1
|
Cao S, Budina E, Wang R, Sabados M, Mukherjee A, Solanki A, Nguyen M, Hultgren K, Dhar A, Hubbell JA. Injectable butyrate-prodrug micelles induce long-acting immune modulation and prevent autoimmune arthritis in mice. J Control Release 2024; 372:281-294. [PMID: 38876359 DOI: 10.1016/j.jconrel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Short chain fatty acid (SCFAs), such as butyrate, have shown promising therapeutic potential due to their immunomodulatory effects, particularly in maintaining immune homeostasis. However, the clinical application of SCFAs is limited by the need for frequent and high oral dosages. Rheumatoid arthritis (RA) is characterized by aberrant activation of peripheral T cells and myeloid cells. In this study, we aimed to deliver butyrate directly to the lymphatics using a polymeric micelle-based butyrate prodrug to induce long-lasting immunomodulatory effects. Notably, negatively charged micelles (Neg-ButM) demonstrated superior efficacy in targeting the lymphatics following subcutaneous (s.c.) administration and were retained in the draining lymph nodes, spleen, and liver for over one month. In the collagen antibody-induced arthritis (CAIA) mouse model of RA, only two s.c. injections of Neg-ButM successfully prevented disease onset and promoted tolerogenic phenotypes in T cells and myeloid cells, both locally and systemically. These results underscore the potential of this strategy in managing inflammatory autoimmune diseases by directly modulating immune responses via lymphatic delivery.
Collapse
Affiliation(s)
- Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| | - Erica Budina
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Ruyi Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
| | - Matthew Sabados
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, United States
| | - Anish Mukherjee
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL 60637, United States
| | - Mindy Nguyen
- Animal Resource Center, University of Chicago, Chicago, IL 60637, United States
| | - Kevin Hultgren
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Arjun Dhar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Committee on Immunology, University of Chicago, Chicago, IL 60637, United States; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
2
|
Sabourian P, Frounchi M, Kiani S, Mashayekhan S, Kheirabadi MZ, Heydari Y, Ashraf SS. Targeting reactive astrocytes by pH-responsive ligand-bonded polymeric nanoparticles in spinal cord injury. Drug Deliv Transl Res 2023; 13:1842-1855. [PMID: 36689118 DOI: 10.1007/s13346-023-01300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
In spinal cord injuries, axonal regeneration decreases with the activation of astrocytes followed by glial scar formation. Targeting reactive astrocytes has been recently performed by unsafe viral vectors to inhibit gliosis. In the current study, biocompatible polymeric nanoparticles were selected as an alternative for viruses to target reactive astrocytes for further drug/gene delivery applications. Lipopolysaccharide-bonded chitosan-quantum dots/poly acrylic acid nanoparticles were prepared by ionic gelation method to target reactive astrocytes both in vitro and in spinal cord-injured rats. Owing to their biocompatibility and pH-responsive behavior, chitosan and poly acrylic acid were the main components of nanoparticles. Nanoparticles were then chemically labeled with quantum dots to track the cell uptake and electrostatically interacted with lipopolysaccharide as a targeting ligand. In vitro and in vivo studies were performed in triplicate and all data were expressed as the mean ± the standard error of the mean. Smart nanoparticles with optimum size (61.9 nm) and surface charge (+ 12.5 mV) successfully targeted primary reactive astrocytes extracted from the rat cerebral cortex. In vitro studies represented high cell viability (96%) in the exposure of biocompatible nanoparticles. The pH-responsive behavior of nanoparticles was proved by their internalization into the cell's nuclei due to the swelling and endosomal escape of nanoparticles in acidic pH. In vivo studies demonstrated higher transfection of nanoparticles into reactive astrocytes compared to the neurons. pH-responsive ligand-bonded chitosan-based nanoparticles are good alternatives for viral vectors in targeted delivery applications for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Parinaz Sabourian
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
| | - Masoud Frounchi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
| | - Masoumeh Zarei Kheirabadi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yasaman Heydari
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Sajad Ashraf
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
| |
Collapse
|
3
|
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213:166-194. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey.
| |
Collapse
|
4
|
Snoderly HT, Freshwater KA, Martinez de la Torre C, Panchal DM, Vito JN, Bennewitz MF. PEGylation of Metal Oxide Nanoparticles Modulates Neutrophil Extracellular Trap Formation. BIOSENSORS 2022; 12:123. [PMID: 35200382 PMCID: PMC8869785 DOI: 10.3390/bios12020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 06/01/2023]
Abstract
Novel metal oxide nanoparticle (NP) contrast agents may offer safety and functionality advantages over conventional gadolinium-based contrast agents (GBCAs) for cancer diagnosis by magnetic resonance imaging. However, little is known about the behavior of metal oxide NPs, or of their effect, upon coming into contact with the innate immune system. As neutrophils are the body's first line of defense, we sought to understand how manganese oxide and iron oxide NPs impact leukocyte functionality. Specifically, we evaluated whether contrast agents caused neutrophils to release web-like fibers of DNA known as neutrophil extracellular traps (NETs), which are known to enhance metastasis and thrombosis in cancer patients. Murine neutrophils were treated with GBCA, bare manganese oxide or iron oxide NPs, or poly(lactic-co-glycolic acid) (PLGA)-coated metal oxide NPs with different incorporated levels of poly(ethylene glycol) (PEG). Manganese oxide NPs elicited the highest NETosis rates and had enhanced neutrophil uptake properties compared to iron oxide NPs. Interestingly, NPs with low levels of PEGylation produced more NETs than those with higher PEGylation. Despite generating a low rate of NETosis, GBCA altered neutrophil cytokine expression more than NP treatments. This study is the first to investigate whether manganese oxide NPs and GBCAs modulate NETosis and reveals that contrast agents may have unintended off-target effects which warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Margaret F. Bennewitz
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (H.T.S.); (K.A.F.); (C.M.d.l.T.); (D.M.P.); (J.N.V.)
| |
Collapse
|
5
|
Kamalzare S, Iranpur Mobarakeh V, Mirzazadeh Tekie FS, Hajiramezanali M, Riazi-Rad F, Yoosefi S, Normohammadi Z, Irani S, Tavakoli M, Rahimi P, Atyabi F. Development of a T Cell-targeted siRNA Delivery System Against HIV-1 Using Modified Superparamagnetic Iron Oxide Nanoparticles: An In Vitro Study. J Pharm Sci 2021; 111:1463-1469. [PMID: 34673092 DOI: 10.1016/j.xphs.2021.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
In spite of the promising properties of small interfering RNAs (siRNAs) in the treatment of infectious diseases, safe and efficient siRNA delivery to target cells is still a challenge. In this research, an effective siRNA delivery approach (against HIV-1) has been reported using targeted modified superparamagnetic iron oxide nanoparticles (SPIONs). Trimethyl chitosan-coated SPION (TMC-SPION) containing siRNA was synthesized and chemically conjugated to a CD4-specific monoclonal antibody (as a targeting moiety). The prepared nanoparticles exhibited a high siRNA loading efficiency with a diameter of about 85 nm and a zeta potential of +28 mV. The results of the cell viability assay revealed the low cytotoxicity of the optimized nanoparticles. The cellular delivery of the targeted nanoparticles (into T cells) and the gene silencing efficiency of the nanoparticles (containing anti-nef siRNA) were dramatically improved compared to those of nontargeted nanoparticles. In conclusion, this study offers a promising targeted delivery platform to induce gene silencing in target cells. Our approach may find potential use in the design of effective vehicles for many therapeutic applications, particularly for HIV treatment.
Collapse
Affiliation(s)
- Sara Kamalzare
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Maliheh Hajiramezanali
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Riazi-Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Normohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamadreza Tavakoli
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Rahimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tombácz I, Laczkó D, Shahnawaz H, Muramatsu H, Natesan A, Yadegari A, Papp TE, Alameh MG, Shuvaev V, Mui BL, Tam YK, Muzykantov V, Pardi N, Weissman D, Parhiz H. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNP. Mol Ther 2021; 29:3293-3304. [PMID: 34091054 PMCID: PMC8571164 DOI: 10.1016/j.ymthe.2021.06.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Nucleoside-modified messenger RNA (mRNA)-lipid nanoparticles (LNPs) are the basis for the first two EUA (Emergency Use Authorization) COVID-19 vaccines. The use of nucleoside-modified mRNA as a pharmacological agent opens immense opportunities for therapeutic, prophylactic and diagnostic molecular interventions. In particular, mRNA-based drugs may specifically modulate immune cells, such as T lymphocytes, for immunotherapy of oncologic, infectious and other conditions. The key challenge, however, is that T cells are notoriously resistant to transfection by exogenous mRNA. Here, we report that conjugating CD4 antibody to LNPs enables specific targeting and mRNA interventions to CD4+ cells, including T cells. After systemic injection in mice, CD4-targeted radiolabeled mRNA-LNPs accumulated in spleen, providing ∼30-fold higher signal of reporter mRNA in T cells isolated from spleen as compared with non-targeted mRNA-LNPs. Intravenous injection of CD4-targeted LNPs loaded with Cre recombinase-encoding mRNA provided specific dose-dependent loxP-mediated genetic recombination, resulting in reporter gene expression in about 60% and 40% of CD4+ T cells in spleen and lymph nodes, respectively. T cell phenotyping showed uniform transfection of T cell subpopulations, with no variability in uptake of CD4-targeted mRNA-LNPs in naive, central memory, and effector cells. The specific and efficient targeting and transfection of mRNA to T cells established in this study provides a platform technology for immunotherapy of devastating conditions and HIV cure.
Collapse
Affiliation(s)
- István Tombácz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dorottya Laczkó
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamna Shahnawaz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromi Muramatsu
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ambika Natesan
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amir Yadegari
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler E Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir Shuvaev
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Vladimir Muzykantov
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Norbert Pardi
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Hanikoglu A, Ozben H, Hanikoglu F, Ozben T. Hybrid Compounds & Oxidative Stress Induced Apoptosis in Cancer Therapy. Curr Med Chem 2020; 27:2118-2132. [PMID: 30027838 DOI: 10.2174/0929867325666180719145819] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Abstract
Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.
Collapse
Affiliation(s)
- Aysegul Hanikoglu
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Hakan Ozben
- Department of Orthopaedics and Traumatology, Hand and Microsurgery Unit, Koc University School of Medicine, Istanbul, Turkey
| | - Ferhat Hanikoglu
- Faculty of Pharmacy, Department of Biochemistry, Biruni University, Istanbul, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| |
Collapse
|
8
|
Haycook CP, Balsamo JA, Glass EB, Williams CH, Hong CC, Major AS, Giorgio TD. PEGylated PLGA Nanoparticle Delivery of Eggmanone for T Cell Modulation: Applications in Rheumatic Autoimmunity. Int J Nanomedicine 2020; 15:1215-1228. [PMID: 32110018 PMCID: PMC7036983 DOI: 10.2147/ijn.s234850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Helper T cell activity is dysregulated in a number of diseases including those associated with rheumatic autoimmunity. Treatment options are limited and usually consist of systemic immune suppression, resulting in undesirable consequences from compromised immunity. Hedgehog (Hh) signaling has been implicated in the activation of T cells and the formation of the immune synapse, but remains understudied in the context of autoimmunity. Modulation of Hh signaling has the potential to enable controlled immunosuppression but a potential therapy has not yet been developed to leverage this opportunity. Methods In this work, we developed biodegradable nanoparticles to enable targeted delivery of eggmanone (Egm), a specific Hh inhibitor, to CD4+ T cell subsets. We utilized two FDA-approved polymers, poly(lactic-co-glycolic acid) and polyethylene glycol, to generate hydrolytically degradable nanoparticles. Furthermore, we employed maleimide-thiol mediated conjugation chemistry to decorate nanoparticles with anti-CD4 F(ab') antibody fragments to enable targeted delivery of Egm. Results Our novel delivery system achieved a highly specific association with the majority of CD4+ T cells present among a complex cell population. Additionally, we have demonstrated antigen-specific inhibition of CD4+ T cell responses mediated by nanoparticle-formulated Egm. Conclusion This work is the first characterization of Egm's immunomodulatory potential. Importantly, this study also suggests the potential benefit of a biodegradable delivery vehicle that is rationally designed for preferential interaction with a specific immune cell subtype for targeted modulation of Hh signaling.
Collapse
Affiliation(s)
- Christopher P Haycook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joseph A Balsamo
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN 37232, USA
| | - Evan B Glass
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Charles H Williams
- Department of Medicine, Division of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Charles C Hong
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amy S Major
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN 37232, USA.,U.S., Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Todd D Giorgio
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
9
|
Cao S, Woodrow KA. Nanotechnology approaches to eradicating HIV reservoirs. Eur J Pharm Biopharm 2019; 138:48-63. [PMID: 29879528 PMCID: PMC6279622 DOI: 10.1016/j.ejpb.2018.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
The advent of combination antiretroviral therapy (cART) has transformed HIV-1 infection into a controllable chronic disease, but these therapies are incapable of eradicating the virus to bring about an HIV cure. Multiple strategies have been proposed and investigated to eradicate latent viral reservoirs from various biological sanctuaries. However, due to the complexity of HIV infection and latency maintenance, a single drug is unlikely to eliminate all HIV reservoirs and novel strategies may be needed to achieve better efficacy while limiting systemic toxicity. In this review, we describe HIV latency in cellular and anatomical reservoirs, and present an overview of current strategies for HIV cure with a focus on their challenges for clinical translation. Then we provide a summary of nanotechnology solutions that have been used to address challenges in HIV cure by delivering physicochemically diverse agents for combination therapy or targeting HIV reservoir sites. We also review nanocarrier-based gene delivery and immunotherapy used in cancer treatment but may have potential applications in HIV cure.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
10
|
Cao S, Slack SD, Levy CN, Hughes SM, Jiang Y, Yogodzinski C, Roychoudhury P, Jerome KR, Schiffer JT, Hladik F, Woodrow KA. Hybrid nanocarriers incorporating mechanistically distinct drugs for lymphatic CD4 + T cell activation and HIV-1 latency reversal. SCIENCE ADVANCES 2019; 5:eaav6322. [PMID: 30944862 PMCID: PMC6436934 DOI: 10.1126/sciadv.aav6322] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/06/2019] [Indexed: 05/10/2023]
Abstract
A proposed strategy to cure HIV uses latency-reversing agents (LRAs) to reactivate latent proviruses for purging HIV reservoirs. A variety of LRAs have been identified, but none has yet proven effective in reducing the reservoir size in vivo. Nanocarriers could address some major challenges by improving drug solubility and safety, providing sustained drug release, and simultaneously delivering multiple drugs to target tissues and cells. Here, we formulated hybrid nanocarriers that incorporate physicochemically diverse LRAs and target lymphatic CD4+ T cells. We identified one LRA combination that displayed synergistic latency reversal and low cytotoxicity in a cell model of HIV and in CD4+ T cells from virologically suppressed patients. Furthermore, our targeted nanocarriers selectively activated CD4+ T cells in nonhuman primate peripheral blood mononuclear cells as well as in murine lymph nodes, and substantially reduced local toxicity. This nanocarrier platform may enable new solutions for delivering anti-HIV agents for an HIV cure.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sarah D. Slack
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Claire N. Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Yonghou Jiang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kim A. Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Chamseddine IM, Frieboes HB, Kokkolaras M. Design Optimization of Tumor Vasculature-Bound Nanoparticles. Sci Rep 2018; 8:17768. [PMID: 30538267 PMCID: PMC6290012 DOI: 10.1038/s41598-018-35675-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023] Open
Abstract
Nanotherapy may constitute a promising approach to target tumors with anticancer drugs while minimizing systemic toxicity. Computational modeling can enable rapid evaluation of nanoparticle (NP) designs and numerical optimization. Here, an optimization study was performed using an existing tumor model to find NP size and ligand density that maximize tumoral NP accumulation while minimizing tumor size. Optimal NP avidity lies at lower bound of feasible values, suggesting reduced ligand density to prolong NP circulation. For the given set of tumor parameters, optimal NP diameters were 288 nm to maximize NP accumulation and 334 nm to minimize tumor diameter, leading to uniform NP distribution and adequate drug load. Results further show higher dependence of NP biodistribution on the NP design than on tumor morphological parameters. A parametric study with respect to drug potency was performed. The lower the potency of the drug, the bigger the difference is between the maximizer of NP accumulation and the minimizer of tumor size, indicating the existence of a specific drug potency that minimizes the differential between the two optimal solutions. This study shows the feasibility of applying optimization to NP designs to achieve efficacious cancer nanotherapy, and offers a first step towards a quantitative tool to support clinical decision making.
Collapse
Affiliation(s)
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Michael Kokkolaras
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada.
- GERAD - Group for Research in Decision Analysis, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Cao S, Jiang Y, Zhang H, Kondza N, Woodrow KA. Core-shell nanoparticles for targeted and combination antiretroviral activity in gut-homing T cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2143-2153. [PMID: 29964219 DOI: 10.1016/j.nano.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
A major sanctuary site for HIV infection is the gut-associated lymphoid tissue (GALT). The α4β7 integrin gut homing receptor is a promising therapeutic target for the virus reservoir because it leads to migration of infected cells to the GALT and facilitates HIV infection. Here, we developed a core-shell nanoparticle incorporating the α4β7 monoclonal antibody (mAb) as a dual-functional ligand for selectively targeting a protease inhibitor (PI) to gut-homing T cells in the GALT while simultaneously blocking HIV infection. Our nanoparticles significantly reduced cytotoxicity of the PI and enhanced its in vitro antiviral activity in combination with α4β7 mAb. We demonstrate targeting function of our nanocarriers in a human T cell line and primary cells isolated from macaque ileum, and observed higher in vivo biodistribution to the murine small intestines where they accumulate in α4β7+ cells. Our LCNP shows the potential to co-deliver ARVs and mAbs for eradicating HIV reservoirs.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Yonghou Jiang
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Hangyu Zhang
- Department of Bioengineering, University of Washington, Seattle, USA; Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology 116023, Dalian, China; Research Center for the Control Engineering of Translational Precision Medicine, Dalian University of Technology 116023, Dalian, China
| | - Nina Kondza
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, USA.
| |
Collapse
|