1
|
Zhou J, Nie Y, Jin C, Zhang JXJ. Engineering Biomimetic Extracellular Matrix with Silica Nanofibers: From 1D Material to 3D Network. ACS Biomater Sci Eng 2022; 8:2258-2280. [PMID: 35377596 DOI: 10.1021/acsbiomaterials.1c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomaterials at nanoscale is a fast-expanding research field with which extensive studies have been conducted on understanding the interactions between cells and their surrounding microenvironments as well as intracellular communications. Among many kinds of nanoscale biomaterials, mesoporous fibrous structures are especially attractive as a promising approach to mimic the natural extracellular matrix (ECM) for cell and tissue research. Silica is a well-studied biocompatible, natural inorganic material that can be synthesized as morpho-genetically active scaffolds by various methods. This review compares silica nanofibers (SNFs) to other ECM materials such as hydrogel, polymers, and decellularized natural ECM, summarizes fabrication techniques for SNFs, and discusses different strategies of constructing ECM using SNFs. In addition, the latest progress on SNFs synthesis and biomimetic ECM substrates fabrication is summarized and highlighted. Lastly, we look at the wide use of SNF-based ECM scaffolds in biological applications, including stem cell regulation, tissue engineering, drug release, and environmental applications.
Collapse
Affiliation(s)
- Junhu Zhou
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Hu B, Cheng Z, Liang S. Advantages and prospects of stem cells in nanotoxicology. CHEMOSPHERE 2022; 291:132861. [PMID: 34774913 DOI: 10.1016/j.chemosphere.2021.132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials have been widely used in many fields, especially in biomedical and stem cell therapy. However, the potential risks associated with nanomaterials applications are also gradually increasing. Therefore, effective and robust toxicology models are critical to evaluate the developmental toxicity of nanomaterials. The development of stem cell research provides a new idea of developmental toxicology. Recently, many researchers actively investigated the effects of nanomaterials with different sizes and surface modifications on various stem cells (such as embryonic stem cells (ESCs), adult stem cells, etc.) to study the toxic effects and toxic mechanisms. In this review, we summarized the effects of nanomaterials on the proliferation and differentiation of ESCs, mesenchymal stem cells and neural stem cells. Moreover, we discussed the advantages of stem cells in nanotoxicology compared with other cell lines. Finally, combined with the latest research methods and new molecular mechanisms, we analyzed the application of stem cells in nanotoxicology.
Collapse
Affiliation(s)
- Bowen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China.
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding, 071000, China
| |
Collapse
|
3
|
Sari B, Isik M, Eylem CC, Kilic C, Okesola BO, Karakaya E, Emregul E, Nemutlu E, Derkus B. Omics Technologies for High-Throughput-Screening of Cell-Biomaterial Interactions. Mol Omics 2022; 18:591-615. [DOI: 10.1039/d2mo00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent research effort in biomaterial development has largely focused on engineering bio-instructive materials to stimulate specific cell signaling. Assessing the biological performance of these materials using time-consuming and trial-and-error traditional...
Collapse
|
4
|
Steinerova M, Matejka R, Stepanovska J, Filova E, Stankova L, Rysova M, Martinova L, Dragounova H, Domonkos M, Artemenko A, Babchenko O, Otahal M, Bacakova L, Kromka A. Human osteoblast-like SAOS-2 cells on submicron-scale fibers coated with nanocrystalline diamond films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111792. [PMID: 33579442 DOI: 10.1016/j.msec.2020.111792] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
A unique composite nanodiamond-based porous material with a hierarchically-organized submicron-nano-structure was constructed for potential bone tissue engineering. This material consisted of submicron fibers prepared by electrospinning of silicon oxide (SiOx), which were oxygen-terminated (O-SiOx) and were hermetically coated with nanocrystalline diamond (NCD) films. The NCD films were then terminated with hydrogen (H-NCD) or oxygen (O-NCD). The materials were tested as substrates for the adhesion, growth and osteogenic differentiation of human osteoblast-like Saos-2 cells. The number and the spreading area of the initially adhered cells, their growth rate during 7 days after seeding and the activity of alkaline phosphatase (ALP) were significantly higher on the NCD-coated samples than on the uncoated O-SiOx samples. In addition, the concentration of type I collagen was significantly higher in the cells on the O-NCD-coated samples than on the bare O-SiOx samples. The observed differences could be attributed to the tunable wettability of NCD and to the more appropriate surface morphology of the NCD-coated samples in contrast to the less stable, rapidly eroding bare SiOx surface. The H-NCD coatings and the O-NCD coatings both promoted similar initial adhesion of Saos-2 cells, but the subsequent cell proliferation activity was higher on the O-NCD-coated samples. The concentration of beta-actin, vinculin, type I collagen and alkaline phosphatase (ALP), the ALP activity, and also the calcium deposition tended to be higher in the cells on the O-NCD-coated samples than on the H-NCD-coated samples, although these differences did not reach statistical significance. The improved cell performance on the O-NCD-coated samples could be attributed to higher wettability of these samples (water drop contact angle less than 10°), while the H-NCD-coated samples were hydrophobic (contact angle >70°). NCD-coated porous SiOx meshes can therefore be considered as appropriate scaffolds for bone tissue engineering, particularly those with an O-terminated NCD coating.
Collapse
Affiliation(s)
- Marie Steinerova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 6, Czech Republic.
| | - Roman Matejka
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 6, Czech Republic; Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nam. Sitna 3105, 272 01 Kladno, Czech Republic.
| | - Jana Stepanovska
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 6, Czech Republic; Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nam. Sitna 3105, 272 01 Kladno, Czech Republic.
| | - Elena Filova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 6, Czech Republic.
| | - Lubica Stankova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 6, Czech Republic.
| | - Miroslava Rysova
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, 1, Czech Republic.
| | - Lenka Martinova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic.
| | - Helena Dragounova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 6, Czech Republic.
| | - Maria Domonkos
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Prague 6, Czech Republic; Department of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7, 166 29 Praha 6, Czech Republic.
| | - Anna Artemenko
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Prague 6, Czech Republic.
| | - Oleg Babchenko
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Prague 6, Czech Republic.
| | - Martin Otahal
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nam. Sitna 3105, 272 01 Kladno, Czech Republic.
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 6, Czech Republic.
| | - Alexander Kromka
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Prague 6, Czech Republic; Department of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7, 166 29 Praha 6, Czech Republic.
| |
Collapse
|
5
|
The roles of MicroRNAs in neural regenerative medicine. Exp Neurol 2020; 332:113394. [DOI: 10.1016/j.expneurol.2020.113394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
|
6
|
Ren L, Liu J, Zhang J, Wang J, Wei J, Li Y, Guo C, Sun Z, Zhou X. Silica nanoparticles induce spermatocyte cell autophagy through microRNA-494 targeting AKT in GC-2spd cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113172. [PMID: 31541822 DOI: 10.1016/j.envpol.2019.113172] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Researches had shown that silica nanoparticles (SiNPs) could reduce the quantity and quality of sperms. However, chronic effects of SiNPs have not been well addressed. In this study, mice spermatocyte cells (GC-2spd cells) were continuously exposed to SiNPs (5 μg/mL) for 30 passages and then the changes of microRNA (miRNA) profile and mRNA profile were detected. The function of miRNAs was verified by inhibitors to explore the regulation role of miRNAs in reproductive toxicity induced by SiNPs. The results showed that SiNPs induced cytotoxicity, and activated autophagy in GC-2spd cells. SiNPs led to a total of 1604 mRNAs (697 up-regulated and 907 down-regulated) and 15 miRNAs (6 up-regulated such as miRNA-138 and miRNA-494 and 9 down-regulated) with different expression in GC-2spd cells. The combined miRNA profile and mRNA profile showed that 415 mRNAs with different expression in 5 μg/mL SiNPs group were regulated by miRNA. Furthermore, our study demonstrated that SiNPs decreased the expressions of AKT mRNAs. Moreover, SiNPs had an activation effect on the AMPK/TSC/mTOR pathway. However, inhibitor of miRNA-494 could attenuate the expression levels of AMPK, TSC, LC3Ⅱ and alleviate the decreased of AKT, mTOR, p-mTOR induced by SiNPs. The above results suggested that the low-dose SiNPs exposure could promote autophagy by miRNA-494 targeting AKT, thereby activating AMPK/TSC/mTOR pathway in GC-2spd cells. MiRNA-494 is an important regulator of autophagy by targeting AKT, which provides new evidence for the male reproductive toxicity mechanism of SiNPs.
Collapse
Affiliation(s)
- Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; School of Nursing, Peking University, Beijing, 100191, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells. Biomaterials 2018; 175:93-109. [DOI: 10.1016/j.biomaterials.2018.05.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/17/2022]
|
8
|
Aijie C, Xuan L, Huimin L, Yanli Z, Yiyuan K, Yuqing L, Longquan S. Nanoscaffolds in promoting regeneration of the peripheral nervous system. Nanomedicine (Lond) 2018; 13:1067-1085. [PMID: 29790811 DOI: 10.2217/nnm-2017-0389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability to surgically repair peripheral nerve injuries is urgently needed. However, traditional tissue engineering techniques, such as autologous nerve transplantation, have some limitations. Therefore, tissue engineered autologous nerve grafts have become a suitable choice for nerve repair. Novel tissue engineering techniques derived from nanostructured conduits have been shown to be superior to other successful functional neurological structures with different scaffolds in terms of providing the required structures and properties. Additionally, different biomaterials and growth factors have been added to nerve scaffolds to produce unique biological effects that promote nerve regeneration and functional recovery. This review summarizes the application of different nanoscaffolds in peripheral nerve repair and further analyzes how the nanoscaffolds promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- Chen Aijie
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction & Detection in Tissue Engineering, Guangzhou 510515, China
| | - Lai Xuan
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Liang Huimin
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Zhang Yanli
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Kang Yiyuan
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Lin Yuqing
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction & Detection in Tissue Engineering, Guangzhou 510515, China
| |
Collapse
|
9
|
Curtin CM, Castaño IM, O'Brien FJ. Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer. Adv Healthc Mater 2018; 7. [PMID: 29068566 DOI: 10.1002/adhm.201700695] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/21/2017] [Indexed: 12/17/2022]
Abstract
microRNA-based therapies are an advantageous strategy with applications in both regenerative medicine (RM) and cancer treatments. microRNAs (miRNAs) are an evolutionary conserved class of small RNA molecules that modulate up to one third of the human nonprotein coding genome. Thus, synthetic miRNA activators and inhibitors hold immense potential to finely balance gene expression and reestablish tissue health. Ongoing industry-sponsored clinical trials inspire a new miRNA therapeutics era, but progress largely relies on the development of safe and efficient delivery systems. The emerging application of biomaterial scaffolds for this purpose offers spatiotemporal control and circumvents biological and mechanical barriers that impede successful miRNA delivery. The nascent research in scaffold-mediated miRNA therapies translates know-how learnt from studies in antitumoral and genetic disorders as well as work on plasmid (p)DNA/siRNA delivery to expand the miRNA therapies arena. In this progress report, the state of the art methods of regulating miRNAs are reviewed. Relevant miRNA delivery vectors and scaffold systems applied to-date for RM and cancer treatment applications are discussed, as well as the challenges involved in their design. Overall, this progress report demonstrates the opportunity that exists for the application of miRNA-activated scaffolds in the future of RM and cancer treatments.
Collapse
Affiliation(s)
- Caroline M. Curtin
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| |
Collapse
|
10
|
Liu Y, Li Y, Ren Z, Si W, Li Y, Wei G, Zhao W, Zhou J, Tian Y, Chen D. MicroRNA-125a-3p is involved in early behavioral disorders in stroke-afflicted rats through the regulation of Cadm2. Int J Mol Med 2017; 40:1851-1859. [PMID: 29039453 PMCID: PMC5716446 DOI: 10.3892/ijmm.2017.3179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
Ischemic strokes carry a significant risk of mortality and recurrent vascular events. Recent studies suggest that changes in microRNAs (miRNAs or miRs) may affect the development of the stroke. However, few studies have investigated the role of miRNAs in behavioral disorder in early stroke. In the present study, animal models of middle cerebral artery occlusion (MCAO) are used, as well as a cell model of neurite outgrowth to further investigate the role of miRNAs in targeting synapse-associated proteins expression in early stroke. The authors used miRNA expression microarrays on RNA extracted from the cortex tissue samples from the rats of MCAO and control rats. Reverse transcription-quantitative polymerase chain reaction was conducted to verify the candidate miRNAs discovered by microarray analysis. Data indicated that miR-125a was significantly increased in the cortex of the model of MCAO, which were concomitant with that rats of MCAO at the same age displayed significant behavioral deficits. Bioinformatics analysis predicted the cell adhesion molecule 2 (Cadm2, mRNA) neurite outgrowth-associated protein is targeted by miR-125a. Overexpression of miR-125a reduced the level of Cadm2 expression in PC12 cell injury induced by free-serum. In contrast, inhibition of miR-125a using miR-125a inhibitors significantly resulted in higher levels of Cadm2 expression. In conclusion, miR-125a is involved in the behavioral disorder of animal models of MCAO by regulation of Cadm2.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yunjun Li
- Center of Sanxi Community Health Service, Shenzhen Dapeng District Maternal and Child Health Care Hospital, Shenzhen, Guangdong 518120, P.R. China
| | - Zhenxing Ren
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wenwen Si
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yiwei Li
- School of Nursing, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Gang Wei
- Research and Development of New Drugs, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wenguang Zhao
- School of Medical Information Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianhong Zhou
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yage Tian
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Integrative Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|