1
|
Akilandeswari G, Varshashankari V, Muthusamy S, Aarthy M, Thamizhvani K, Mercyjayapriya J, Ashokraj S, Mohandass P, Prem S, Ayyadurai N. Photocrosslinkable triple helical protein with enhanced higher-order formation for biomaterial applications. J Biomed Mater Res A 2024; 112:1632-1645. [PMID: 38553971 DOI: 10.1002/jbm.a.37716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 08/02/2024]
Abstract
Bacterial collagen, produced via recombinant DNA methods, offers advantages including consistent purity, customizable properties, and reduced allergy potential compared to animal-derived collagen. Its controlled production environment enables tailored features, making it more sustainable, non-pathogenic, and compatible with diverse applications in medicine, cosmetics, and other industries. Research has focused on the engineering of collagen-like proteins to improve their structure and function. The study explores the impact of introducing tyrosine, an amino acid known for its role in fibril formation across diverse proteins, into a newly designed bacterial collagen-like protein (Scl2), specifically examining its effect on self-assembly and fibril formation. Biophysical analyses reveal that the introduction of tyrosine residues didn't compromise the protein's structural stability but rather promoted self-assembly, resulting in the creation of nanofibrils-a phenomenon absent in the native Scl2 protein. Additionally, stable hydrogels are formed when the engineered protein undergoes di-tyrosine crosslinking under light exposure. The hydrogels, shown to support cell viability, also facilitate accelerated wound healing in mouse fibroblast (NIH/3T3) cells. These outcomes demonstrate that the targeted inclusion of functional residues in collagen-like proteins enhances fibril formation and facilitates the generation of robust hydrogels using riboflavin chemistry, presenting promising paths for research in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Gopalan Akilandeswari
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Vijayakumar Varshashankari
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Shalini Muthusamy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Karthigeyan Thamizhvani
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, Telangana, India
| | - Jebakumar Mercyjayapriya
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sundarapandian Ashokraj
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pachaiyappan Mohandass
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suresh Prem
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
He H, Wei N, Xie Y, Wang L, Yao L, Xiao J. Self-Assembling Triple-Helix Recombinant Collagen Hydrogel Enriched with Tyrosine. ACS Biomater Sci Eng 2024; 10:3268-3279. [PMID: 38659167 DOI: 10.1021/acsbiomaterials.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The self-assembly of collagen within the human body creates a complex 3D fibrous network, providing structural integrity and mechanical strength to connective tissues. Recombinant collagen plays a pivotal role in the realm of biomimetic natural collagen. However, almost all of the reported recombinant collagens lack the capability of self-assembly, severely hindering their application in tissue engineering and regenerative medicine. Herein, we have for the first time constructed a series of self-assembling tyrosine-rich triple helix recombinant collagens, mimicking the structure and functionality of natural collagen. The recombinant collagen consists of a central triple-helical domain characterized by the (Gly-Xaa-Yaa)n sequence, along with N-terminal and C-terminal domains featuring the GYY sequence. The introduction of GYY has a negligible impact on the stability of the triple-helical structure of recombinant collagen while simultaneously promoting its self-assembly into fibers. In the presence of [Ru(bpy)3]Cl2 and APS as catalysts, tyrosine residues in the recombinant collagen undergo covalent cross-linking, resulting in a hydrogel with exceptional mechanical properties. The recombinant collagen hydrogel exhibits outstanding biocompatibility and bioactivity, significantly enhancing the proliferation, adhesion, migration, and differentiation of HFF-1 cells. This innovative self-assembled triple-helix recombinant collagen demonstrates significant potential in the fields of tissue engineering and medical materials.
Collapse
Affiliation(s)
- Huixia He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Nannan Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Yi Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Lili Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Wang Q, Yan H, Yao L, Xie Y, Liu P, Xiao J. A highly bioactive THPC-crosslinked recombinant collagen hydrogel implant for aging skin rejuvenation. Int J Biol Macromol 2024; 266:131276. [PMID: 38561117 DOI: 10.1016/j.ijbiomac.2024.131276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Skin aging, a complex physiological progression marked by collagen degradation, poses substantial challenges in dermatology. Recombinant collagen emerges as a potential option for skin revitalization, yet its application is constrained by difficulties in forming hydrogels. We have for the first time developed a highly bioactive Tetrakis(hydroxymethyl) phosphonium chloride (THPC)-crosslinked recombinant collagen hydrogel implant for aging skin rejuvenation. THPC demonstrated superior crosslinking efficiency compared to traditional agents such as EDC/NHS and BDDE, achieving complete recombinant collagen crosslinking at minimal concentrations and effectively inducing hydrogel formation. THPC's four reactive hydroxymethyl groups facilitate robust crosslinking with triple helical recombinant collagen, producing hydrogels with enhanced mechanical strength, excellent injectability, increased stability, and greater durability. Moreover, the hydrogel exhibited remarkable biocompatibility and bioactivity, significantly promoting the proliferation, adhesion, and migration of human foreskin fibroblast-1. In photoaged mice skin models, the THPC-crosslinked collagen hydrogel implant notably improved dermal density, skin elasticity, and reduced transepidermal water loss, creating a conducive environment for fibroblast activity and healthy collagen regeneration. Additionally, it elevated superoxide dismutase (SOD) activity and displayed substantial anti-calcification properties. The THPC-crosslinked recombinant collagen hydrogel implant presents an innovative methodology in combating skin aging, offering significant promise in dermatology and tissue engineering.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.; Joint Research Center of Collagen of Lanzhou University-China National Biotec Group-Lanzhou Biotechnology Development Co., Lanzhou, Gansu 730000, PR China
| | - Huiyu Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.; Joint Research Center of Collagen of Lanzhou University-China National Biotec Group-Lanzhou Biotechnology Development Co., Lanzhou, Gansu 730000, PR China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.; Joint Research Center of Collagen of Lanzhou University-China National Biotec Group-Lanzhou Biotechnology Development Co., Lanzhou, Gansu 730000, PR China
| | - Yi Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.; Joint Research Center of Collagen of Lanzhou University-China National Biotec Group-Lanzhou Biotechnology Development Co., Lanzhou, Gansu 730000, PR China
| | - Peng Liu
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.; Joint Research Center of Collagen of Lanzhou University-China National Biotec Group-Lanzhou Biotechnology Development Co., Lanzhou, Gansu 730000, PR China..
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.; Joint Research Center of Collagen of Lanzhou University-China National Biotec Group-Lanzhou Biotechnology Development Co., Lanzhou, Gansu 730000, PR China..
| |
Collapse
|
4
|
Wang J, Hu J, Yuan X, Li Y, Song L, Xu F. Recombinant collagen hydrogels induced by disulfide bonds. J Biomed Mater Res A 2022; 110:1774-1785. [PMID: 35836355 PMCID: PMC9544300 DOI: 10.1002/jbm.a.37427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
With the characteristics of low toxicity and biodegradability, recombinant collagen‐like proteins have been chemically and genetically engineered as a scaffold for cell adhesion and proliferation. However, most of the existing hydrogels crosslinked with peptides or polymers are not pure collagen, limiting their utility as biomaterials. A major roadblock in the development of biomaterials is the need for high purity collagen that can self‐assemble into hydrogels under mild conditions. In this work, we designed a recombinant protein, S‐VCL‐S, by introducing cysteine residues into the Streptococcus pyogenes collagen‐like protein at both the N‐and C‐termini of the collagen with a trimerization domain (V) and a collagen domain (CL). The S‐VCL‐S protein was properly folded in complete triple helices and formed self‐supporting hydrogels without polymer modifications. In addition, the introduction of cysteines was found to play a key role in the properties of the hydrogels, including their microstructure, pore size, mechanical properties, and drug release capability. Moreover, two/three‐dimensional cell‐culture assays showed that the hydrogels are noncytotoxic and can promote long‐term cell viability. This study explored a crosslinking collagen hydrogel based on disulfide bonds and provides a design strategy for collagen‐based biomaterials.
Collapse
Affiliation(s)
- Jie Wang
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Jinyuan Hu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Xuan Yuan
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Yingnan Li
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Fei Xu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
5
|
Picker J, Lan Z, Arora S, Green M, Hahn M, Cosgriff-Hernandez E, Hook M. Prokaryotic Collagen-Like Proteins as Novel Biomaterials. Front Bioeng Biotechnol 2022; 10:840939. [PMID: 35372322 PMCID: PMC8968730 DOI: 10.3389/fbioe.2022.840939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Collagens are the major structural component in animal extracellular matrices and are critical signaling molecules in various cell-matrix interactions. Its unique triple helical structure is enabled by tripeptide Gly-X-Y repeats. Understanding of sequence requirements for animal-derived collagen led to the discovery of prokaryotic collagen-like protein in the early 2000s. These prokaryotic collagen-like proteins are structurally similar to mammalian collagens in many ways. However, unlike the challenges associated with recombinant expression of mammalian collagens, these prokaryotic collagen-like proteins can be readily expressed in E. coli and are amenable to genetic modification. In this review article, we will first discuss the properties of mammalian collagen and provide a comparative analysis of mammalian collagen and prokaryotic collagen-like proteins. We will then review the use of prokaryotic collagen-like proteins to both study the biology of conventional collagen and develop a new biomaterial platform. Finally, we will describe the application of Scl2 protein, a streptococcal collagen-like protein, in thromboresistant coating for cardiovascular devices, scaffolds for bone regeneration, chronic wound dressing and matrices for cartilage regeneration.
Collapse
Affiliation(s)
- Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Mykel Green
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Mariah Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| |
Collapse
|
6
|
Ramshaw JA, Werkmeister JA, Glattauer V. Recent progress with recombinant collagens produced in Escherichia coli. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Li L, Yu F, Zheng L, Wang R, Yan W, Wang Z, Xu J, Wu J, Shi D, Zhu L, Wang X, Jiang Q. Natural hydrogels for cartilage regeneration: Modification, preparation and application. J Orthop Translat 2019; 17:26-41. [PMID: 31194006 PMCID: PMC6551352 DOI: 10.1016/j.jot.2018.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023] Open
Abstract
Hydrogels, consisting of hydrophilic polymers, can be used as films, scaffolds, nanoparticles and drug carriers. They are one of the hot research topics in material science and tissue engineering and are widely used in the field of biomedical and biological sciences. Researchers are seeking for a type of material that is similar to human tissues and can partially replace human tissues or organs. The hydrogel has brought possibility to solve this problem. It has good biocompatibility and biodegradability. After entering the body, it does not cause immune and toxic reactions. The degradation time can be controlled, and the degradation products are nontoxic and nonimmunogenic; the final metabolites can be excreted outside the body. Owing to the lack of blood vessels and poor migration ability of chondrocytes, the self-healing ability of damaged cartilage is limited. Tissue engineering has brought a new direction for the regeneration of cartilage. Drug carriers and scaffolds made of hydrogels are widely used in cartilage tissue engineering. The present review introduces the natural hydrogels, which are often used for cartilage tissue engineering with respect to synthesis, modification and application methods. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This review introduces the natural hydrogels that are often used in cartilage tissue engineering with respect to synthesis, modification and application methods. Furthermore, the essential concepts and recent discoveries were demonstrated to illustrate the achievable goals and the current limitations. In addition, we propose the putative challenges and directions for the use of natural hydrogels in cartilage regeneration.
Collapse
Affiliation(s)
- Lan Li
- School of Mechanical Engineering, Southeast University, Nanjing, China
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Fei Yu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Liming Zheng
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Rongliang Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Zixu Wang
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jia Xu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jianxiang Wu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
| | - Xingsong Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
9
|
Stoichevska V, Peng YY, Vashi AV, Werkmeister JA, Dumsday GJ, Ramshaw JAM. Engineering specific chemical modification sites into a collagen-like protein from Streptococcus pyogenes. J Biomed Mater Res A 2016; 105:806-813. [PMID: 27806444 DOI: 10.1002/jbm.a.35957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 11/06/2022]
Abstract
Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen-like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via "click" chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806-813, 2017.
Collapse
Affiliation(s)
| | - Yong Y Peng
- CSIRO Manufacturing, Bayview Avenue, Clayton, 3168, Australia
| | - Aditya V Vashi
- CSIRO Manufacturing, Bayview Avenue, Clayton, 3168, Australia
| | | | - Geoff J Dumsday
- CSIRO Manufacturing, Bayview Avenue, Clayton, 3168, Australia
| | | |
Collapse
|