1
|
Simon L, Lapinte V, Morille M. Exploring the role of polymers to overcome ongoing challenges in the field of extracellular vesicles. J Extracell Vesicles 2023; 12:e12386. [PMID: 38050832 PMCID: PMC10696644 DOI: 10.1002/jev2.12386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring nanoparticles released from all eucaryotic and procaryotic cells. While their role was formerly largely underestimated, EVs are now clearly established as key mediators of intercellular communication. Therefore, these vesicles constitute an attractive topic of study for both basic and applied research with great potential, for example, as a new class of biomarkers, as cell-free therapeutics or as drug delivery systems. However, the complexity and biological origin of EVs sometimes complicate their identification and therapeutic use. Thus, this rapidly expanding research field requires new methods and tools for the production, enrichment, detection, and therapeutic application of EVs. In this review, we have sought to explain how polymer materials actively contributed to overcome some of the limitations associated to EVs. Indeed, thanks to their infinite diversity of composition and properties, polymers can act through a variety of strategies and at different stages of EVs development. Overall, we would like to emphasize the importance of multidisciplinary research involving polymers to address persistent limitations in the field of EVs.
Collapse
Affiliation(s)
| | | | - Marie Morille
- ICGM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Institut universitaire de France (IUF)ParisFrance
| |
Collapse
|
2
|
Selective Proliferation of Highly Functional Adipose-Derived Stem Cells in Microgravity Culture with Stirred Microspheres. Cells 2021; 10:cells10030560. [PMID: 33806638 PMCID: PMC7998608 DOI: 10.3390/cells10030560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Therapeutic effects of adult stem-cell transplantations are limited by poor cell-retention in target organs, and a reduced potential for optimal cell differentiation compared to embryonic stem cells. However, contemporary studies have indicated heterogeneity within adult stem-cell pools, and a novel culturing technique may address these limitations by selecting those for cell proliferation which are highly functional. Here, we report the preservation of stemness in human adipose-derived stem cells (hASCs) by using microgravity conditions combined with microspheres in a stirred suspension. The cells were bound to microspheres (100-300 μm) and cultured using a wave-stirring shaker. One-week cultures using polystyrene and collagen microspheres increased the proportions of SSEA-3(+) hASCs 4.4- and 4.3-fold (2.7- and 2.9-fold increases in their numbers), respectively, compared to normal culture conditions. These cultured hASCs expressed higher levels of pluripotent markers (OCT4, SOX2, NANOG, MYC, and KLF), and had improved abilities for proliferation, colony formation, network formation, and multiple-mesenchymal differentiation. We believe that this novel culturing method may further enhance regenerative therapies using hASCs.
Collapse
|
3
|
Khan S, Hasan A, Attar F, Sharifi M, Siddique R, Mraiche F, Falahati M. Gold Nanoparticle-Based Platforms for Diagnosis and Treatment of Myocardial Infarction. ACS Biomater Sci Eng 2020; 6:6460-6477. [PMID: 33320615 DOI: 10.1021/acsbiomaterials.0c00955] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, an increasing rate of mortality due to myocardial infarction (MI) has led to the development of nanobased platforms, especially gold nanoparticles (AuNPs), as promising nanomaterials for diagnosis and treatment of MI. These promising NPs have been used to develop different nanobiosensors, mainly optical sensors for early detection of biomarkers as well as biomimetic/bioinspired platforms for cardiac tissue engineering (CTE). Therefore, in this Review, we presented an overview on the potential application of AuNPs as optical (surface plasmon resonance, colorimetric, fluorescence, and chemiluminescence) nanobiosensors for early diagnosis and prognosis of MI. On the other hand, we discussed the potential application of AuNPs either alone or with other NPs/polymers as promising three-dimensional (3D) scaffolds to regulate the microenvironment and mimic the morphological and electrical features of cardiac cells for potential application in CTE. Furthermore, we presented the challenges and ongoing efforts associated with the application of AuNPs in the diagnosis and treatment of MI. In conclusion, this Review may provide outstanding information regarding the development of AuNP-based technology as a promising platform for current MI treatment approaches.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Jingba Road, NO.2, 450014 Zhengzhou, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.,Biomedical Research Centre (BRC), Qatar University, Doha 2713, Qatar
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj 14155-6139, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Jingba Road, NO.2, 450014 Zhengzhou, China
| | | | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
A Combinatorial Cell and Drug Delivery Strategy for Huntington's Disease Using Pharmacologically Active Microcarriers and RNAi Neuronally-Committed Mesenchymal Stromal Cells. Pharmaceutics 2019; 11:pharmaceutics11100526. [PMID: 31614758 PMCID: PMC6835496 DOI: 10.3390/pharmaceutics11100526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/15/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
For Huntington's disease (HD) cell-based therapy, the transplanted cells are required to be committed to a neuronal cell lineage, survive and maintain this phenotype to ensure their safe transplantation in the brain. We first investigated the role of RE-1 silencing transcription factor (REST) inhibition using siRNA in the GABAergic differentiation of marrow-isolated adult multilineage inducible (MIAMI) cells, a subpopulation of MSCs. We further combined these cells to laminin-coated poly(lactic-co-glycolic acid) PLGA pharmacologically active microcarriers (PAMs) delivering BDNF in a controlled fashion to stimulate the survival and maintain the differentiation of the cells. The PAMs/cells complexes were then transplanted in an ex vivo model of HD. Using Sonic Hedgehog (SHH) and siREST, we obtained GABAergic progenitors/neuronal-like cells, which were able to secrete HGF, SDF1 VEGFa and BDNF, of importance for HD. GABA-like progenitors adhered to PAMs increased their mRNA expression of NGF/VEGFa as well as their secretion of PIGF-1, which can enhance reparative angiogenesis. In our ex vivo model of HD, they were successfully transplanted while attached to PAMs and were able to survive and maintain this GABAergic neuronal phenotype. Together, our results may pave the way for future research that could improve the success of cell-based therapy for HDs.
Collapse
|
5
|
Combined therapy for critical limb ischaemia: Biomimetic PLGA microcarriers potentiates the pro-angiogenic effect of adipose tissue stromal vascular fraction cells. J Tissue Eng Regen Med 2018; 12:1363-1373. [DOI: 10.1002/term.2667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/28/2018] [Indexed: 11/07/2022]
|
6
|
Sun AJ, Qiao L, Huang C, Zhang X, Li YQ, Yang XQ. Comparison of mouse brown and white adipose‑derived stem cell differentiation into pacemaker‑like cells induced by TBX18 transduction. Mol Med Rep 2018; 17:7055-7064. [PMID: 29568953 PMCID: PMC5928658 DOI: 10.3892/mmr.2018.8792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/22/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to compare brown adipose-derived stem cell (BASC) and white adipose-derived stem cell (WASC) differentiation into pacemaker‑like cells following T‑box (TBX)18 transduction. Mouse BASCs and WASCs were induced to differentiate into pacemaker‑like cells by adenovirus‑TBX18 transduction in vitro. The transduction rate was determined by fluorescence microscopy and cell ultrastructural changes were observed by transmission electron microscopy at 48 h post‑transduction. The mRNA and protein expression of pacemaker cell‑associated markers, including TBX18, TBX3, sarcomeric α‑actinin (Sr) and hyperpolarization‑activated cyclic nucleotide‑gated channel 4 (HCN4), were detected by reverse transcription‑quantitative polymerase chain reaction, immunofluorescence staining and western blot analysis. The results demonstrated that no significant difference was observed in the transduction rate between BASCs and WASCs. The ultrastructure of BASCs was observed to be more complex than that of WASCs, indicating that BASCs may possess a better structural foundation to differentiate into pacemaker‑like cells. TBX18, TBX3, Sr and HCN4 mRNA and protein expression in differentiated stem cells was significantly increased compared with the respective control groups. Furthermore, the expression levels were significantly higher in TBX18‑BASCs compared with TBX18‑WASCs. In conclusion, TBX18 gene transduction may facilitate the differentiation of BASCs and WASCs into pacemaker‑like myocardial cells, and BASCs may have a higher capacity than WASCs for this differentiation. TBX18 gene may therefore act as an efficient candidate in cell transplantation therapy for diseases and for future research into the cardiovascular system.
Collapse
Affiliation(s)
- Ai-Jun Sun
- Department of Anatomy, Center of Regenerative Medicine, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Liang Qiao
- Department of Anatomy, Center of Regenerative Medicine, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Chao Huang
- Department of Anatomy, Center of Regenerative Medicine, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xi Zhang
- Department of Anatomy, Center of Regenerative Medicine, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yu-Quan Li
- Department of Anatomy, Center of Regenerative Medicine, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiang-Qun Yang
- Department of Anatomy, Center of Regenerative Medicine, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
7
|
Russo V, Omidi E, Samani A, Hamilton A, Flynn LE. Porous, Ventricular Extracellular Matrix-Derived Foams as a Platform for Cardiac Cell Culture. Biores Open Access 2015; 4:374-88. [PMID: 26487982 PMCID: PMC4598938 DOI: 10.1089/biores.2015.0030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To more closely mimic the native cellular microenvironment, 3D scaffolds derived from the extracellular matrix (ECM) are being developed as alternatives to conventional 2D culture systems. In the present study, we established methods to fabricate nonchemically cross-linked 3D porous foams derived entirely from decellularized porcine left ventricle (DLV) for use as an in vitro cardiac cell culture platform. Furthermore, we explored the effects of physically preprocessing the DLV through mechanical mincing versus cryomilling, as well as varying the ECM concentration on the structure, composition, and physical properties of the foams. Our results indicate that the less highly processed minced foams had a more cohesive and complex network of ECM components, enhanced mechanical properties, and improved stability under simulated culturing conditions. To validate the DLV foams, a proof-of-concept study was conducted to explore the early cardiomyogenic differentiation of pericardial fat adipose-derived stem/stromal cells (pfASCs) on the minced DLV foams relative to purified collagen I gel controls. Differentiation was induced using a modified cardiomyogenic medium (MCM) or through stimulation with 5-azacytidine (5-aza), and cardiomyocyte marker expression was characterized by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction. Our results indicate that early markers of cardiomyogenic differentiation were significantly enhanced on the DLV foams cultured in MCM, suggesting a synergistic effect of the cardiac ECM-derived scaffolds and the culture medium on the induction of pfASC differentiation. Furthermore, in analyzing the response in the noninduced control groups, the foams were observed to provide a mildly inductive microenvironment for pfASC cardiomyogenesis, supporting the rationale for using tissue-specific ECM as a substrate for cardiac cell culture applications.
Collapse
Affiliation(s)
- Valerio Russo
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada . ; Human Mobility Research Centre, Kingston General Hospital , Kingston, Ontario, Canada
| | - Ehsan Omidi
- Biomedical Engineering Graduate Program, The University of Western Ontario , London, Ontario, Canada
| | - Abbas Samani
- Biomedical Engineering Graduate Program, The University of Western Ontario , London, Ontario, Canada . ; Department of Electrical and Computer Engineering, The University of Western Ontario , London, Ontario, Canada
| | - Andrew Hamilton
- Department of Surgery, Kingston General Hospital , Kingston, Ontario, Canada
| | - Lauren E Flynn
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada . ; Biomedical Engineering Graduate Program, The University of Western Ontario , London, Ontario, Canada . ; Department of Chemical and Biochemical Engineering, The University of Western Ontario , London, Ontario, Canada . ; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario , London, Ontario, Canada
| |
Collapse
|
8
|
Karam JP, Muscari C, Sindji L, Bastiat G, Bonafè F, Venier-Julienne MC, Montero-Menei NC. Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering. J Control Release 2014; 192:82-94. [DOI: 10.1016/j.jconrel.2014.06.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/28/2022]
|