1
|
Arslan ME, Tatar A, Yıldırım ÖÇ, Şahin İO, Ozdemir O, Sonmez E, Hacımuftuoglu A, Acikyildiz M, Geyikoğlu F, Mardinoğlu A, Türkez H. In Vitro Transcriptome Analysis of Cobalt Boride Nanoparticles on Human Pulmonary Alveolar Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8683. [PMID: 36500178 PMCID: PMC9740129 DOI: 10.3390/ma15238683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Nanobiotechnology influences many different areas, including the medical, food, energy, clothing, and cosmetics industries. Considering the wide usage of nanomaterials, it is necessary to investigate the toxicity potentials of specific nanosized molecules. Boron-containing nanoparticles (NPs) are attracting much interest from scientists due to their unique physicochemical properties. However, there is limited information concerning the toxicity of boron-containing NPs, including cobalt boride (Co2B) NPs. Therefore, in this study, Co2B NPs were characterized using X-ray crystallography (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques. Then, we performed 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, and neutral red (NR) assays for assessing cell viability against Co2B NP exposure on cultured human pulmonary alveolar epithelial cells (HPAEpiC). In addition, whole-genome microarray analysis was carried out to reveal the global gene expression differentiation of HPAEpiC cells after Co2B NP application. The cell viability tests unveiled an IC50 value for Co2B NPs of 310.353 mg/L. The results of our microarray analysis displayed 719 gene expression differentiations (FC ≥ 2) among the analyzed 40,000 genes. The performed visualization and integrated discovery (DAVID) analysis revealed that there were interactions between various gene pathways and administration of the NPs. Based on gene ontology biological processes analysis, we found that the P53 signaling pathway, cell cycle, and cancer-affecting genes were mostly affected by the Co2B NPs. In conclusion, we suggested that Co2B NPs would be a safe and effective nanomolecule for industrial applications, particularly for medical purposes.
Collapse
Affiliation(s)
- Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey
| | - Özge Çağlar Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
| | - İrfan Oğuz Şahin
- Department of Pediatrics, Pediatric Cardiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Ozlem Ozdemir
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
| | - Erdal Sonmez
- Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Atatürk University, Erzurum 25240, Turkey
| | - Metin Acikyildiz
- Department of Chemistry, Faculty of Science and Art, Kilis 7 Aralık University, Kilis 79000, Turkey
| | - Fatime Geyikoğlu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| |
Collapse
|
2
|
Ventura C, Torres V, Vieira L, Gomes B, Rodrigues AS, Rueff J, Penque D, Silva MJ. New “Omics” Approaches as Tools to Explore Mechanistic Nanotoxicology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:179-194. [DOI: 10.1007/978-3-030-88071-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Turkez H, Cacciatore I, Marinelli L, Fornasari E, Aslan ME, Cadirci K, Kahraman CY, Caglar O, Tatar A, Di Biase G, Hacimuftuoglu A, Di Stefano A, Mardinoglu A. Glycyl-L-Prolyl-L-Glutamate Pseudotripeptides for Treatment of Alzheimer's Disease. Biomolecules 2021; 11:biom11010126. [PMID: 33478054 PMCID: PMC7835747 DOI: 10.3390/biom11010126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
So far, there is no effective disease-modifying therapies for Alzheimer’s Disease (AD) in clinical practice. In this context, glycine-L-proline-L-glutamate (GPE) and its analogs may open the way for developing a novel molecule for treating neurodegenerative disorders, including AD. In turn, this study was aimed to investigate the neuroprotective potentials exerted by three novel GPE peptidomimetics (GPE1, GPE2, and GPE3) using an in vitro AD model. Anti-Alzheimer potentials were determined using a wide array of techniques, such as measurements of mitochondrial viability (MTT) and lactate dehydrogenase (LDH) release assays, determination of acetylcholinesterase (AChE), α-secretase and β-secretase activities, comparisons of total antioxidant capacity (TAC) and total oxidative status (TOS) levels, flow cytometric and microscopic detection of apoptotic and necrotic neuronal death, and investigating gene expression responses via PCR arrays involving 64 critical genes related to 10 different pathways. Our analysis showed that GPE peptidomimetics modulate oxidative stress, ACh depletion, α-secretase inactivation, apoptotic, and necrotic cell death. In vitro results suggested that treatments with novel GPE analogs might be promising therapeutic agents for treatment and/or or prevention of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
- Correspondence: (H.T.); (A.M.)
| | - Ivana Cacciatore
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Erika Fornasari
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Mehmet Enes Aslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey; (M.E.A.); (O.C.)
| | - Kenan Cadirci
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, 25200 Erzurum, Turkey;
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Ozge Caglar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey; (M.E.A.); (O.C.)
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Giuseppe Di Biase
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Antonio Di Stefano
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, 24075 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK
- Correspondence: (H.T.); (A.M.)
| |
Collapse
|
4
|
Schulte P, Leso V, Niang M, Iavicoli I. Biological monitoring of workers exposed to engineered nanomaterials. Toxicol Lett 2018; 298:112-124. [PMID: 29920308 PMCID: PMC6239923 DOI: 10.1016/j.toxlet.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/29/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022]
Abstract
As the number of nanomaterial workers increase there is need to consider whether biomonitoring of exposure should be used as a routine risk management tool. Currently, no biomonitoring of nanomaterials is mandated by authoritative or regulatory agencies. However, there is a growing knowledge base to support such biomonitoring, but further research is needed as are investigations of priorities for biomonitoring. That research should be focused on validation of biomarkers of exposure and effect. Some biomarkers of effect are generally nonspecific. These biomarkers need further interpretation before they should be used. Overall biomonitoring of nanomaterial workers may be important to supplement risk assessment and risk management efforts.
Collapse
Affiliation(s)
- P Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1090 Tusculum Avenue, MS C-14, Cincinnati, OH 45226, USA.
| | - V Leso
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - M Niang
- University of Cincinnati, Cincinnati, OH, USA
| | - I Iavicoli
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|