1
|
Mahnavi A, Shahriari-Khalaji M, Hosseinpour B, Ahangarian M, Aidun A, Bungau S, Hassan SSU. Evaluation of cell adhesion and osteoconductivity in bone substitutes modified by polydopamine. Front Bioeng Biotechnol 2023; 10:1057699. [PMID: 36727042 PMCID: PMC9885973 DOI: 10.3389/fbioe.2022.1057699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Bones damaged due to disease or accidents can be repaired in different ways. Tissue engineering has helped with scaffolds made of different biomaterials and various methods. Although all kinds of biomaterials can be useful, sometimes their weakness in cellular activity or osteoconductivity prevents their optimal use in the fabrication of bone scaffolds. To solve this problem, we need additional processes, such as surface modification. One of the common methods is coating with polydopamine. Polydopamine can not only cover the weakness of the scaffolds in terms of cellular properties, but it can also create or increase osteoconductivity properties. Polydopamine creates a hydrophilic layer on the surface of scaffolds due to a large number of functional groups such as amino and hydroxyl groups. This layer allows bone cells to anchor and adheres well to the surfaces. In addition, it creates a biocompatible environment for proliferation and differentiation. Besides, the polydopamine coating makes the surfaces chemically active by catechol and amine group, and as a result of their presence, osteoconductivity increases. In this mini-review, we investigated the characteristics, structure, and properties of polydopamine as a modifier of bone substitutes. Finally, we evaluated the cell adhesion and osteoconductivity of different polydopamine-modified bone scaffolds.
Collapse
Affiliation(s)
- Ali Mahnavi
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | | | - Mostafa Ahangarian
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Amir Aidun
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran,Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| |
Collapse
|
2
|
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y, Pan L, Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238475. [PMID: 36499970 PMCID: PMC9738134 DOI: 10.3390/ma15238475] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 05/31/2023]
Abstract
Bone defects caused by various factors may cause morphological and functional disorders that can seriously affect patient's quality of life. Autologous bone grafting is morbid, involves numerous complications, and provides limited volume at donor site. Hence, tissue-engineered bone is a better alternative for repair of bone defects and for promoting a patient's functional recovery. Besides good biocompatibility, scaffolding materials represented by hydroxyapatite (HA) composites in tissue-engineered bone also have strong ability to guide bone regeneration. The development of manufacturing technology and advances in material science have made HA composite scaffolding more closely related to the composition and mechanical properties of natural bone. The surface morphology and pore diameter of the scaffold material are more important for cell proliferation, differentiation, and nutrient exchange. The degradation rate of the composite scaffold should match the rate of osteogenesis, and the loading of cells/cytokine is beneficial to promote the formation of new bone. In conclusion, there is no doubt that a breakthrough has been made in composition, mechanical properties, and degradation of HA composites. Biomimetic tissue-engineered bone based on vascularization and innervation show a promising future.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Research Institute of Plastic and Reconstructive Surgey, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, Chandigarh 160017, India
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lisha Pan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| |
Collapse
|
3
|
Yang M, Zhang ZC, Liu Y, Chen YR, Deng RH, Zhang ZN, Yu JK, Yuan FZ. Function and Mechanism of RGD in Bone and Cartilage Tissue Engineering. Front Bioeng Biotechnol 2022; 9:773636. [PMID: 34976971 PMCID: PMC8714999 DOI: 10.3389/fbioe.2021.773636] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bone and cartilage injury is common, tissue engineered scaffolds are potential means to repair. Because most of the scaffold materials used in bone and cartilage tissue engineering are bio-inert, it is necessary to increase the cellular adhesion ability of during tissue engineering reconstruction. The Arginine - Glycine - Aspartic acid (Arg-Gly-Asp, RGD) peptide family is considered as a specific recognition site for the integrin receptors. Integrin receptors are key regulators of cell-cell and cell-extracellular microenvironment communication. Therefore, the RGD polypeptide families are considered as suitable candidates for treatment of a variety of diseases and for the regeneration of various tissues and organs. Many scaffold material for tissue engineering and has been approved by US Food and Drug Administration (FDA) for human using. The application of RGD peptides in bone and cartilage tissue engineering was reported seldom. Only a few reviews have summarized the applications of RGD peptide with alloy, bone cements, and PCL in bone tissue engineering. Herein, we summarize the application progress of RGD in bone and cartilage tissue engineering, discuss the effects of structure, sequence, concentration, mechanical stimulation, physicochemical stimulation, and time stimulation of RGD peptide on cells differentiation, and introduce the mechanism of RGD peptide through integrin in the field of bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- Meng Yang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zheng-Chu Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yan Liu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Rong-Hui Deng
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Zi-Ning Zhang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Jia-Kuo Yu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Fu-Zhen Yuan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
4
|
Brassolatti P, Bossini PS, de Andrade ALM, Luna GLF, da Silva JV, Almeida-Lopes L, Napolitano MA, de Avó LRDS, Leal ÂMDO, Anibal FDF. Comparison of two different biomaterials in the bone regeneration (15, 30 and 60 days) of critical defects in rats. Acta Cir Bras 2021; 36:e360605. [PMID: 34287608 PMCID: PMC8291905 DOI: 10.1590/acb360605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To evaluate and compare two types of different scaffolds in critical bone defects in rats. METHODS Seventy male Wistar rats (280 ± 20 grams) divided into three groups: control group (CG), untreated animals; biomaterial group 1 (BG1), animals that received the scaffold implanted hydroxyapatite (HA)/poly(lactic-co-glycolic) acid (PLGA); and biomaterial group 2 (BG2), animals that received the scaffolds HA/PLGA/Bleed. The critical bone defect was induced in the medial region of the skull calotte with the aid of an 8-mm-diameter trephine drill. The biomaterial was implanted in the form of 1.5 mm thick scaffolds, and samples were collected after 15, 30 and 60 days. Non-parametric Mann-Whitney test was used, with the significance level of 5% (p ≤ 0.05). RESULTS Histology revealed morphological and structural differences of the neoformed tissue between the experimental groups. Collagen-1 (Col-1) findings are consistent with the histological ones, in which BG2 presented the highest amount of fibers in its tissue matrix in all evaluated periods. In contrast, the results of receptor activator of nuclear factor kappa-Β ligand (Rank-L) immunoexpression were higher in BG2 in the periods of 30 and 60 days, indicating an increase of the degradation of the biomaterial and the remodeling activity of the bone. CONCLUSIONS The properties of the HA/PLGA/Bleed scaffold were superior when compared to the scaffold composed only by HA/PLGA.
Collapse
Affiliation(s)
- Patricia Brassolatti
- PhD in Biotechnology. Postgraduate Program in Evolutionary Genetics
and Molecular Biology – Department of Morphology and Pathology – Universidade
Federal de São Carlos – Sao Carlos (SP), Brazil
| | - Paulo Sérgio Bossini
- PhD in Physiotherapy. NUPEN - Research and Education Center in
Health Science and DMC Equipment Import and Export-Co. Ltda – Sao Carlos (SP),
Brazil
| | - Ana Laura Martins de Andrade
- PhD in Physiotherapy. Department of Physiotherapy – Universidade
Federal de São Carlos – Sao Carlos (SP), Brazil
| | - Genoveva Lourdes Flores Luna
- PhD in Biotechnology. Metabolic Endocrine Research Laboratory –
Department of Medicine – Universidade Federal University de São Carlos – Sao Carlos
(SP), Brazil
| | - Juliana Virginio da Silva
- Graduate student in Biotechnology. Institute of Physics of Sao
Carlos– Universidade de São Paulo – Sao Carlos (SP), Brazil
| | - Luciana Almeida-Lopes
- PhD in Science and Materials Engineering. NUPEN - Research and
Education Center in Health Science and DMC Equipment Import and Export-Co. Ltda –
Sao Carlos (SP), Brazil
| | | | | | | | - Fernanda de Freitas Anibal
- Associate Professor. Department of Morphology and Pathology –
Universidade Federal de São Carlos – Sao Carlos (SP), Brazil
| |
Collapse
|
5
|
Oliver-Cervelló L, Martin-Gómez H, Mas-Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci 2021; 28:e3335. [PMID: 34031952 DOI: 10.1002/psc.3335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Improving cell-material interactions is a major goal in tissue engineering. In this regard, functionalization of biomaterials with cell instructive molecules from the extracellular matrix stands out as a powerful strategy to enhance their bioactivity and achieve optimal tissue integration. However, current functionalization strategies, like the use of native full-length proteins, are associated with drawbacks, thus urging the need of developing new methodologies. In this regard, the use of synthetic peptides encompassing specific bioactive regions of proteins represents a promising alternative. In particular, the combination of peptide sequences with complementary or synergistic effects makes it possible to address more than one biological target at the biomaterial surface. In this review, an overview of the main strategies using peptides to install multifunctionality on biomaterials is presented, mostly focusing on the combination of the RGD motif with other peptides sequences. The evolution of these approaches, starting from simple methods, like using peptide mixtures, to more advanced systems of peptide presentation, with very well defined chemical properties, are explained. For each system of peptide's presentation, three main aspects of multifunctionality-improving receptor selectivity, mimicking the extracellular matrix and preventing bacterial colonization while improving cell adhesion-are highlighted.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
6
|
Qian Y, Zhou X, Zhang F, Diekwisch TG, Luan X, Yang J. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37381-37396. [PMID: 31517483 PMCID: PMC7220812 DOI: 10.1021/acsami.9b07053] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biodegradable synthetic scaffolds hold great promise for oral and craniofacial guided tissue regeneration and bone regeneration. To overcome the limitations of current scaffold materials in terms of osteogenic and antimicrobial properties, we have developed a novel silver-modified/collagen-coated electrospun poly-lactic-co-glycolic acid/polycaprolactone (PLGA/PCL) scaffold (PP-pDA-Ag-COL) with improved antimicrobial and osteogenic properties. Our novel scaffold was generated by electrospinning a basic PLGA/PCL matrix, followed by silver nanoparticles (AgNPs) impregnation via in situ reduction, polydopamine coating, and then coating by collagen I. The three intermediate materials involved in the fabrication of our scaffolds, namely, PLGA/PCL (PP), PLGA/PCL-polydopamine (PP-pDA), and PLGA/PCL-polydopamine-Ag (PP-pDA-Ag), were used as control scaffolds. Scanning electron micrographs and mechanical testing indicated that the unique three-dimensional structures with randomly oriented nanofibrous electrospun scaffold architectures, the elasticity modulus, and the tensile strength were maintained after modifications. CCK-8 cell proliferation analysis demonstrated that the PP-pDA-Ag-COL scaffold was associated with higher MC3T3 proliferation rates than the three control scaffolds employed. Scanning electron and fluorescence light microscopy illustrated that PP-pDA-Ag-COL scaffolds significantly enhanced MC3T3 cell adhesion compared to the control scaffolds after 12 and 24 h culture, in tandem with the highest β1 integrin expression levels, both at the mRNA level and the protein level. Alkaline phosphatase activity, BMP2, and RUNX2 expression levels of MC3T3 cells cultured on PP-pDA-Ag-COL scaffolds for 7 and 14 days were also significantly higher when compared to controls (P < 0.001). There was a wider antibacterial zone associated in PP-pDA-Ag-COL and PP-pDA-Ag scaffolds versus control scaffolds (P < 0.05), and bacterial fluorescence was reduced on the Ag-modified scaffolds after 24 h inoculation against Staphylococcus aureus and Streptococcus mutans. In a mouse periodontal disease model, the PP-pDA-Ag-COL scaffold enhanced alveolar bone regeneration (31.8%) and was effective for periodontitis treatment. These results demonstrate that our novel PP-pDA-Ag-COL scaffold enhanced biocompatibility and osteogenic and antibacterial properties and has therapeutic potential for alveolar/craniofacial bone regeneration.
Collapse
Affiliation(s)
- Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University. Suzhou 215004, People’s Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People’s Republic of China
- Corresponding Author: (J.Y) , (X.Z) , (X.L)
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Thomas G.H. Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, Texas 75246, United States
| | - Xianghong Luan
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, Texas 75246, United States
- Corresponding Author: (J.Y) , (X.Z) , (X.L)
| | - Jianxin Yang
- Center of Stomatology, The Second Affiliated Hospital of Soochow University. Suzhou 215004, People’s Republic of China
- Corresponding Author: (J.Y) , (X.Z) , (X.L)
| |
Collapse
|
7
|
Jeznach O, Kolbuk D, Sajkiewicz P. Aminolysis of Various Aliphatic Polyesters in a Form of Nanofibers and Films. Polymers (Basel) 2019; 11:E1669. [PMID: 31614975 PMCID: PMC6835534 DOI: 10.3390/polym11101669] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Surface functionalization of polymer scaffolds is a method used to improve interactions of materials with cells. A frequently used method for polyesters is aminolysis reaction, which introduces free amine groups on the surface. In this study, nanofibrous scaffolds and films of three different polyesters-polycaprolactone (PCL), poly(lactide-co-caprolactone) (PLCL), and poly(l-lactide) (PLLA) were subjected to this type of surface modification under the same conditions. Efficiency of aminolysis was evaluated on the basis of ninhydrin tests and ATR-FTIR spectroscopy. Also, impact of this treatment on the mechanical properties, crystallinity, and wettability of polyesters was compared and discussed from the perspective of aminolysis efficiency. It was shown that aminolysis is less efficient in the case of nanofibers, particularly for PCL nanofibers. Our hypothesis based on the fundamentals of classical high speed spinning process is that the lower efficiency of aminolysis in the case of nanofibers is associated with the radial distribution of crystallinity of electrospun fiber with more crystalline skin, strongly inhibiting the reaction. Moreover, the water contact angle results demonstrate that the effect of free amino groups on wettability is very different depending on the type and the form of polymer. The results of this study can help to understand fundamentals of aminolysis-based surface modification.
Collapse
Affiliation(s)
- Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| |
Collapse
|
8
|
Valentim RMB, Andrade SMC, Dos Santos MEM, Santos AC, Pereira VS, Dos Santos IP, Dias CGBT, Dos Reis MAL. Composite Based on Biphasic Calcium Phosphate (HA/β-TCP) and Nanocellulose from the Açaí Tegument. MATERIALS 2018; 11:ma11112213. [PMID: 30412992 PMCID: PMC6266682 DOI: 10.3390/ma11112213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/28/2022]
Abstract
The use of lignocellulosic remnants of the açaí agro-business will benefit the environment with a precursor material for biomedical applications. Nanocellulose (NC) allows the biomimetic growth of biphasic ceramics on its surface, with characteristics compatible with bone tissue, including bioactive properties and biocompatibility. In this study, the composites were obtained from açaí tegument (Euterpe Oleracea Mart.) NC using acid hydrolysis. The characterization performed by scanning electron microscopy showed the characteristic crystals of hydroxyapatite (HA) and calcium triphosphate (β-TCP) based on the results of X-ray diffraction, with the peak at 22°, showing the NC nucleation of HA and peak at 17° showing tricalcium phosphate (β-TCP). Fourier transform infrared spectroscopy confirmed the presence of O-H at 3400 cm−1 and C-H at 2900 cm−1, which is characteristic of cellulose; peaks were also observed at 1609 cm−1, verifying the reduction in lignin content. Groups PO4−3 at approximately 1070 cm−1, P-OH at 910–1040 cm−1, and HCO3− at 2450 cm−1 confirmed the formation of HA and β-TCP. The zeta potential had a range of −11 ± 23.8 mV related to particle size, which had a range of 164.2 × 10−9–4748 × 10−9 m.
Collapse
Affiliation(s)
- Rachel M B Valentim
- Post-Graduation in Natural Resources Engineering of the Amazon-PRODERNA, Federal University of Pará, Belém, Pará 66075-110, Brazil.
| | - Sabina M C Andrade
- Federal Institute of Education, Science and Technology of Pará-IFPA, Campus Belém, Pará 66093-020, Brazil.
| | - Maria E M Dos Santos
- Post-Graduation in Mechanical Engineering-PPGEM, Federal University of Pará, Belém, Pará 66075-110, Brazil.
| | - Aline C Santos
- Post-Graduation in Mechanical Engineering-PPGEM, Federal University of Pará, Belém, Pará 66075-110, Brazil.
| | - Victor S Pereira
- Post-Graduation in Mechanical Engineering-PPGEM, Federal University of Pará, Belém, Pará 66075-110, Brazil.
| | - Izael P Dos Santos
- Post-Graduation in Mechanical Engineering-PPGEM, Federal University of Pará, Belém, Pará 66075-110, Brazil.
| | - Carmen G B T Dias
- Post-Graduation in Mechanical Engineering-PPGEM, Federal University of Pará, Belém, Pará 66075-110, Brazil.
| | - Marcos A L Dos Reis
- Post-Graduation in Natural Resources Engineering of the Amazon-PRODERNA, Federal University of Pará, Belém, Pará 66075-110, Brazil.
| |
Collapse
|
9
|
Wang C, Liu Y, Fan Y, Li X. The use of bioactive peptides to modify materials for bone tissue repair. Regen Biomater 2017; 4:191-206. [PMID: 28596916 PMCID: PMC5458541 DOI: 10.1093/rb/rbx011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/05/2023] Open
Abstract
It has been well recognized that the modification of biomaterials with appropriate bioactive peptides could further enhance their functions. Especially, it has been shown that peptide-modified bone repair materials could promote new bone formation more efficiently compared with conventional ones. The purpose of this article is to give a general review of recent studies on bioactive peptide-modified materials for bone tissue repair. Firstly, the main peptides for inducing bone regeneration and commonly used methods to prepare peptide-modified bone repair materials are introduced. Then, current in vitro and in vivo research progress of peptide-modified composites used as potential bone repair materials are reviewed and discussed. Generally speaking, the recent related studies have fully suggested that the modification of bone repair materials with osteogenic-related peptides provide promising strategies for the development of bioactive materials and substrates for enhanced bone regeneration and the therapy of bone tissue diseases. Furthermore, we have proposed some research trends in the conclusion and perspectives part.
Collapse
Affiliation(s)
- Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yan Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Gabriel LP, Santos MEMD, Jardini AL, Bastos GNT, Dias CGBT, Webster TJ, Maciel Filho R. Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:201-208. [PMID: 27720929 DOI: 10.1016/j.nano.2016.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
In this work, thermoset polyurethane composites were prepared by the addition of hydroxyapatite nanoparticles using the reactants polyol polyether and an aliphatic diisocyanate. The polyol employed in this study was extracted from the Euterpe oleracea Mart. seeds from the Amazon Region of Brazil. The influence of hydroxyapatite nanoparticles on the structure and morphology of the composites was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), thermal properties were analyzed by thermogravimetry analysis (TGA), and biological properties were studied by in vitro and in vivo studies. It was found that the addition of HA nanoparticles promoted fibroblast adhesion while in vivo investigations with histology confirmed that the composites promoted connective tissue adherence and did not induce inflammation. In this manner, this study supports the further investigation of bio-based, polyurethane/hydroxyapatite composites as biocompatible scaffolds for numerous tissue engineering applications.
Collapse
Affiliation(s)
- Laís P Gabriel
- University of Campinas, Chemical Engineering Department, Campinas, São Paulo, Brazil
| | | | - André L Jardini
- University of Campinas, Chemical Engineering Department, Campinas, São Paulo, Brazil
| | - Gilmara N T Bastos
- Federal University of Pará, Laboratory of Neuroinflammation, Belém, Pará, Brazil
| | - Carmen G B T Dias
- Federal University of Pará, Mechanical Engineering Department, Belém, Pará, Brazil
| | - Thomas J Webster
- Northeastern University, Chemical Engineering Department, Boston, MA, USA; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Rubens Maciel Filho
- University of Campinas, Chemical Engineering Department, Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Huang S, Liang N, Hu Y, Zhou X, Abidi N. Polydopamine-Assisted Surface Modification for Bone Biosubstitutes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2389895. [PMID: 27595097 PMCID: PMC4993928 DOI: 10.1155/2016/2389895] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 02/05/2023]
Abstract
Polydopamine (PDA) prepared in the form of a layer of polymerized dopamine (DA) in a weak alkaline solution has been used as a versatile biomimetic surface modifier as well as a broadly used immobilizing macromolecule. This review mainly discusses the progress of biomaterial surface modification inspired by the participation of PDA in bone tissue engineering. A comparison between PDA-assisted coating techniques and traditional surface modification applied to bone tissue engineering is first presented. Secondly, the chemical composition and the underlying formation mechanism of PDA coating layer as a unique surface modifier are interpreted and discussed. Furthermore, several typical examples are provided to evidence the importance of PDA-assisted coating techniques in the construction of bone biosubstitutes and the improvement of material biocompatibility. Nowadays, the application of PDA as a superior surface modifier in multifunctional biomaterials is drawing tremendous interests in bone tissue scaffolds to promote the osteointegration for bone regeneration.
Collapse
Affiliation(s)
- Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nuanyi Liang
- Centre for Human Tissues and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yang Hu
- Centre for Human Tissues and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Xin Zhou
- Centre for Human Tissues and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
12
|
Rambhia KJ, Ma PX. Controlled drug release for tissue engineering. J Control Release 2015; 219:119-128. [PMID: 26325405 DOI: 10.1016/j.jconrel.2015.08.049] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022]
Abstract
Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed.
Collapse
Affiliation(s)
- Kunal J Rambhia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, Shin H. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules 2015; 16:2541-55. [DOI: 10.1021/acs.biomac.5b00852] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sajeesh Kumar Madhurakkat Perikamana
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jinkyu Lee
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Yu Bin Lee
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Young Min Shin
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Esther J. Lee
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Antonios G. Mikos
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
| | - Heungsoo Shin
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| |
Collapse
|