1
|
Subramanian D, Tjahjono NS, Hernandez PA, Varner VD, Petroll WM, Schmidtke DW. Fabrication of Micropatterns of Aligned Collagen Fibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2551-2561. [PMID: 38277615 PMCID: PMC11001481 DOI: 10.1021/acs.langmuir.3c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Many tissues in vivo contain aligned structures such as filaments, fibrils, and fibers, which expose cells to anisotropic structural and topographical cues that range from the nanometer to micrometer scales. Understanding how cell behavior is regulated by these cues during physiological and pathological processes (e.g., wound healing, cancer invasion) requires substrates that can expose cells to anisotropic cues over several length scales. In this study, we developed a novel method of fabricating micropatterns of aligned collagen fibrils of different geometry onto PDMS-coated glass coverslips that allowed us to investigate the roles of topography and confinement on corneal cell behavior. When corneal cells were cultured on micropatterns of aligned collagen fibrils in the absence of confinement, the degree of cell alignment increased from 40 ± 14 to 82 ± 5% as the size of the micropattern width decreased from 750 to 50 μm. Although the cell area (∼2500 μm2), cell length (∼160 μm), and projected nuclear area (∼175 μm2) were relatively constant on the different micropattern widths, cells displayed an increased aspect ratio as the width of the aligned collagen fibril micropatterns decreased. We also observed that the morphology of cells adhering to the surrounding uncoated PDMS was dependent upon both the size of the aligned collagen fibril micropattern and the distance from the micropatterns. When corneal cells were confined to the micropatterns of aligned collagen fibrils by a Pluronic coating to passivate the surrounding area, a similar trend in increasing cell alignment was observed (35 ± 10 to 89 ± 2%). However, the projected nuclear area decreased significantly (∼210 to 130 μm2) as the micropattern width decreased from 750 to 50 μm. The development of this method allows for the deposition of aligned collagen fibril micropatterns of different geometries on a transparent and elastic substrate and provides an excellent model system to investigate the role of anisotropic cues in cell behavior.
Collapse
Affiliation(s)
- Divya Subramanian
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Nathaniel S Tjahjono
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Paula A Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Texas 75390, United States
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center at Dallas, Texas 75390, United States
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, Texas 75390, United States
| | - W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Texas 75390, United States
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, Texas 75390, United States
| |
Collapse
|
2
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
3
|
Jin S, Yang R, Chu C, Hu C, Zou Q, Li Y, Zuo Y, Man Y, Li J. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater 2021; 129:148-158. [PMID: 34082097 DOI: 10.1016/j.actbio.2021.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023]
Abstract
The fate of biomaterials is orchestrated by biocompatibility and bioregulation characteristics, reported to be closely related to topographical structures. For the purpose to investigate the topography of fibrous membranes on the guided bone regeneration performance, we successfully fabricated poly (lactate-co-glycolate)/fish collagen/nano-hydroxyapatite (PFCH) fibrous membranes with random, aligned and latticed topography by electrospinning. The physical, chemical and biological properties of the three topographical PFCH membranes were systematically investigated by in vitro and in vivo experiments. The subcutaneous implantation of C57BL6 mice showed an acceptable mild foreign body reaction of all three topological membranes. Interestingly, the latticed PFCH membrane exhibited superior abilities to recruit macrophage/monocyte and induce angiogenesis. We further investigated the osteogenesis of the three topographical PFCH membranes via the critical-size calvarial bone defect model of rats and mice and the results suggested that latticed PFCH membrane manifested promising performance to promote angiogenesis through upregulation of the HIF-1α signaling pathway; thereby enhancing bone regeneration. Our research illustrated that the topological structure of fibrous membranes, as one of the characteristics of biomaterials, could regulate its biological functions, and the fibrous structure of latticed topography could serve as a favorable surface design of biomaterials for bone regeneration. STATEMENT OF SIGNIFICANCE: In material-mediated regeneration medicine, the interaction between the biomaterial and the host is key to successful tissue regeneration. The micro-and nano-structure becomes one of the most critical physical clues for designing biomaterials. In this study, we fabricated three topological electrospun membranes (Random, Aligned and Latticed) to understand how topological structural clues mediate bone tissue regeneration. Interestingly, we found that the Latticed topographical PFCH membrane promotes macrophage recruitment, angiogenesis, and osteogenesis in vivo, indicating the fibrous structure of latticed topography could serve as a favorable surface design of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Shue Jin
- The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| | - Renli Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chen Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Zou
- The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yubao Li
- The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yi Zuo
- The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jidong Li
- The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
4
|
Zhang S, Peng B, Li M, Diao H, Wang X, Zhao W, Lin W, Sun N, Lin S. Immobilization of Active Substances in Food Using Self‐Organized Patterned Porous Film via Breath Figure Approach. ChemistrySelect 2021. [DOI: 10.1002/slct.202004827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Simin Zhang
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Bo Peng
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Meng Li
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Huayu Diao
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Xingyu Wang
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Weiping Zhao
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Wei Lin
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| |
Collapse
|
5
|
Hacohen A, Jessel HR, Richter-Levin A, Shefi O. Patterning of Particles and Live Cells at Single Cell Resolution. MICROMACHINES 2020; 11:E505. [PMID: 32429308 PMCID: PMC7281171 DOI: 10.3390/mi11050505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/06/2023]
Abstract
The ability to manipulate and selectively position cells into patterns or distinct microenvironments is an important component of many single cell experimental methods and biological engineering applications. Although a variety of particles and cell patterning methods have been demonstrated, most of them deal with the patterning of cell populations, and are either not suitable or difficult to implement for the patterning of single cells. Here, we describe a bottom-up strategy for the micropatterning of cells and cell-sized particles. We have configured a micromanipulator system, in which a pneumatic microinjector is coupled to a holding pipette capable of physically isolating single particles and cells from different types, and positioning them with high accuracy in a predefined position, with a resolution smaller than 10 µm. Complementary DNA sequences were used to stabilize and hold the patterns together. The system is accurate, flexible, and easy-to-use, and can be automated for larger-scale tasks. Importantly, it maintains the viability of live cells. We provide quantitative measurements of the process and offer a file format for such assemblies.
Collapse
Affiliation(s)
- Adar Hacohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Hadass R. Jessel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Alon Richter-Levin
- The Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel; (A.R.-L.); (O.S.)
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Orit Shefi
- The Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel; (A.R.-L.); (O.S.)
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
6
|
Hun T, Liu Y, Guo Y, Sun Y, Fan Y, Wang W. A micropore array-based solid lift-off method for highly efficient and controllable cell alignment and spreading. MICROSYSTEMS & NANOENGINEERING 2020; 6:86. [PMID: 34567696 PMCID: PMC8433473 DOI: 10.1038/s41378-020-00191-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/03/2020] [Indexed: 05/04/2023]
Abstract
Interpretation of cell-cell and cell-microenvironment interactions is critical for both advancing knowledge of basic biology and promoting applications of regenerative medicine. Cell patterning has been widely investigated in previous studies. However, the reported methods cannot simultaneously realize precise control of cell alignment and adhesion/spreading with a high efficiency at a high throughput. Here, a novel solid lift-off method with a micropore array as a shadow mask was proposed. Efficient and precise control of cell alignment and adhesion/spreading are simultaneously achieved via an ingeniously designed shadow mask, which contains large micropores (capture pores) in central areas and small micropores (spreading pores) in surrounding areas contributing to capture/alignment and adhesion/spreading control, respectively. The solid lift-off functions as follows: (1) protein micropattern generates through both the capture and spreading pores, (2) cell capture/alignment control is realized through the capture pores, and (3) cell adhesion/spreading is controlled through previously generated protein micropatterns after lift-off of the shadow mask. High-throughput (2.4-3.2 × 104 cells/cm2) cell alignments were achieved with high efficiencies (86.2 ± 3.2%, 56.7 ± 9.4% and 51.1 ± 4.0% for single-cell, double-cell, and triple-cell alignments, respectively). Precise control of cell spreading and applications for regulating cell skeletons and cell-cell junctions were investigated and verified using murine skeletal muscle myoblasts. To the best of our knowledge, this is the first report to demonstrate highly efficient and controllable multicell alignment and adhesion/spreading simultaneously via a simple solid lift-off operation. This study successfully fills a gap in literatures and promotes the effective and reproducible application of cell patterning in the fields of both basic mechanism studies and applied medicine.
Collapse
Affiliation(s)
- Tingting Hun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- Institute of Microelectronics, Peking University, 100871 Beijing, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University, 100871 Beijing, China
| | - Yechang Guo
- Institute of Microelectronics, Peking University, 100871 Beijing, China
| | - Yan Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100083 Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100083 Beijing, China
| | - Wei Wang
- Institute of Microelectronics, Peking University, 100871 Beijing, China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, 100871 Beijing, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, 100871 Beijing, China
| |
Collapse
|
7
|
|
8
|
Guo L, Fan Y, Kawazoe N, Fan H, Zhang X, Chen G. Fabrication of gelatin-micropatterned surface and its effect on osteogenic differentiation of hMSCs. J Mater Chem B 2018; 6:1018-1025. [DOI: 10.1039/c7tb03165c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Micropatterned surface with different surface chemistries was fabricated for the direct comparison of their effect on the behaviors of hMSCs and to avoid any batch to batch variations during cell culture.
Collapse
Affiliation(s)
- Likun Guo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
- Research Center for Functional Materials
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Naoki Kawazoe
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Guoping Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| |
Collapse
|