1
|
Wang K, Yu Q, Wu D, Liu R, Ren X, Fu H, Zhang X, Pan Y, Huang S. JNK-mediated blockage of autophagic flux exacerbates the triethylene glycol dimethacrylate-induced mitochondrial oxidative damage and apoptosis in preodontoblast. Chem Biol Interact 2021; 339:109432. [PMID: 33684387 DOI: 10.1016/j.cbi.2021.109432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial dependent oxidative stress (OS) and subsequent cell death are considered as the major cytotoxicity caused by Triethylene glycol dimethacrylate (TEGDMA), a commonly monomer of many resin-based dental composites. Under OS microenvironment, autophagy serves as a cell homeostatic mechanism and maintains redox balance through degradation or turnover of cellular components in order to promote cell survival. However, whether autophagy is involved in the mitochondrial oxidative damage and apoptosis induced by TEGDMA, and the cellular signaling pathways underlying this process remain unclear. In the present study, we demonstrated that TEGDMA induced mouse preodontoblast cell line (mDPC6T) dysfunctional mitochondrial oxidative response. In further exploring the underlying mechanisms, we found that TEGDMA impaired autophagic flux, as evidenced by increased LC3-II expression and hindered p62 degradation, thereby causing both mitochondrial oxidative damage and cell apoptosis. These results were further verified by treatment with chloroquine (autophagy inhibitor) and rapamycin (autophagy promotor). More importantly, we found that the JNK/MAPK pathway was the key upstream regulator of above injury process. Collectively, our finding firstly demonstrated that TEGDMA induced JNK-dependent autophagy, thereby promoting mitochondrial dysfunction-associated oxidative damage and apoptosis in preodontoblast.
Collapse
Affiliation(s)
- Konghuai Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Qihao Yu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Danni Wu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Ruona Liu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xuekun Ren
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Hui Fu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaorong Zhang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yihuai Pan
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Notoginsenoside R1 alleviates TEGDMA-induced mitochondrial apoptosis in preodontoblasts through activation of Akt/Nrf2 pathway-dependent mitophagy. Toxicol Appl Pharmacol 2021; 417:115482. [PMID: 33689844 DOI: 10.1016/j.taap.2021.115482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Incomplete polymerization or biodegradation of dental resin materials results in the release of resin monomers such as triethylene glycol dimethacrylate (TEGDMA), causing severe injury of dental pulp cells. To date, there has been no efficient treatment option for this complication, in part due to the lack of understanding of the mechanism underlying these phenomena. Here, for the first time, we found that notoginsenoside R1 (NR1), a bioactive ingredient extracted from Panax notoginseng, exerted an obvious protective effect on TEGDMA-induced mitochondrial apoptosis in the preodontoblast mDPC6T cell line. In terms of the mechanism of action, NR1 enhanced the level of phosphorylated Akt (protein kinase B), resulting in the activation of a transcriptional factor, nuclear factor erythroid 2-related factor 2 (Nrf2), and eventually upregulating cellular ability to resist TEGDMA-related toxicity. Inhibiting the Akt/Nrf2 pathway by pharmaceutical inhibitors significantly decreased NR1-mediated cellular antioxidant properties and aggravated mitochondrial oxidative damage in TEGDMA-treated cells. Interestingly, NR1 also promoted mitophagy, which was identified as the potential downstream of the Akt/Nrf2 pathway. Blocking the Akt/Nrf2 pathway inhibited mitophagy and abolished the protection of NR1 on cells exposed to TEGDMA. In conclusion, these findings reveal that the activation of Akt/Nrf2 pathway-mediated mitophagy by NR1 might be a promising approach for preventing resin monomer-induced dental pulp injury.
Collapse
|
3
|
Bioenergetic Impairment of Triethylene Glycol Dimethacrylate- (TEGDMA-) Treated Dental Pulp Stem Cells (DPSCs) and Isolated Brain Mitochondria are Amended by Redox Compound Methylene Blue †. MATERIALS 2020; 13:ma13163472. [PMID: 32781723 PMCID: PMC7475988 DOI: 10.3390/ma13163472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Triethylene glycol dimethacrylate (TEGDMA) monomers released from resin matrix are toxic to dental pulp cells, induce apoptosis, oxidative stress and decrease viability. Recently, mitochondrial complex I (CI) was identified as a potential target of TEGDMA. In isolated mitochondria supported by CI, substrates oxidation and ATP synthesis were inhibited, reactive oxygen species production was stimulated. Contrary to that, respiratory Complex II was not impaired by TEGDMA. The beneficial effects of electron carrier compound methylene blue (MB) are proven in many disease models where mitochondrial involvement has been detected. In the present study, the bioenergetic effects of MB on TEGDMA-treated isolated mitochondria and on human dental pulp stem cells (DPSC) were analyzed. METHODS Isolated mitochondria and DPSC were acutely exposed to low millimolar concentrations of TEGDMA and 2 μM concentration of MB. Mitochondrial and cellular respiration and glycolytic flux were measured by high resolution respirometry and by Seahorse XF extracellular analyzer. Mitochondrial membrane potential was measured fluorimetrically. RESULTS MB partially restored the mitochondrial oxidation, rescued membrane potential in isolated mitochondria and significantly increased the impaired cellular O2 consumption in the presence of TEGDMA. CONCLUSION MB is able to protect against TEGDMA-induced CI damage, and might provide protective effects in resin monomer exposed cells.
Collapse
|
4
|
Antioxidant and Neuroprotective Effects Induced by Cannabidiol and Cannabigerol in Rat CTX-TNA2 Astrocytes and Isolated Cortexes. Int J Mol Sci 2020; 21:ijms21103575. [PMID: 32443623 PMCID: PMC7279038 DOI: 10.3390/ijms21103575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols. Although CBD’s effectiveness against neurological diseases has already been demonstrated, nothing is known about CBG. Therefore, a comparison of the effects of these compounds was performed in two experimental models mimicking the oxidative stress and neurotoxicity occurring in neurological diseases. Rat astrocytes were exposed to hydrogen peroxide and cell viability, reactive oxygen species production and apoptosis occurrence were investigated. Cortexes were exposed to K+ 60 mM depolarizing stimulus and serotonin (5-HT) turnover, 3-hydroxykinurenine and kynurenic acid levels were measured. A proteomic analysis and bioinformatics and docking studies were performed. Both compounds exerted antioxidant effects in astrocytes and restored the cortex level of 5-HT depleted by neurotoxic stimuli, whereas sole CBD restored the basal levels of 3-hydroxykinurenine and kynurenic acid. CBG was less effective than CBD in restoring the levels of proteins involved in neurotransmitter exocytosis. Docking analyses predicted the inhibitory effects of these compounds towards the neurokinin B receptor. Conclusion: The results in the in vitro system suggest brain non-neuronal cells as a target in the treatment of oxidative conditions, whereas findings in the ex vivo system and docking analyses imply the potential roles of CBD and CBG as neuroprotective agents.
Collapse
|
5
|
Multi-parametric imaging of cell heterogeneity in apoptosis analysis. Methods 2017; 112:105-123. [DOI: 10.1016/j.ymeth.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022] Open
|
6
|
Gallorini M, di Giacomo V, Di Valerio V, Rapino M, Bosco D, Travan A, Di Giulio M, Di Pietro R, Paoletti S, Cataldi A, Sancilio S. Cell-protection mechanism through autophagy in HGFs/S. mitis co-culture treated with Chitlac-nAg. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:186. [PMID: 27787811 DOI: 10.1007/s10856-016-5803-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/14/2016] [Indexed: 02/08/2023]
Abstract
Silver-based products have been proven to be effective in retarding and preventing bacterial growth since ancient times. In the field of restorative dentistry, the use of silver ions/nanoparticles has been explored to counteract bacterial infections, as silver can destroy bacterial cell walls by reacting with membrane proteins. However, it is also cytotoxic towards eukaryotic cells, which are capable of internalizing nanoparticles. In this work, we investigated the biological effects of Chitlac-nAg, a colloidal system based on a modified chitosan (Chitlac), administered for 24-48 h to a co-culture of primary human gingival fibroblasts and Streptococcus mitis in the presence of saliva, developed to mimic the microenvironment of the oral cavity. We sought to determine its efficiency to combat oral hygiene-related diseases without affecting eukaryotic cells. Cytotoxicity, reactive oxygen species production, apoptosis induction, nanoparticles uptake, and lysosome and autophagosome metabolism were evaluated. In vitro results show that Chitlac-nAg does not exert cytotoxic effects on human gingival fibroblasts, which seem to survive through a homoeostasis mechanism involving autophagy. That suggests that the novel biomaterial Chitlac-nAg could be a promising tool in the field of dentistry.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Valentina Di Valerio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Domenico Bosco
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Andrea Travan
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Mara Di Giulio
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Silvia Sancilio
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| |
Collapse
|
7
|
Cataldi A, Gallorini M, Di Giulio M, Guarnieri S, Mariggiò MA, Traini T, Di Pietro R, Cellini L, Marsich E, Sancilio S. Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:88. [PMID: 26970770 PMCID: PMC4789204 DOI: 10.1007/s10856-016-5701-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
Abstract
Composite materials are increasingly used as dental restoration. In the field of biomaterials, infections remain the main reason of dental devices failure. Silver, in the form of nanoparticles (AgNPs), ions and salt, well known for its antimicrobial properties, is used in several medical applications in order to avoid bacterial infection. To reduce both bacterial adhesion to dental devices and cytotoxicity against eukaryotic cells, we coated BisGMA/TEGDMA methacrylic thermosets with a new material, Chitlac-nAg, formed by stabilized AgNPs with a polyelectrolyte solution containing Chitlac. Here we analyzed the proliferative and adhesive ability of human gingival fibroblasts (HGFs) on BisGMA/TEGDMA thermosets uncoated and coated with AgNPs in a coculture model system with Streptococcus mitis. After 48 h, HGFs well adhered onto both surfaces, while S. mitis cytotoxic response was higher in the presence of AgNPs coated thermosets. After 24 h thermosets coated with Chitlac as well as those coated with Chitlac-nAg exerted a minimal cytotoxic effect on HGFs, while after 48 h LDH release raised up to 20 %. Moreover the presence of S. mitis reduced this release mainly when HGFs adhered to Chitlac-nAg coated thermosets. The reduced secretion of collagen type I was significant in the presence of both surfaces with the co-culture system even more when saliva is added. Integrin β1 localized closely to cell membranes onto Chitlac-nAg thermosets and PKCα translocated into nuclei. These data confirm that Chitlac-nAg have a promising utilization in the field of restorative dentistry exerting their antimicrobial activity due to AgNPs without cytotoxicity for eukaryotic cells.
Collapse
Affiliation(s)
- Amelia Cataldi
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy.
| | - Mara Di Giulio
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Simone Guarnieri
- Center for Aging Science (Ce.S.I.), G. d'Annunzio University Foundation, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Maria Addolorata Mariggiò
- Center for Aging Science (Ce.S.I.), G. d'Annunzio University Foundation, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Tonino Traini
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Luigina Cellini
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Silvia Sancilio
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| |
Collapse
|
8
|
Cytotoxicity and apoptosis induction by e-cigarette fluids in human gingival fibroblasts. Clin Oral Investig 2015; 20:477-83. [DOI: 10.1007/s00784-015-1537-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 07/16/2015] [Indexed: 11/26/2022]
|
9
|
Di Nisio C, De Colli M, di Giacomo V, Rapino M, Di Valerio V, Marconi GD, Gallorini M, Di Giulio M, Cataldi A, Zara S. A dual role for β1 integrin in an in vitro Streptococcus mitis/human gingival fibroblasts co-culture model in response to TEGDMA. Int Endod J 2014; 48:839-49. [PMID: 25231818 DOI: 10.1111/iej.12379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/13/2014] [Indexed: 01/11/2023]
Abstract
AIM To evaluate the effect of TEGDMA on human gingival fibroblasts (HGFs) in vitro co-cultured with Streptococcus mitis, focusing on the signalling pathways underlying cell tissue remodelling and inflammatory response processes. METHODOLOGY β1 integrin expression was evaluated by means of imaging flow cytometry. The Western blot technique was used to investigate the expression of protein kinase C (PKC), extracellular signal-regulated kinase (ERK), matrix metalloproteinase 9 (MMP9) and 3 (MMP3). RT-PCR was performed to quantify nuclear factor-kb subunits (Nf-kb1, ReLa), IkB kinase β (IkBkB), cyclooxygenase II (COX-2) and tumour necrosis factor-α (TNF-α) mRNA levels. Statistical analysis was performed using the analysis of variance (anova). RESULTS When HGFs are co-cultured with S. mitis, β1 integrin intensity, phosphorylated PKC (p-PKC), activated ERK (p-ERK), IkBkB mRNA level and MMP9 expression increased (for all molecules P < 0.05 HGFs versus HGFs co-cultured with S. mitis). A higher level of MMP3 in HGFs treated with TEGDMA was recorded (P < 0.05 HGFs versus HGFs exposed to TEGDMA). COX-2 inflammatory factor mRNA level appeared higher in HGFs exposed to 1 mmol L(-1) TEGDMA (P < 0.01 HGFs versus HGFs exposed to TEGDMA), whereas TNF-α gene expression was higher in HGFs co-cultured with S. mitis (P < 0.05 HGFs versus HGFs co-cultured with S. mitis). CONCLUSIONS β1 integrin triggered the signalling pathway, transduced by p-PKCα and involving ERK 1 and 2 and MMPs. This pathway resulted in an unbalanced equilibrium in tissue remodelling process, along with inflammatory response when HGFs are exposed to bacteria or biomaterial alone. On the contrary, the TEGDMA/S. mitis combination restored the balance between extracellular matrix deposition and degradation and prevented an inflammatory response.
Collapse
Affiliation(s)
- C Di Nisio
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - M De Colli
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - V di Giacomo
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - M Rapino
- Unit of Chieti, Institute of Molecular Genetics CNR, Chieti, Italy
| | - V Di Valerio
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - G D Marconi
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - M Gallorini
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - M Di Giulio
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - A Cataldi
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - S Zara
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|