; 21:ijms21176163. [PMID: 32859107 PMCID: PMC7503285 DOI: 10.3390/ijms21176163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
The coating formation technique for artificial knee ligaments was proposed, which provided tight fixation of ligaments of polyethylene terephthalate (PET) fibers as a result of the healing of the bone channel in the short-term period after implantation. The coating is a frame structure of single-walled carbon nanotubes (SWCNT) in a collagen matrix, which is formed by layer-by-layer solidification of an aqueous dispersion of SWCNT with collagen during spin coating and controlled irradiation with IR radiation. Quantum mechanical method SCC DFTB, with a self-consistent charge, was used. It is based on the density functional theory and the tight-binding approximation. The method established the optimal temperature and time for the formation of the equilibrium configurations of the SWCNT/collagen type II complexes to ensure maximum binding energies between the nanotube and the collagen. The highest binding energies were observed in complexes with SWCNT nanometer diameter in comparison with subnanometer SWCNT. The coating had a porous structure-pore size was 0.5-6 μm. The process of reducing the mass and volume of the coating with the initial biodegradation of collagen after contact with blood plasma was demonstrated. This is proved by exceeding the intensity of the SWCNT peaks G and D after contact with the blood serum in the Raman spectrum and by decreasing the intensity of the main collagen bands in the SWCNT/collagen complex frame coating. The number of pores and their size increased to 20 μm. The modification of the PET tape with the SWCNT/collagen coating allowed to increase its hydrophilicity by 1.7 times compared to the original PET fibers and by 1.3 times compared to the collagen coating. A reduced hemolysis level of the PET tape coated with SWCNT/collagen was achieved. The SWCNT/collagen coating provided 2.2 times less hemolysis than an uncoated PET implant. MicroCT showed the effective formation of new bone and dense connective tissue around the implant. A decrease in channel diameter from 2.5 to 1.7 mm was detected at three and, especially, six months after implantation of a PET tape with SWCNT/collagen coating. MicroCT allowed us to identify areas for histological sections, which demonstrated the favorable interaction of the PET tape with the surrounding tissues. In the case of using the PET tape coated with SWCNT/collagen, more active growth of connective tissue with mature collagen fibers in the area of implantation was observed than in the case of only collagen coating. The stimulating effect of SWCNT/collagen on the formation of bone trabeculae around and inside the PET tape was evident in three and six months after implantation. Thus, a PET tape with SWCNT/collagen coating has osteoconductivity as well as a high level of hydrophilicity and hemocompatibility.
Collapse
Affiliation(s)
- Alexander Yu. Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, 119991 Moscow, Russia
- Correspondence: (A.Y.G.); (O.E.G.); Tel.: +7-9267029778 (A.Y.G.)
| | - Natalia N. Zhurbina
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
| | - Nadezhda G. Cherepanova
- Department of Morphology and Veterinary Expertise, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya street 49, 127550 Moscow, Russia; (N.G.C.); (A.E.S.)
| | - Anna E. Semak
- Department of Morphology and Veterinary Expertise, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya street 49, 127550 Moscow, Russia; (N.G.C.); (A.E.S.)
| | - Vadim V. Zar
- Department of Traumatology and Orthopedics, M.F. Vladimirskii Moscow Regional Research and Clinical Institute, Shepkina street 61/2, 129110 Moscow, Russia;
| | - Yulia O. Fedorova
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
- Research Laboratory of Promising Processes, Scientific-Manufacturing Complex “Technological Centre”, 1-7 Shokin Square, 124498 Moscow, Russia
| | - Elena M. Eganova
- Micro- and Nanosystems Research and Development Department, Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 32A Leninsky Prospekt, 119991 Moscow, Russia; (E.M.E.); (A.A.P.)
| | - Alexander A. Pavlov
- Micro- and Nanosystems Research and Development Department, Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 32A Leninsky Prospekt, 119991 Moscow, Russia; (E.M.E.); (A.A.P.)
| | - Dmitry V. Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, 119991 Moscow, Russia
| | - Sergey V. Selishchev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
| | - Olga E. Glukhova
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, 119991 Moscow, Russia
- Department of Physics, Saratov State University, Astrakhanskaya street 83, 410012 Saratov, Russia
- Correspondence: (A.Y.G.); (O.E.G.); Tel.: +7-9267029778 (A.Y.G.)
| |
Collapse
|
5
|
Shao G, Hanaor DAH, Shen X, Gurlo A. Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures-A Review of Novel Materials, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907176. [PMID: 32163660 DOI: 10.1002/adma.201907176] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/30/2019] [Indexed: 05/19/2023]
Abstract
Freeze casting, also known as ice templating, is a particularly versatile technique that has been applied extensively for the fabrication of well-controlled biomimetic porous materials based on ceramics, metals, polymers, biomacromolecules, and carbon nanomaterials, endowing them with novel properties and broadening their applicability. The principles of different directional freeze-casting processes are described and the relationships between processing and structure are examined. Recent progress in freeze-casting assisted assembly of low dimensional building blocks, including graphene and carbon nanotubes, into tailored micro- and macrostructures is then summarized. Emerging trends relating to novel materials as building blocks and novel freeze-cast geometries-beads, fibers, films, complex macrostructures, and nacre-mimetic composites-are presented. Thereafter, the means by which aligned porous structures and nacre mimetic materials obtainable through recently developed freeze-casting techniques and low-dimensional building blocks can facilitate material functionality across multiple fields of application, including energy storage and conversion, environmental remediation, thermal management, and smart materials, are discussed.
Collapse
Affiliation(s)
- Gaofeng Shao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Technische Universität Berlin, Hardenbergstr. 40, Berlin, 10623, Germany
| | - Dorian A H Hanaor
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Technische Universität Berlin, Hardenbergstr. 40, Berlin, 10623, Germany
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Aleksander Gurlo
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Technische Universität Berlin, Hardenbergstr. 40, Berlin, 10623, Germany
| |
Collapse
|
6
|
Huang Z, Sun H, Lu Y, Zhao F, Liu C, Wang Q, Zheng C, Lu R, Song K. Strontium/Chitosan/Hydroxyapatite/Norcantharidin Composite That Inhibits Osteosarcoma and Promotes Osteogenesis In Vitro. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9825073. [PMID: 32076624 PMCID: PMC7013326 DOI: 10.1155/2020/9825073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
Hydroxyapatite can deliver drugs, and its composite material is capable of repairing bone defects in tumors. This study was conducted to evaluate the effect of composite materials on tumor growth inhibition and bone growth induction. Composites containing drug delivery compounds were synthesized by coprecipitation and freeze-drying and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). In addition, the effect of hydroxyapatite nanoparticles (nano-SHAP) on proliferation of an osteosarcoma cell line (MG-63) and an osteoblast cell line (MC3T3-E1) was evaluated, and its mechanism was studied. The use of nano-SHAP alone did not affect the proliferation of normal cell lines. However, nanoparticles containing different amounts of norcantharidin in the composite materials and had different inhibitory effects on osteosarcoma and different effects on osteoblasts. And, with the increase of the content of norcantharidin, the antitumor performance of the composite has been enhanced. In summary, the nano-SHAP system developed in this study is a drug delivery material that can inhibit the growth of tumors and induce the proliferation of osteoblasts.
Collapse
Affiliation(s)
- Zhipeng Huang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang, China
| | - Haoyuan Sun
- The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang, China
| | - Yang Lu
- The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang, China
| | - Fengnian Zhao
- The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang, China
| | - Chang Liu
- The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang, China
| | - Qinglong Wang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang, China
| | - Changming Zheng
- The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang, China
| | - Renpei Lu
- The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang, China
| | - Keguan Song
- The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Yilmaz B, Alshemary AZ, Evis Z. Co-doped hydroxyapatites as potential materials for biomedical applications. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Lu Y, Li M, Li L, Wei S, Hu X, Wang X, Shan G, Zhang Y, Xia H, Yin Q. High-activity chitosan/nano hydroxyapatite/zoledronic acid scaffolds for simultaneous tumor inhibition, bone repair and infection eradication. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 82:225-233. [PMID: 29025652 DOI: 10.1016/j.msec.2017.08.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 01/06/2023]
Abstract
Implanted biomaterials combined tumor inhibition and bone repair property are urgently needed to address the huge bone destruction and the high local recurrence following primary surgery in bone tumor therapy. In this work, a high-activity chitosan/nano hydroxyapatite (CS/nHA) scaffold containing zoledronic acid (CS/nHA/Zol) was prepared with a facile method. The prepared CS/nHA/Zol scaffolds exhibited excellent tumor inhibition property towards giant cell tumor of bone (GCT) in vitro through inducing cells apoptosis by up-regulating pro-apoptosis genes expression and reducing the osteoclastic activity of tumor cells by down-regulating osteoclastic genes. Meanwhile, the prepared scaffolds possessed well biocompatibility and osteoinductivity as compared to pure CS/nHA scaffolds. Furthermore, the prepared scaffolds also presented outstanding antibacterial activity against clinical pathogenic S. aureus and E. coli. These overall findings successfully demonstrated the prepared CS/nHA/Zol scaffolds had a multifunction of tumor therapy, bone repair, and antibacterium, which provides a new approach possessed promising advantages in bone tumor therapy.
Collapse
Affiliation(s)
- Yao Lu
- Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China; Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Mei Li
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Lihua Li
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Shuzhen Wei
- Department of Blood Bank, Guangzhou General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Xiaoming Hu
- Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China; Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Xiaolan Wang
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Guiqiu Shan
- Department of Blood Bank, Guangzhou General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Yu Zhang
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Hong Xia
- Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China; Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China.
| | - Qingshui Yin
- Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China; Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China.
| |
Collapse
|
9
|
Ma J, Nan X, Liu J. Investigation of the dielectric, mechanical, and thermal properties of noncovalent functionalized MWCNTs/polyvinylidene fluoride (PVDF) composites. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jing Ma
- School of Material Science and Engineering; Taiyuan University of Technology; Taiyuan China
| | - Xi Nan
- School of Material Science and Engineering; Taiyuan University of Technology; Taiyuan China
| | - Jianqiang Liu
- School of Material Science and Engineering; Taiyuan University of Technology; Taiyuan China
| |
Collapse
|
10
|
Ma J, Nan X, Larsen RM, Huang X, Yu B. Mechanical properties and biocompatibility of functionalized carbon nanotubes/polypropylene composites. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1003-16. [PMID: 27052820 DOI: 10.1080/09205063.2016.1175776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study investigates the efficiency of carbon nanotubes (CNTs) as reinforcement for polypropylene (PP) for biocompatible application as a function of different surface functionalization of CNTs. PP composites were reinforced using various CNTs: single- and multi-walled carbon nanotubes (SWCNTs, MWCNTs), SWCNTs were covalently functionalized by plasma, for comparison, the MWCNTs were functionalized noncovalently. Different CNTs were incorporated into PP by solution blending. The type of CNTs and surface functionalization affects the mechanical and biocompatibility results significantly. Differences in nanostructure and the chemical compositions, number of functional groups, and structural defects for the CNTs may be the key factors affecting the mechanical properties and biocompatibility of PP nanocomposites compared to the neat PP. Finally, suitable CNTs and surface functionalization of CNTs were selected for making the PP/CNTs composites.
Collapse
Affiliation(s)
- Jing Ma
- a School of Material Science and Engineering , Taiyuan University of Technology , Taiyuan , China
| | - Xi Nan
- a School of Material Science and Engineering , Taiyuan University of Technology , Taiyuan , China
| | - Raino Mikael Larsen
- b Department of Mechanical and Manufacturing Engineering , Aalborg University , Aalborg , Denmark
| | - Xiaobo Huang
- a School of Material Science and Engineering , Taiyuan University of Technology , Taiyuan , China
| | - Bowen Yu
- a School of Material Science and Engineering , Taiyuan University of Technology , Taiyuan , China
| |
Collapse
|
11
|
Niu Y, Guo L, Liu J, Shen H, Su J, An X, Yu B, Wei J, Shin JW, Guo H, Ji F, He D. Bioactive and degradable scaffolds of the mesoporous bioglass and poly(l-lactide) composite for bone tissue regeneration. J Mater Chem B 2015; 3:2962-2970. [PMID: 32262496 DOI: 10.1039/c4tb01796j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive scaffolds of the m-BG–PLLA composite with excellent biocompatibility, degradability and osteogenesis, which could be promising implants for bone regeneration.
Collapse
|
12
|
Yasmeen S, Lo MK, Bajracharya S, Roldo M. Injectable scaffolds for bone regeneration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12977-12985. [PMID: 25296391 DOI: 10.1021/la503057w] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Clinical treatments of significant bone defects involve invasive procedures such as the application of auto- and allografts. These procedures present many limitations including the potential for infection and rejection. There is therefore a need to develop novel therapeutic strategies able to exploit the natural regenerative potential of bone and that can be delivered in a less invasive manner. Among the materials studied for the development of novel scaffolds, stimuli-responsive gels containing hydroxyapatite and carbon nanotubes as nanofillers have generated great interest. In the present work, chitosan gels containing chitosan grafted CNTs and chitosan-hydroxyapatite complex have been formed by cross-linking with glycerol phosphate. The addition of the nanofillers afforded hydrogels with a faster sol/gel transition at 37 °C and enhanced mechanical properties. The thermosensitive composite gels also showed a good bioactivity profile associated with potential for the prolonged delivery of protein drugs. The inclusion of chemically cross-linked CNTs and HA in thermosensitive gels afforded injectable composite materials with enhanced properties, including reduction of gelation time, improved mechanical properties, good bioactivity, and prolonged drug release.
Collapse
Affiliation(s)
- Sabina Yasmeen
- School of Pharmacy and Biomedical Science, University of Portsmouth , St. Michael's Building, White Swan Road, Portsmouth, UK
| | | | | | | |
Collapse
|
13
|
Hofmann MC. Stem cells and nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 811:255-75. [PMID: 24683036 DOI: 10.1007/978-94-017-8739-0_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Because of their ability to self-renew and differentiate into many cell types, stem cells offer the potential to be used for tissue regeneration and engineering. Much progress has recently been made in our understanding of the biology of stem cells and our ability to manipulate their proliferation and differentiation to obtain functional tissues. Similarly, nanomaterials have been recently developed that will accelerate discovery of mechanisms driving stem cell fate and their utilization in medicine. Nanoparticles have been developed that allow the labeling and tracking of stem cells and their differentiated phenotype within an organism. Nanosurfaces are engineered that mimic the extracellular matrix to which stem cells adhere and migrate. Scaffolds made of functionalized nanofibers can now be used to grow stem cells and regenerate damaged tissues and organs. However, the small scale of nanomaterials induces changes in their chemical and physical properties that might modify their interactions with cells and tissues, and render them toxic to stem cells. Therefore a thorough understanding of stem cell-nanomaterial interactions is still necessary not only to accelerate the success of medical treatments but also to ensure the safety of the tools provided by these novel technologies.
Collapse
Affiliation(s)
- Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA,
| |
Collapse
|