1
|
Silva JDA, Santos GGD, Ribeiro IÍDA, Silva AMGBD, Barreto IC, Matos MA, Barreto MA, Miguel FB. Histomorphometric Study of Non-critical Bone Defect Repair after Implantation of Magnesium-substituted Hydroxyapatite Microspheres. Rev Bras Ortop 2024; 59:e519-e525. [PMID: 39239581 PMCID: PMC11374412 DOI: 10.1055/s-0044-1787768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/05/2024] [Indexed: 09/07/2024] Open
Abstract
Objective The present study aims to analyze histomorphometrically the repair of a non-critical bone defect after implantation of hydroxyapatite (HA) microspheres substituted by magnesium (Mg). Methods Thirty rats were distributed into 3 experimental groups, evaluated at 15 and 45 days postoperatively: HAG (bone defect filled with HA microspheres); HAMgG (bone defect filled with HA microspheres replaced with 1 mol% Mg), and CG (bone defect without implantation of biomaterials). Results After 15 days, the biomaterials filled the entire defect extent, forming a new osteoid matrix between the microspheres. In the CG, this neoformation was restricted to the edges with the deposition of loose connective tissue with reduced thickness. At 45 days, new bone formation filled almost the entire extension of the bone defect in the 3 groups, with statistically significant osteoid deposition in the CG despite the reduced thickness compared with the HAG and HAMgG. The groups with biomaterial implantation displayed a more abundant osteoid matrix than at 15 days. Conclusion The biomaterials studied showed biocompatibility, osteoconductivity, and bioactivity. The Mg concentration in the substituted HA did not stimulate more significant bone formation than HA without this ion.
Collapse
Affiliation(s)
| | - George Gonçalves Dos Santos
- Centro de Ciências da Saúde (CCS), Universidade Federal do Recôncavo da Bahia (UFRB), Santo Antônio de Jesus, BA, Brasil
| | - Iorrana Índira Dos Anjos Ribeiro
- Programa de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGPIOS), Faculdade Adventista da Bahia (FADBA), Cachoeira, BA, Brasil
| | - Ana Maria Guerreiro Braga da Silva
- Centro de Ciências Agrárias, Ambientais e Biológicas (CCAAB), Universidade Federal do Recôncavo da Bahia (UFRB), Cruz das Almas, BA, Brasil
| | | | | | | | - Fúlvio Borges Miguel
- Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia (UFBA), Salvador, BA, Brasil
| |
Collapse
|
2
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Codrea CI, Lincu D, Atkinson I, Culita DC, Croitoru AM, Dolete G, Trusca R, Vasile BS, Stan MS, Ficai D, Ficai A. Comparison between Two Different Synthesis Methods of Strontium-Doped Hydroxyapatite Designed for Osteoporotic Bone Restoration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1472. [PMID: 38611986 PMCID: PMC11012538 DOI: 10.3390/ma17071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024]
Abstract
Development of efficient controlled local release of drugs that prevent systemic side effects is a challenge for anti-osteoporotic treatments. Research for new bone-regeneration materials is of high importance. Strontium (Sr) is known as an anti-resorptive and anabolic agent useful in treating osteoporosis. In this study, we compared two different types of synthesis used for obtaining nano hydroxyapatite (HA) and Sr-containing nano hydroxyapatite (SrHA) for bone tissue engineering. Synthesis of HA and SrHA was performed using co-precipitation and hydrothermal methods. Regardless of the synthesis route for the SrHA, the intended content of Sr was 1, 5, 10, 20, and 30 molar %. The chemical, morphological, and biocompatibility properties of HA and SrHA were investigated. Based on our results, it was shown that HA and SrHA exhibited low cytotoxicity and demonstrated toxic behavior only at higher Sr concentrations.
Collapse
Affiliation(s)
- Cosmin Iulian Codrea
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (D.L.); (A.-M.C.); (G.D.); (R.T.); (B.S.V.); (D.F.)
- Department of Oxide Compounds and Materials Science, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 060021 Bucharest, Romania; (I.A.)
| | - Daniel Lincu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (D.L.); (A.-M.C.); (G.D.); (R.T.); (B.S.V.); (D.F.)
- Department of Oxide Compounds and Materials Science, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 060021 Bucharest, Romania; (I.A.)
| | - Irina Atkinson
- Department of Oxide Compounds and Materials Science, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 060021 Bucharest, Romania; (I.A.)
| | - Daniela C. Culita
- Department of Oxide Compounds and Materials Science, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 060021 Bucharest, Romania; (I.A.)
| | - Alexa-Maria Croitoru
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (D.L.); (A.-M.C.); (G.D.); (R.T.); (B.S.V.); (D.F.)
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Food Safety, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (D.L.); (A.-M.C.); (G.D.); (R.T.); (B.S.V.); (D.F.)
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Food Safety, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Roxana Trusca
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (D.L.); (A.-M.C.); (G.D.); (R.T.); (B.S.V.); (D.F.)
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Food Safety, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Bogdan Stefan Vasile
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (D.L.); (A.-M.C.); (G.D.); (R.T.); (B.S.V.); (D.F.)
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Food Safety, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Denisa Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (D.L.); (A.-M.C.); (G.D.); (R.T.); (B.S.V.); (D.F.)
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Food Safety, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (D.L.); (A.-M.C.); (G.D.); (R.T.); (B.S.V.); (D.F.)
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Food Safety, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050044 Bucharest, Romania
| |
Collapse
|
4
|
Zhang K, Liu Y, Zhao Z, Shi X, Zhang R, He Y, Zhang H, Sun Y, Wang W. Synthesis Technology of Magnesium-Doped Nanometer Hydroxyapatite: A Review. ACS OMEGA 2023; 8:44458-44471. [PMID: 38046298 PMCID: PMC10688058 DOI: 10.1021/acsomega.3c06091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023]
Abstract
Ion substitution techniques for nanoparticles have become an important neighborhood of biomedical engineering and have led to the development of innovative bioactive materials for health systems. Magnesium-doped nanohydroxyapatite (Mg-nHA) has good bone conductivity, biological activity, flexural strength, and fracture toughness due to particle doping technology, making it an ideal candidate material for biomedical applications. In this Review, we have systematically presented the synthesis methods of Mg-nHA and their application in the field of biomedical science and highlighted the pros and cons of each method. Finally, some future prospects for this important neighborhood are proposed. The purpose of this Review is to provide readers with an understanding of this new field of research on bioactive materials with innovative functions and systematically introduce the latest technologies for obtaining uniform, continuous, and morphologically diverse Mg-nHA.
Collapse
Affiliation(s)
- Kui Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yan Liu
- Department
of Gynecology, First Affiliated Hospital
of Xi ’an Medical College, Xi’an, Shaanxi 710000, China
| | - Zhenrui Zhao
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuewen Shi
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruihao Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yixiang He
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huaibin Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yi Sun
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenji Wang
- Department
of Orthopedics, The First Hospital of Lanzhou
University, Lanzhou, Gansu 730000, China
| |
Collapse
|
5
|
Kurzyk A, Szwed-Georgiou A, Pagacz J, Antosik A, Tymowicz-Grzyb P, Gerle A, Szterner P, Włodarczyk M, Płociński P, Urbaniak MM, Rudnicka K, Biernat M. Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications. Sci Rep 2023; 13:15384. [PMID: 37717040 PMCID: PMC10505220 DOI: 10.1038/s41598-023-42271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Nanohydroxyapatite (nanoHAP) is widely used in bone regeneration, but there is a need to enhance its properties to provide stimuli for cell commitment and osteoconduction. This study examines the effect of calcination at 1200 °C on the physicochemical and biological properties of nanoHAP doped with magnesium (Mg2+), strontium (Sr2+), and zinc (Zn2+). A synergistic effect of dual modification on nanoHAP biological properties was investigated. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET analysis, Fourier-transform spectroscopy, and thermal analysis methods. Furthermore, ion release tests and in vitro biological characterization, including cytocompatibility, reactive oxygen species production, osteoconductive potential and cell proliferation, were performed. The XRD results indicate that the ion substitution of nanoHAP has no effect on the apatite structure, and after calcination, β-tricalcium phosphate (β-TCP) is formed as an additional phase. SEM analysis showed that calcination induces the agglomeration of particles and changes in surface morphology. A decrease in the specific surface area and in the ion release rate was observed. Combining calcination and nanoHAP ion modification is beneficial for cell proliferation and osteoblast response and provide additional stimuli for cell commitment in bone regeneration.
Collapse
Affiliation(s)
- Agata Kurzyk
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland.
| | - Aleksandra Szwed-Georgiou
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland
| | - Joanna Pagacz
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| | - Agnieszka Antosik
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| | - Paulina Tymowicz-Grzyb
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| | - Anna Gerle
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| | - Piotr Szterner
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 12/16 Banacha St., 90-237, Lodz, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland
| | - Monika Biernat
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| |
Collapse
|
6
|
Zhu W, Li C, Yao M, Wang X, Wang J, Zhang W, Chen W, Lv H. Advances in osseointegration of biomimetic mineralized collagen and inorganic metal elements of natural bone for bone repair. Regen Biomater 2023; 10:rbad030. [PMID: 37181680 PMCID: PMC10172150 DOI: 10.1093/rb/rbad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 05/16/2023] Open
Abstract
At this stage, bone defects caused by trauma, infection, tumor, or congenital diseases are generally filled with autologous bone or allogeneic bone transplantation, but this treatment method has limited sources, potential disease transmission and other problems. Ideal bone-graft materials remain continuously explored, and bone defect reconstruction remains a significant challenge. Mineralized collagen prepared by bionic mineralization combining organic polymer collagen with inorganic mineral calcium phosphate can effectively imitate the composition and hierarchical structure of natural bone and has good application value in bone repair materials. Magnesium, strontium, zinc and other inorganic components not only can activate relevant signaling pathways to induce differentiation of osteogenic precursor cells but also stimulate other core biological processes of bone tissue growth and play an important role in natural bone growth, and bone repair and reconstruction. This study reviewed the advances in hydroxyapatite/collagen composite scaffolds and osseointegration with natural bone inorganic components, such as magnesium, strontium and zinc.
Collapse
Affiliation(s)
| | | | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang 050051, P.R. China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang 050051, P.R. China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
| | - Wei Zhang
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| | - Wei Chen
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| | - Hongzhi Lv
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| |
Collapse
|
7
|
Meesuk L, Suwanprateeb J, Thammarakcharoen F, Tantrawatpan C, Kheolamai P, Palang I, Tantikanlayaporn D, Manochantr S. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds. Sci Rep 2022; 12:19509. [PMID: 36376498 PMCID: PMC9663507 DOI: 10.1038/s41598-022-24160-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising candidate for bone repair. However, the maintenance of MSCs injected into the bone injury site remains inefficient. A potential approach is to develop a bone-liked platform that incorporates MSCs into a biocompatible 3D scaffold to facilitate bone grafting into the desired location. Bone tissue engineering is a multistep process that requires optimizing several variables, including the source of cells, osteogenic stimulation factors, and scaffold properties. This study aims to evaluate the proliferation and osteogenic differentiation potentials of MSCs cultured on 2 types of 3D-printed hydroxyapatite, including a 3D-printed HA and biomimetic calcium phosphate-coated 3D-printed HA. MSCs from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) were cultured on the 3D-printed HA and coated 3D-printed HA. Scanning electron microscopy and immunofluorescence staining were used to examine the characteristics and the attachment of MSCs to the scaffolds. Additionally, the cell proliferation was monitored, and the ability of cells to differentiate into osteoblast was assessed using alkaline phosphatase (ALP) activity and osteogenic gene expression. The BM-MSCs and UC-MSCs attached to a plastic culture plate with a spindle-shaped morphology exhibited an immunophenotype consistent with the characteristics of MSCs. Both MSC types could attach and survive on the 3D-printed HA and coated 3D-printed HA scaffolds. The MSCs cultured on these scaffolds displayed sufficient osteoblastic differentiation capacity, as evidenced by increased ALP activity and the expression of osteogenic genes and proteins compared to the control. Interestingly, MSCs grown on coated 3D-printed HA exhibited a higher ALP activity and osteogenic gene expression than those cultured on the 3D-printed HA. The finding indicated that BM-MSCs and UC-MSCs cultured on the 3D-printed HA and coated 3D-printed HA scaffolds could proliferate and differentiate into osteoblasts. Thus, the HA scaffolds could provide a suitable and favorable environment for the 3D culture of MSCs in bone tissue engineering. Additionally, biomimetic coating with octacalcium phosphate may improve the biocompatibility of the bone regeneration scaffold.
Collapse
Affiliation(s)
- Ladda Meesuk
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Jintamai Suwanprateeb
- grid.425537.20000 0001 2191 4408Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Faungchat Thammarakcharoen
- grid.425537.20000 0001 2191 4408Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Chairat Tantrawatpan
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Pakpoom Kheolamai
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Iyapa Palang
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Duangrat Tantikanlayaporn
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Sirikul Manochantr
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| |
Collapse
|
8
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
9
|
Chen Z, Zhang W, Wang M, Backman LJ, Chen J. Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering. ACS Biomater Sci Eng 2022; 8:2321-2335. [PMID: 35638755 DOI: 10.1021/acsbiomaterials.2c00368] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large-sized bone defects are a great challenge in clinics and considerably impair the quality of patients' daily life. Tissue engineering strategies using cells, scaffolds, and bioactive molecules to regulate the microenvironment in bone regeneration is a promising approach. Zinc, magnesium, and iron ions are natural elements in bone tissue and participate in many physiological processes of bone metabolism and therefore have great potential for bone tissue engineering and regeneration. In this review, we performed a systematic analysis on the effects of zinc, magnesium, and iron ions in bone tissue engineering. We focus on the role of these ions in properties of scaffolds (mechanical strength, degradation, osteogenesis, antibacterial properties, etc.). We hope that our summary of the current research achievements and our notifications of potential strategies to improve the effects of zinc, magnesium, and iron ions in scaffolds for bone repair and regeneration will find new inspiration and breakthroughs to inspire future research.
Collapse
Affiliation(s)
- Zhixuan Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87 Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87 Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
10
|
Mechanical and Biological Properties of Magnesium- and Silicon-Substituted Hydroxyapatite Scaffolds. MATERIALS 2021; 14:ma14226942. [PMID: 34832344 PMCID: PMC8619624 DOI: 10.3390/ma14226942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Magnesium (Mg)- and silicon (Si)-substituted hydroxyapatite (HA) scaffolds were synthesized using the sponge replica method. The influence of Mg2+ and SiO44− ion substitution on the microstructural, mechanical and biological properties of HA scaffolds was evaluated. All synthesized scaffolds exhibited porosity >92%, with interconnected pores and pore sizes ranging between 200 and 800 μm. X-ray diffraction analysis showed that β-TCP was formed in the case of Mg substitution. X-ray fluorescence mapping showed a homogeneous distribution of Mg and Si ions in the respective scaffolds. Compared to the pure HA scaffold, a reduced grain size was observed in the Mg- and Si-substituted scaffolds, which greatly influenced the mechanical properties of the scaffolds. Mechanical tests revealed better performance in HA-Mg (0.44 ± 0.05 MPa), HA-Si (0.64 ± 0.02 MPa) and HA-MgSi (0.53 ± 0.01 MPa) samples compared to pure HA (0.2 ± 0.01 MPa). During biodegradability tests in Tris-HCl, slight weight loss and a substantial reduction in mechanical performances of the scaffolds were observed. Cell proliferation determined by the MTT assay using hBMSC showed that all scaffolds were biocompatible, and the HA-MgSi scaffold seemed the most effective for cell adhesion and proliferation. Furthermore, ALP activity and osteogenic marker expression analysis revealed the ability of HA-Si and HA-MgSi scaffolds to promote osteoblast differentiation.
Collapse
|
11
|
Manzoor F, Golbang A, Jindal S, Dixon D, McIlhagger A, Harkin-Jones E, Crawford D, Mancuso E. 3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential. J Mech Behav Biomed Mater 2021; 121:104601. [PMID: 34077906 DOI: 10.1016/j.jmbbm.2021.104601] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Polyetheretherketone (PEEK) is a biocompatible polymer widely used for biomedical applications. Because it is biologically inert, bioactive phases, such as nano-hydroxyapatite (HA), have been added to PEEK in order to improve its bioactivity. 3D printing (3DP) technologies are being increasingly used today to manufacture patient specific devices and implants. However, processing of PEEK is challenging due to its high melting point which is above 340 °C. In this study, PEEK-based filaments containing 10 wt% of pure nano-HA, strontium (Sr)- doped nano-HA and Zinc (Zn)-doped nano-HA were produced via hot-melt extrusion and subsequently 3D printed via fused deposition modelling (FDM), following an initial optimization process. The raw materials, extruded filaments and 3D printed samples were characterized in terms of physicochemical, thermal and morphological analysis. Moreover, the mechanical performance of 3D printed specimens was assessed via tensile tensing. Although an increase in the melting point and a reduction in crystallization temperature was observed with the addition of HA and doped HA to pure PEEK, there was no noticeable increase in the degree of crystallinity. Regarding the mechanical behavior, no significant differences were detected following the addition of the inorganic phases to the polymeric matrix, although a small reduction in the ultimate tensile strength (~14%) and Young's modulus (~5%) in PEEK/HA was observed in comparison to pure PEEK. Moreover, in vitro bioactivity of 3D printed samples was evaluated via a simulated body fluid immersion test for up to 28 days; the formation of apatite was observed on the surfaces of sample surfaces containing HA, SrHA and ZnHA. These results indicate the potential to produce bioactive, 3DP PEEK composites for challenging applications such as in craniofacial bone repair.
Collapse
Affiliation(s)
- Faisal Manzoor
- Department of Mechanical Engineering, School of Engineering, Ulster University, Shore Road, BT37 0QB, Newtownabbey, United Kingdom.
| | - Atefeh Golbang
- Department of Mechanical Engineering, School of Engineering, Ulster University, Shore Road, BT37 0QB, Newtownabbey, United Kingdom
| | - Swati Jindal
- Department of Mechanical Engineering, School of Engineering, Ulster University, Shore Road, BT37 0QB, Newtownabbey, United Kingdom
| | - Dorian Dixon
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB, Newtownabbey, United Kingdom
| | - Alistair McIlhagger
- Department of Mechanical Engineering, School of Engineering, Ulster University, Shore Road, BT37 0QB, Newtownabbey, United Kingdom
| | - Eileen Harkin-Jones
- Department of Mechanical Engineering, School of Engineering, Ulster University, Shore Road, BT37 0QB, Newtownabbey, United Kingdom
| | - Daniel Crawford
- Axial 3D, Alexander House, 17a Ormeau Ave, BT2 8HD, Belfast, United Kingdom
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB, Newtownabbey, United Kingdom.
| |
Collapse
|
12
|
Sun Y, Liu H, Sun XY, Xia W, Deng C. In vitro and in vivo study on the osseointegration of magnesium and strontium ion with two different proportions of mineralized collagen and its mechanism. J Biomater Appl 2021; 36:528-540. [PMID: 34000860 DOI: 10.1177/08853282211016934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To explore the optimal combination of Mg2+, Sr2+ and mineralized collagen (nHAC) with two different proportions of hydroxyapatite (HA) and collagen (COL) on differentiation of MC3T3-E1 and the underlying mechanism, as well as achieve bone osseointegration. MC3T3-E1 cells were cultured in a complete medium with Mg2+ at the concentration of 0, 4, 8, 12, 16, 20 mmol/L, Sr2+ at the concentration of 0, 3, 6, 12 mmol/L, and the impregnation solution of 3:7 and 5:5nHAC. The differentiation of MC3T3-E1 was measured by expression of osteogenic genes and proteins including Runx-2, BMP-2 and OCN and determined the activation of PI3K/AKT/GSK3β/β-catenin signaling pathway in 12 mmol/LMg2++3 mmol/LSr2++3:7nHAC group. Osteoporosis was induced in 18 female rats by means of ovariectomy, the implants were immersed in 60 mmol/LMg2++15 mmol/LSr2++3:7nHAC impregnation solution and implanted into the mesial alveolar fossa for immediate implantation. The osseointegration of the implants was observed by Confocal laser scanning microscopy (CLSM) and histology at 4 and 8 weeks. The groups cultured with 12 mmol/LMg2+, 3 mmol/LSr2+ and 3:7nHAC impregnation solution showed the osteogenic genes and proteins were significantly higher respectively (P < 0.05), as well as p-Akt, p-GSK3β and β-catenin proteins (P < 0.05). CLSM and histology showed that the implant surface was surrounded by thick lamellar bone plate, and the trabecular bone were dense and continuous in the impregnation solution. These results found that magnesium and strontium ion-loaded mineralized collagen play an critical role in up-regulating the cells activity through PI3K/AKT/GSK3β/β-catenin signaling pathway and could be promote the formation of osseointegration.
Collapse
Affiliation(s)
- Yi Sun
- School of Stomatology, Wannan Medical College, WuHu, Anhui, PR China
| | - Hai Liu
- School of Stomatology, Wannan Medical College, WuHu, Anhui, PR China
| | - Xiao-Yu Sun
- School of Stomatology, Wannan Medical College, WuHu, Anhui, PR China
| | - Wen Xia
- School of Stomatology, Wannan Medical College, WuHu, Anhui, PR China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, WuHu, Anhui, PR China
| |
Collapse
|
13
|
Zakhireh S, Adibkia K, Beygi-Khosrowshahi Y, Barzegar-Jalali M. Osteogenesis Promotion of Selenium-Doped Hydroxyapatite for Application as Bone Scaffold. Biol Trace Elem Res 2021; 199:1802-1811. [PMID: 32816138 DOI: 10.1007/s12011-020-02309-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/24/2020] [Indexed: 01/30/2023]
Abstract
The combined bioceramic of selenium (Se) and hydroxyapatite (HA) has been considered as a moderate bone scaffold biomaterial. In the present work, Se was doped into the HA structure using the mechano-chemical alloying (MCA) method for the improvement of osteogenic properties of HA. HA extracted from fish bone and Se-doped hydroxyapatite (Se-HA) were analyzed using X-ray diffraction spectra (XRD), scanning electron microscope (SEM), energy dispersion X-ray spectrometer (EDX), and Fourier transform infrared spectroscopy (FT-IR). In-vitro cell responses on the Se-HA bioceramic scaffold were investigated using human adipose-derived mesenchymal stem cells (hAD-MSCs). The effect of Se on cell proliferation was studied by MTT assay, and cell adhesion responses were analyzed by optical microscopy and SEM. Furthermore, the effect of Se on osteogenic properties of HA was studied by alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and Western blot tests. The MTT results showed that the Se dopant synergistically increases the proliferation of hAD-MSCs. Moreover, good cell-adhesive and osteoblast-shaped behaviors were observed on the Se-HA scaffold. The results of osteogenic differentiation demonstrated synergistically enhanced ALP activity and calcification on the Se dopant compared to HA. Also, the results of Western blot test presented that the differentiation of hAD-MSCs toward being a bone tissue was increased by up to 50% while selenium doping. Additional MTT analysis using Human Bone Osteosarcoma cell line (KHOS-240S) revealed the antiproliferative activity of the Se-HA scaffold against bone cancerous cells. Therefore, it has been concluded that Se-HA bioceramic can be employed as a scaffold with simultaneous anticancer and bone regenerative properties.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Research status of biodegradable metals designed for oral and maxillofacial applications: A review. Bioact Mater 2021; 6:4186-4208. [PMID: 33997502 PMCID: PMC8099919 DOI: 10.1016/j.bioactmat.2021.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 01/08/2023] Open
Abstract
The oral and maxillofacial regions have complex anatomical structures and different tissue types, which have vital health and aesthetic functions. Biodegradable metals (BMs) is a promising bioactive materials to treat oral and maxillofacial diseases. This review summarizes the research status and future research directions of BMs for oral and maxillofacial applications. Mg-based BMs and Zn-based BMs for bone fracture fixation systems, and guided bone regeneration (GBR) membranes, are discussed in detail. Zn-based BMs with a moderate degradation rate and superior mechanical properties for GBR membranes show great potential for clinical translation. Fe-based BMs have a relatively low degradation rate and insoluble degradation products, which greatly limit their application and clinical translation. Furthermore, we proposed potential future research directions for BMs in the oral and maxillofacial regions, including 3D printed BM bone scaffolds, surface modification for BMs GBR membranes, and BMs containing hydrogels for cartilage regeneration, soft tissue regeneration, and nerve regeneration. Taken together, the progress made in the development of BMs in oral and maxillofacial regions has laid a foundation for further clinical translation.
Collapse
|
15
|
Ramadas M, Ferreira JMF, Ballamurugan AM. Fabrication of three dimensional bioactive Sr 2+ substituted apatite scaffolds by gel-casting technique for hard tissue regeneration. J Tissue Eng Regen Med 2021; 15:577-585. [PMID: 33843156 DOI: 10.1002/term.3197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
This study aimed to fabricate three-dimensional (3D) bioactive Sr2+ -substituted apatite (Sr-HAP) scaffolds prepared by gel-casting with polymer sponge infiltration technique. 3D Sr-HAP scaffolds were prepared as engineering constructs with interconnected porous structure with a pore size of 200-600 μm ranging from a 10 × 10 × 6 mm size was designed. The characterization of X-ray diffraction, field emission scanning electron microscopy, and energy dispersion spectroscopy was utilized in order to evaluate the crystalline phase, structure, and morphology in the interconnected porous of the synthesized Sr-HAP scaffold. The bioactive and biocompatible of the resultant Sr-HAP scaffolds were analyzed by using simulated body fluid solution. Furthermore, the cytotoxicity and proliferation of MG-63 cell lines on the scaffolds were examined in 24 h culture. Furthermore, in vivo experiments demonstrated that the tibia bone defect with 4 mm diameter in rabbits was successfully healed by Sr-HAP porous scaffold after 45 days implantation. The histological images indicated the improved cell proliferation and new bone formation occurred in the porous scaffold treated group. The results indicated that the fabricated Sr-HAP scaffold is a promising capacity to infuse bone regeneration and promote in vivo tissue repair.
Collapse
Affiliation(s)
- Munusamy Ramadas
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jose M F Ferreira
- Department of Ceramics and Glass Engineering CICECO, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
16
|
Nitti P, Kunjalukkal Padmanabhan S, Cortazzi S, Stanca E, Siculella L, Licciulli A, Demitri C. Enhancing Bioactivity of Hydroxyapatite Scaffolds Using Fibrous Type I Collagen. Front Bioeng Biotechnol 2021; 9:631177. [PMID: 33614615 PMCID: PMC7890361 DOI: 10.3389/fbioe.2021.631177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
In the field of bone tissue regeneration, the development of osteoconductive and osteoinductive scaffolds is an open challenge. The purpose of this work was the design and characterization of composite structures made of hydroxyapatite scaffold impregnated with a collagen slurry in order to mimic the bone tissue structure. The effect of magnesium and silicon ions enhancing both mechanical and biological properties of partially substituted hydroxyapatite were evaluated and compared with that of pure hydroxyapatite. The use of an innovative freeze-drying approach was developed, in which composite scaffolds were immersed in cold water, frozen and then lyophilized, thereby creating an open-pore structure, an essential feature for tissue regeneration. The mechanical stability of bone scaffolds is very important in the first weeks of slow bone regeneration process. Therefore, the biodegradation behavior of 3D scaffolds was evaluated by incubating them for different periods of time in Tris-HCl buffer. The microstructure observation, the weight loss measurements and mechanical stability up to 28 days of incubation (particularly for HA-Mg_Coll scaffolds), revealed moderate weight loss and mechanical performances reduction due to collagen dissolution. At the same time, the presence of collagen helps to protect the ceramic structure until it degrades. These results, combined with MTT tests, confirm that HA-Mg_Coll scaffolds may be the suitable candidate for bone remodeling.
Collapse
Affiliation(s)
- Paola Nitti
- Biomaterials Laboratory, Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | | | - Serena Cortazzi
- Biomaterials Laboratory, Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Eleonora Stanca
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luisa Siculella
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonio Licciulli
- Biomaterials Laboratory, Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Christian Demitri
- Biomaterials Laboratory, Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
17
|
Cestari F, Agostinacchio F, Galotta A, Chemello G, Motta A, M. Sglavo V. Nano-Hydroxyapatite Derived from Biogenic and Bioinspired Calcium Carbonates: Synthesis and In Vitro Bioactivity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:264. [PMID: 33498482 PMCID: PMC7909533 DOI: 10.3390/nano11020264] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/02/2023]
Abstract
Biogenic calcium carbonates naturally contain ions that can be beneficial for bone regeneration and therefore are attractive resources for the production of bioactive calcium phosphates. In the present work, cuttlefish bones, mussel shells, chicken eggshells and bioinspired amorphous calcium carbonate were used to synthesize hydroxyapatite nano-powders which were consolidated into cylindrical pellets by uniaxial pressing and sintering 800-1100 °C. Mineralogical, structural and chemical composition were studied by SEM, XRD, inductively coupled plasma/optical emission spectroscopy (ICP/OES). The results show that the phase composition of the sintered materials depends on the Ca/P molar ratio and on the specific CaCO3 source, very likely associated with the presence of some doping elements like Mg2+ in eggshell and Sr2+ in cuttlebone. Different CaCO3 sources also resulted in variable densification and sintering temperature. Preliminary in vitro tests were carried out (by the LDH assay) and they did not reveal any cytotoxic effects, while good cell adhesion and proliferation was observed at day 1, 3 and 5 after seeding through confocal microscopy. Among the different tested materials, those derived from eggshells and sintered at 900 °C promoted the best cell adhesion pattern, while those from cuttlebone and amorphous calcium carbonate showed round-shaped cells and poorer cell-to-cell interconnection.
Collapse
Affiliation(s)
- Francesca Cestari
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
| | - Francesca Agostinacchio
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
- BIOTech Research Center, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, University of Trento, via delle Regole 101, 38123 Trento, Italy
| | - Anna Galotta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
| | - Giovanni Chemello
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
- BIOTech Research Center, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, University of Trento, via delle Regole 101, 38123 Trento, Italy
- INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Vincenzo M. Sglavo
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
- INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
18
|
Sun M, Shao H, Xu H, Yang X, Dong M, Gong J, Yu M, Gou Z, He Y, Liu A, Wang H. Biodegradable intramedullary nail (BIN) with high-strength bioceramics for bone fracture. J Mater Chem B 2021; 9:969-982. [PMID: 33406205 DOI: 10.1039/d0tb02423f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
About 10 million fractures occur worldwide each year, of which more than 60% are long bone fractures. It is generally agreed that intramedullary nails have significant advantages in rigid fracture fixation. Metal intramedullary nails (INs) can provide strong support but a stress shielding effect can occur that results in nonunion healing in clinic. Nondegradable metals also need to be removed by a second operation. Could INs be biodegradable and used to overcome this issue? As current degradable biomaterials always suffer from low strength and cannot be used in Ins, herein, we report a novel device consisting of biodegradable IN (BIN) made for the first time with bioceramics. These BINs have an extremely high bending strength and stable internal and external structure. Experiments show that the BINs could not only fix and support the tibial fracture model, but also promote osteogenesis and affect the microenvironment of the bone marrow cavity. Therefore, they could be expected to replace traditional metal IN and become a more effective treatment option for tibial fractures.
Collapse
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dou Y, Huang J, Xia X, Wei J, Zou Q, Zuo Y, Li J, Li Y. A hierarchical scaffold with a highly pore-interconnective 3D printed PLGA/n-HA framework and an extracellular matrix like gelatin network filler for bone regeneration. J Mater Chem B 2021; 9:4488-4501. [PMID: 34019618 DOI: 10.1039/d1tb00662b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ideal scaffold for bone repair should have a hierarchical pore structure and gradient degradation performance to satisfy the uniform adhesion and proliferation of cells in the scaffold at the early stage of implantation, as well as providing space for the subsequent regeneration of bone tissue. To this end, we developed a hierarchical polylactic acid glycolic acid copolymer (PLGA)/nano-hydroxyapatite (n-HA)/gelatin (Gel) (PHG) scaffold with a printed PLGA/n-HA (PH) framework and a Gel network filler for bone regeneration by the combination of 3D printing and freeze-drying technologies. The fabricated PHG scaffold features large front hole size (>1100 μm × 1100 μm) and side hole size (>500 μm) to provide sufficient open space and reliable integrated support for cell and tissue ingrowth. The gelatin network filled in the PH framework played the role of a cell holder just like an extracellular matrix (ECM) in the early stage. In vitro degradation experiments revealed that the gelatin network completely degraded within 5 weeks while the structural integrity of the framework still remained at the 32nd week. The results of cell culture confirmed that the PHG scaffold was more conducive to cell attachment. In vivo assessments in a rat femoral defect model showed that PHG scaffolds were more favored for new bone formation and achieving a tighter bond between the scaffold and the original tissues. The hierarchical PHG scaffold has great application potential in bone tissue engineering and will provide a reference for the model design of bone scaffolds.
Collapse
Affiliation(s)
- Yichen Dou
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Jinhui Huang
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
20
|
Effects of Strontium-Doped β-Tricalcium Scaffold on Longitudinal Nuclear Factor-Kappa Beta and Vascular Endothelial Growth Factor Receptor-2 Promoter Activities during Healing in a Murine Critical-Size Bone Defect Model. Int J Mol Sci 2020; 21:ijms21093208. [PMID: 32370039 PMCID: PMC7246816 DOI: 10.3390/ijms21093208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
It was hypothesized that strontium (Sr)-doped β-tricalcium phosphate (TCP)-based scaffolds have a positive effect on the regeneration of large bone defects (LBD). Readouts in our mice models were nuclear factor-kappa beta (NF-κB) activity and vascular endothelial growth factor receptor-2 (VEGFR-2) promoter activity during the healing process. A 2-mm critical-size femoral fracture was performed in transgenic NF-κB- and VEGFR-2-luciferase reporter mice. The fracture was filled with a 3D-printed β-TCP scaffold with or without Sr. A bioluminescence in-vivo imaging system was used to sequentially investigate NF-κB and VEGFR-2 expression for two months. After sacrifice, soft and osseous tissue formation in the fracture sites was histologically examined. NF-κB activity increased in the β-TCP + Sr group in the latter stage (day 40–60). VEGFR-2 activity increased in the + Sr group from days 0–15 but decreased and showed significantly less activity than the β-TCP and non-scaffold groups from days 40–60. The new bone formation and soft tissue formation in the + Sr group were significantly higher than in the β-TCP group, whereas the percentage of osseous tissue formation in the β-TCP group was significantly higher than in the β-TCP + Sr group. We analyzed longitudinal VEGFR-2 promoter activity and NF-κB activity profiles, as respective agents of angiogenesis and inflammation, during LBD healing. The extended inflammation phase and eventually more rapid resorption of scaffold caused by the addition of strontium accelerates temporary bridging of the fracture gaps. This finding has the potential to inform an improved treatment strategy for patients who suffer from osteoporosis.
Collapse
|