1
|
Serrano JC, Gillrie MR, Li R, Ishamuddin SH, Moeendarbary E, Kamm RD. Microfluidic-Based Reconstitution of Functional Lymphatic Microvasculature: Elucidating the Role of Lymphatics in Health and Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302903. [PMID: 38059806 PMCID: PMC10837354 DOI: 10.1002/advs.202302903] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/17/2023] [Indexed: 12/08/2023]
Abstract
The knowledge of the blood microvasculature and its functional role in health and disease has grown significantly attributable to decades of research and numerous advances in cell biology and tissue engineering; however, the lymphatics (the secondary vascular system) has not garnered similar attention, in part due to a lack of relevant in vitro models that mimic its pathophysiological functions. Here, a microfluidic-based approach is adopted to achieve precise control over the biological transport of growth factors and interstitial flow that drive the in vivo growth of lymphatic capillaries (lymphangiogenesis). The engineered on-chip lymphatics with in vivo-like morphology exhibit tissue-scale functionality with drainage rates of interstitial proteins and molecules comparable to in vivo standards. Computational and scaling analyses of the underlying transport phenomena elucidate the critical role of the three-dimensional geometry and lymphatic endothelium in recapitulating physiological drainage. Finally, the engineered on-chip lymphatics enabled studies of lymphatic-immune interactions that revealed inflammation-driven responses by the lymphatics to recruit immune cells via chemotactic signals similar to in vivo, pathological events. This on-chip lymphatics platform permits the interrogation of various lymphatic biological functions, as well as screening of lymphatic-based therapies such as interstitial absorption of protein therapeutics and lymphatic immunomodulation for cancer therapy.
Collapse
Affiliation(s)
- Jean C. Serrano
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mark R. Gillrie
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medicine University of CalgaryCalgaryABT2N 1N4Canada
| | - Ran Li
- Center for Systems Biology Massachusetts General Hospital Research InstituteBostonMA02114USA
| | - Sarah H. Ishamuddin
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Emad Moeendarbary
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Roger D. Kamm
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
2
|
Margolis EA, Friend NE, Rolle MW, Alsberg E, Putnam AJ. Manufacturing the multiscale vascular hierarchy: progress toward solving the grand challenge of tissue engineering. Trends Biotechnol 2023; 41:1400-1416. [PMID: 37169690 PMCID: PMC10593098 DOI: 10.1016/j.tibtech.2023.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
In human vascular anatomy, blood flows from the heart to organs and tissues through a hierarchical vascular tree, comprising large arteries that branch into arterioles and further into capillaries, where gas and nutrient exchange occur. Engineering a complete, integrated vascular hierarchy with vessels large enough to suture, strong enough to withstand hemodynamic forces, and a branching structure to permit immediate perfusion of a fluidic circuit across scales would be transformative for regenerative medicine (RM), enabling the translation of engineered tissues of clinically relevant size, and perhaps whole organs. How close are we to solving this biological plumbing problem? In this review, we highlight advances in engineered vasculature at individual scales and focus on recent strategies to integrate across scales.
Collapse
Affiliation(s)
- Emily A Margolis
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
| | - Nicole E Friend
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
| | - Marsha W Rolle
- Worcester Polytechnic Institute, Department of Biomedical Engineering, Worcester, MA, USA
| | - Eben Alsberg
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, IL, USA
| | - Andrew J Putnam
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Ejazi SA, Louisthelmy R, Maisel K. Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective. ACS NANO 2023. [PMID: 37410891 DOI: 10.1021/acsnano.3c02403] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Oral drug administration has been a popular choice due to patient compliance and limited clinical resources. Orally delivered drugs must circumvent the harsh gastrointestinal (GI) environment to effectively enter the systemic circulation. The GI tract has a number of structural and physiological barriers that limit drug bioavailability including mucus, the tightly regulated epithelial layer, immune cells, and associated vasculature. Nanoparticles have been used to enhance oral bioavailability of drugs, as they can act as a shield to the harsh GI environment and prevent early degradation while also increasing uptake and transport of drugs across the intestinal epithelium. Evidence suggests that different nanoparticle formulations may be transported via different intracellular mechanisms to cross the intestinal epithelium. Despite the existence of a significant body of work on intestinal transport of nanoparticles, many key questions remain: What causes the poor bioavailability of the oral drugs? What factors contribute to the ability of a nanoparticle to cross different intestinal barriers? Do nanoparticle properties such as size and charge influence the type of endocytic pathways taken? In this Review, we summarize the different components of intestinal barriers and the types of nanoparticles developed for oral delivery. In particular, we focus on the various intracellular pathways used in nanoparticle internalization and nanoparticle or cargo translocation across the epithelium. Understanding the gut barrier, nanoparticle characteristics, and transport pathways may lead to the development of more therapeutically useful nanoparticles as drug carriers.
Collapse
Affiliation(s)
- Sarfaraz Ahmad Ejazi
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Rebecca Louisthelmy
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Bogseth A, Ramirez A, Vaughan E, Maisel K. In Vitro Models of Blood and Lymphatic Vessels-Connecting Tissues and Immunity. Adv Biol (Weinh) 2023; 7:e2200041. [PMID: 35751460 PMCID: PMC9790046 DOI: 10.1002/adbi.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Blood and lymphatic vessels are regulators of physiological processes, including oxygenation and fluid transport. Both vessels are ubiquitous throughout the body and are critical for sustaining tissue homeostasis. The complexity of each vessel's processes has limited the understanding of exactly how the vessels maintain their functions. Both vessels have been shown to be involved in the pathogenesis of many diseases, including cancer metastasis, and it is crucial to probe further specific mechanisms involved. In vitro models are developed to better understand blood and lymphatic physiological functions and their mechanisms. In this review, blood and lymphatic in vitro model systems, including 2D and 3D designs made using Transwells, microfluidic devices, organoid cultures, and various other methods, are described. Models studying endothelial cell-extracellular matrix interactions, endothelial barrier properties, transendothelial transport and cell migration, lymph/angiogenesis, vascular inflammation, and endothelial-cancer cell interactions are particularly focused. While the field has made significant progress in modeling and understanding lymphatic and blood vasculature, more models that include coculture of multiple cell types, complex extracellular matrix, and 3D morphologies, particularly for models mimicking disease states, will help further the understanding of the role of blood and lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Amanda Bogseth
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Ann Ramirez
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Erik Vaughan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| |
Collapse
|
5
|
Asiyabi MM, Vahidi B. In silico analysis of a hierarchical microfluidic vascular network: Detecting the location of angiogenic sprouting. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3654. [PMID: 36209469 DOI: 10.1002/cnm.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/30/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Lack of oxygen is one of the leading causes of failure in engineered tissue. Therefore, angiogenesis will be necessary for the survival of larger tissues in vivo. In addition, a proper lymphatic system that plays an essential role in relieving inflammation and maintaining tissue homeostasis is of great importance for tissue regeneration and repair. Many biomechanical parameters are involved in controlling angiogenesis and capillary network generation, which are challenging to study and control in experimental studies or in vitro. In the present study, using numerical modeling, the effect of various geometric and biomechanical parameters in creating suitable conditions for angiogenesis was investigated. Furthermore, sprouting points were predicted using flow dynamics. For this purpose, a porous scaffold, flow channels with parametric geometry that followed Murray's law, and a drainage channel were considered. Results suggested that the geometry of the microfluidic channels and the characteristics of the vessel wall and scaffold plays a complementary role in determining the transmural pressure. It was found that a twofold increase in the vascular hydraulic conductivity can reduce the minimum transmural pressure by up to 28% and increase the drainage flow rate by 44%. In addition, the minimum magnitude of transmural pressure tends to zero for scaffold's hydraulic conductivity values smaller than 10-11 m3 s kg-1 . The results of this study can be used in optimizing the design of the relevant microfluidic systems to induce angiogenesis and avoid leakage in the constructed implantable tissue.
Collapse
Affiliation(s)
- Milad Mahdinezhad Asiyabi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Sasaki S, Suzuki T, Morikawa K, Matsusaki M, Sato K. Fabrication of a Gelatin-Based Microdevice for Vascular Cell Culture. MICROMACHINES 2022; 14:107. [PMID: 36677169 PMCID: PMC9860854 DOI: 10.3390/mi14010107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
This study presents a novel technique for fabricating microfluidic devices with microbial transglutaminase-gelatin gels instead of polydimethylsiloxane (PDMS), in which flow culture simulates blood flow and a capillary network is incorporated for assays of vascular permeability or angiogenesis. We developed a gelatin-based device with a coverslip as the bottom, which allows the use of high-magnification lenses with short working distances, and we observed the differences in cell dynamics on gelatin, glass, and PDMS surfaces. The tubes of the gelatin microfluidic channel are designed to be difficult to pull out of the inlet hole, making sample introduction easy, and the gelatin channel can be manipulated from the cell introduction to the flow culture steps in a manner comparable to that of a typical PDMS channel. Human umbilical vein endothelial cells (HUVECs) and normal human dermal fibroblasts (NHDFs) were successfully co-cultured, resulting in structures that mimicked blood vessels with inner diameters ranging from 10 µm to 500 µm. Immunostaining and scanning electron microscopy results showed that the affinity of fibronectin for gelatin was stronger than that for glass or PDMS, making gelatin a suitable substrate for cell adhesion. The ability for microscopic observation at high magnification and the ease of sample introduction make this device easier to use than conventional gelatin microfluidics, and the above-mentioned small modifications in the device structure are important points that improve its convenience as a cell assay device.
Collapse
Affiliation(s)
- Satoko Sasaki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan
| | - Tomoko Suzuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan
| | - Kyojiro Morikawa
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kae Sato
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan
| |
Collapse
|
7
|
Seibel AJ, Kelly OM, Dance YW, Nelson CM, Tien J. Role of Lymphatic Endothelium in Vascular Escape of Engineered Human Breast Microtumors. Cell Mol Bioeng 2022; 15:553-569. [PMID: 36531861 PMCID: PMC9751254 DOI: 10.1007/s12195-022-00745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Introduction Lymphatic vasculature provides a route for metastasis to secondary sites in the body. The role of the lymphatic endothelium in mediating the entry of breast cancer cells into the vasculature remains unclear. Methods In this study, we formed aggregates of MDA-MB-231 human breast carcinoma cells next to human microvascular lymphatic endothelial cell (LEC)-lined cavities in type I collagen gels to model breast microtumors and lymphatic vessels, respectively. We tracked invasion and escape of breast microtumors into engineered lymphatics or empty cavities under matched flow rates for up to sixteen days. Results After coming into contact with a lymphatic vessel, tumor cells escape by moving between the endothelium and the collagen wall, between endothelial cells, and/or into the endothelial lumen. Over time, tumor cells replace the LECs within the vessel wall and create regions devoid of endothelium. The presence of lymphatic endothelium slows breast tumor invasion and escape, and addition of LEC-conditioned medium to tumors is sufficient to reproduce nearly all of these inhibitory effects. Conclusions This work sheds light on the interactions between breast cancer cells and lymphatic endothelium during vascular escape and reveals an inhibitory role for the lymphatic endothelium in breast tumor invasion and escape. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00745-9.
Collapse
Affiliation(s)
- Alex J. Seibel
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Owen M. Kelly
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Yoseph W. Dance
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, 25 William Street, Princeton, NJ 08544 USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| | - Joe Tien
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
- Division of Materials Science and Engineering, Boston University, Boston, MA USA
| |
Collapse
|
8
|
Tien J, Ghani U. Methods for Forming Human Lymphatic Microvessels In Vitro and Assessing their Drainage Function. Methods Mol Biol 2022; 2394:651-668. [PMID: 35094351 DOI: 10.1007/978-1-0716-1811-0_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter describes methods to engineer human lymphatic microvessels in vitro and to assess their fluid and solute drainage capacities. The lymphatics are formed within micropatterned type I collagen gels that contain a blind-ended channel for the growth of lymphatic endothelial cells. Because the vessels have one blind end and one open end each, they mimic the terminal structure of the native lymphatic microvascular tree. The solute drainage rates that are measured from the engineered lymphatics in vitro can be directly compared with published results from intact vessels in vivo. Practical considerations to increase the accuracy of the drainage assays are discussed.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA.
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Selahi A, Fernando T, Chakraborty S, Muthuchamy M, Zawieja DC, Jain A. Lymphangion-chip: a microphysiological system which supports co-culture and bidirectional signaling of lymphatic endothelial and muscle cells. LAB ON A CHIP 2021; 22:121-135. [PMID: 34850797 PMCID: PMC9761984 DOI: 10.1039/d1lc00720c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The pathophysiology of several lymphatic diseases, such as lymphedema, depends on the function of lymphangions that drive lymph flow. Even though the signaling between the two main cellular components of a lymphangion, endothelial cells (LECs) and muscle cells (LMCs), is responsible for crucial lymphatic functions, there are no in vitro models that have included both cell types. Here, a fabrication technique (gravitational lumen patterning or GLP) is developed to create a lymphangion-chip. This organ-on-chip consists of co-culture of a monolayer of endothelial lumen surrounded by multiple and uniformly thick layers of muscle cells. The platform allows construction of a wide range of luminal diameters and muscular layer thicknesses, thus providing a toolbox to create variable anatomy. In this device, lymphatic muscle cells align circumferentially while endothelial cells aligned axially under flow, as only observed in vivo in the past. This system successfully characterizes the dynamics of cell size, density, growth, alignment, and intercellular gap due to co-culture and shear. Finally, exposure to pro-inflammatory cytokines reveals that the device could facilitate the regulation of endothelial barrier function through the lymphatic muscle cells. Therefore, this bioengineered platform is suitable for use in preclinical research of lymphatic and blood mechanobiology, inflammation, and translational outcomes.
Collapse
Affiliation(s)
- Amirali Selahi
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell Street College Station, TX, 77843, USA.
| | - Teshan Fernando
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell Street College Station, TX, 77843, USA.
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell Street College Station, TX, 77843, USA.
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX, USA
| |
Collapse
|
10
|
Henderson AR, Ilan IS, Lee E. A bioengineered lymphatic vessel model for studying lymphatic endothelial cell-cell junction and barrier function. Microcirculation 2021; 28:e12730. [PMID: 34569678 DOI: 10.1111/micc.12730] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Lymphatic vessels (LVs) maintain fluid homeostasis by draining interstitial fluid. A failure in lymphatic drainage triggers lymphatic diseases such as lymphedema. Since lymphatic drainage is regulated by lymphatic barrier function, developing experimental models that assess lymphatic barrier function is critical for better understanding of lymphatic physiology and disease. METHODS We built a lymphatic vessel-on-chip (LV-on-chip) by fabricating a microfluidic device that includes a hollow microchannel embedded in three-dimensional (3D) hydrogel. Employing luminal flow in the microchannel, human lymphatic endothelial cells (LECs) seeded in the microchannel formed an engineered LV exhibiting 3D conduit structure. RESULTS Lymphatic endothelial cells formed relatively permeable junctions in 3D collagen 1. However, adding fibronectin to the collagen 1 apparently tightened LEC junctions. We tested lymphatic barrier function by introducing dextran into LV lumens. While LECs in collagen 1 showed permeable barriers, LECs in fibronectin/collagen 1 showed reduced permeability, which was reversed by integrin α5 inhibition. Mechanistically, LECs expressed inactivated integrin α5 in collagen 1. However, integrin α5 is activated in fibronectin and enhances barrier function. Integrin α5 activation itself also tightened LEC junctions in the absence of fibronectin. CONCLUSIONS Lymphatic vessel-on-chip reveals integrin α5 as a regulator of lymphatic barrier function and provides a platform for studying lymphatic barrier function in various conditions.
Collapse
Affiliation(s)
- Aria R Henderson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Isabelle S Ilan
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Hammel JH, Cook SR, Belanger MC, Munson JM, Pompano RR. Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues. Annu Rev Biomed Eng 2021; 23:461-491. [PMID: 33872520 PMCID: PMC8277680 DOI: 10.1146/annurev-bioeng-082420-124920] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modeling immunity in vitro has the potential to be a powerful tool for investigating fundamental biological questions, informing therapeutics and vaccines, and providing new insight into disease progression. There are two major elements to immunity that are necessary to model: primary immune tissues and peripheral tissues with immune components. Here, we systematically review progress made along three strategies to modeling immunity: ex vivo cultures, which preserve native tissue structure; microfluidic devices, which constitute a versatile approach to providing physiologically relevant fluid flow and environmental control; and engineered tissues, which provide precise control of the 3D microenvironment and biophysical cues. While many models focus on disease modeling, more primary immune tissue models are necessary to advance the field. Moving forward, we anticipate that the expansion of patient-specific models may inform why immunity varies from patient to patient and allow for the rapid comprehension and treatment of emerging diseases, such as coronavirus disease 2019.
Collapse
Affiliation(s)
- Jennifer H Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Sophie R Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Maura C Belanger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jennifer M Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;
- Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| |
Collapse
|
12
|
Jia W, Hitchcock-Szilagyi H, He W, Goldman J, Zhao F. Engineering the Lymphatic Network: A Solution to Lymphedema. Adv Healthc Mater 2021; 10:e2001537. [PMID: 33502814 PMCID: PMC8483563 DOI: 10.1002/adhm.202001537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/06/2020] [Indexed: 12/18/2022]
Abstract
Secondary lymphedema is a life-long disorder characterized by chronic tissue swelling and inflammation that obstruct interstitial fluid circulation and immune cell trafficking. Regenerating lymphatic vasculatures using various strategies represents a promising treatment for lymphedema. Growth factor injection and gene delivery have been developed to stimulate lymphangiogenesis and augment interstitial fluid resorption. Using bioengineered materials as growth factor delivery vehicles allows for a more precisely targeted lymphangiogenic activation within the injured site. The implantation of prevascularized lymphatic tissue also promotes in situ lymphatic capillary network formation. The engineering of larger scale lymphatic tissues, including lymphatic collecting vessels and lymph nodes constructed by bioengineered scaffolds or decellularized animal tissues, offers alternatives to reconnecting damaged lymphatic vessels and restoring lymph circulation. These approaches provide lymphatic vascular grafting materials to reimpose lymphatic continuity across the site of injury, without creating secondary injuries at donor sites. The present work reviews molecular mechanisms mediating lymphatic system development, approaches to promoting lymphatic network regeneration, and strategies for engineering lymphatic tissues, including lymphatic capillaries, collecting vessels, and nodes. Challenges of advanced translational applications are also discussed.
Collapse
Affiliation(s)
- Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77845
| | | | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77845
| |
Collapse
|
13
|
Abstract
Since their initial description in 2005, biomaterials that are patterned to contain microfluidic networks ("microfluidic biomaterials") have emerged as promising scaffolds for a variety of tissue engineering and related applications. This class of materials is characterized by the ability to be readily perfused. Transport and exchange of solutes within microfluidic biomaterials is governed by convection within channels and diffusion between channels and the biomaterial bulk. Numerous strategies have been developed for creating microfluidic biomaterials, including micromolding, photopatterning, and 3D printing. In turn, these materials have been used in many applications that benefit from the ability to perfuse a scaffold, including the engineering of blood and lymphatic microvessels, epithelial tubes, and cell-laden tissues. This article reviews the current state of the field and suggests new areas of exploration for this unique class of materials.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts, USA
| | - Yoseph W. Dance
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Campbell KT, Silva EA. Biomaterial Based Strategies for Engineering New Lymphatic Vasculature. Adv Healthc Mater 2020; 9:e2000895. [PMID: 32734721 PMCID: PMC8985521 DOI: 10.1002/adhm.202000895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Indexed: 12/15/2022]
Abstract
The lymphatic system is essential for tissue regeneration and repair due to its pivotal role in resolving inflammation, immune cell surveillance, lipid transport, and maintaining tissue homeostasis. Loss of functional lymphatic vasculature is directly implicated in a variety of diseases, including lymphedema, obesity, and the progression of cardiovascular diseases. Strategies that stimulate the formation of new lymphatic vessels (lymphangiogenesis) could provide an appealing new approach to reverse the progression of these diseases. However, lymphangiogenesis is relatively understudied and stimulating therapeutic lymphangiogenesis faces challenges in precise control of lymphatic vessel formation. Biomaterial delivery systems could be used to unleash the therapeutic potential of lymphangiogenesis for a variety of tissue regenerative applications due to their ability to achieve precise spatial and temporal control of multiple therapeutics, direct tissue regeneration, and improve the survival of delivered cells. In this review, the authors begin by introducing therapeutic lymphangiogenesis as a target for tissue regeneration, then an overview of lymphatic vasculature will be presented followed by a description of the mechanisms responsible for promoting new lymphatic vessels. Importantly, this work will review and discuss current biomaterial applications for stimulating lymphangiogenesis. Finally, challenges and future directions for utilizing biomaterials for lymphangiogenic based treatments are considered.
Collapse
Affiliation(s)
- Kevin T Campbell
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
15
|
van Dijk CGM, Brandt MM, Poulis N, Anten J, van der Moolen M, Kramer L, Homburg EFGA, Louzao-Martinez L, Pei J, Krebber MM, van Balkom BWM, de Graaf P, Duncker DJ, Verhaar MC, Luttge R, Cheng C. A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix. LAB ON A CHIP 2020; 20:1827-1844. [PMID: 32330215 DOI: 10.1039/d0lc00059k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microfluidic organ-on-a-chip designs are used to mimic human tissues, including the vasculature. Here we present a novel microfluidic device that allows the interaction of endothelial cells (ECs) with pericytes and the extracellular matrix (ECM) in full bio-matrix encased 3D vessel structures (neovessels) that can be subjected to continuous, unidirectional flow and perfusion with circulating immune cells. We designed a polydimethylsiloxane (PDMS) device with a reservoir for a 3D fibrinogen gel with pericytes. Open channels were created for ECs to form a monolayer. Controlled, continuous, and unidirectional flow was introduced via a pump system while the design facilitated 3D confocal imaging. In this vessel-on-a-chip system, ECs interact with pericytes to create a human cell derived blood vessel which maintains a perfusable lumen for up to 7 days. Dextran diffusion verified endothelial barrier function while demonstrating the beneficial role of supporting pericytes. Increased permeability after thrombin stimulation showed the capacity of the neovessels to show natural vascular response. Perfusion of neovessels with circulating THP-1 cells demonstrated this system as a valuable platform for assessing interaction between the endothelium and immune cells in response to TNFα. In conclusion: we created a novel vascular microfluidic device that facilitates the fabrication of an array of parallel soft-channel structures in ECM gel that develop into biologically functional neovessels without hard-scaffold support. This model provides a unique tool to conduct live in vitro imaging of the human vasculature during perfusion with circulating cells to mimic (disease) environments in a highly systematic but freely configurable manner.
Collapse
Affiliation(s)
- Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, PO Box 85500, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luque‐González MA, Reis RL, Kundu SC, Caballero D. Human Microcirculation‐on‐Chip Models in Cancer Research: Key Integration of Lymphatic and Blood Vasculatures. ACTA ACUST UNITED AC 2020; 4:e2000045. [DOI: 10.1002/adbi.202000045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Maria Angélica Luque‐González
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - Rui Luis Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - Subhas Chandra Kundu
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - David Caballero
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| |
Collapse
|
17
|
Offeddu GS, Shin Y, Kamm RD. Microphysiological models of neurological disorders for drug development. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
19
|
Chang CW, Seibel AJ, Song JW. Application of microscale culture technologies for studying lymphatic vessel biology. Microcirculation 2019; 26:e12547. [PMID: 30946511 DOI: 10.1111/micc.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
Immense progress in microscale engineering technologies has significantly expanded the capabilities of in vitro cell culture systems for reconstituting physiological microenvironments that are mediated by biomolecular gradients, fluid transport, and mechanical forces. Here, we examine the innovative approaches based on microfabricated vessels for studying lymphatic biology. To help understand the necessary design requirements for microfluidic models, we first summarize lymphatic vessel structure and function. Next, we provide an overview of the molecular and biomechanical mediators of lymphatic vessel function. Then we discuss the past achievements and new opportunities for microfluidic culture models to a broad range of applications pertaining to lymphatic vessel physiology. We emphasize the unique attributes of microfluidic systems that enable the recapitulation of multiple physicochemical cues in vitro for studying lymphatic pathophysiology. Current challenges and future outlooks of microscale technology for studying lymphatics are also discussed. Collectively, we make the assertion that further progress in the development of microscale models will continue to enrich our mechanistic understanding of lymphatic biology and physiology to help realize the promise of the lymphatic vasculature as a therapeutic target for a broad spectrum of diseases.
Collapse
Affiliation(s)
- Chia-Wen Chang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Alex J Seibel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio.,The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|