1
|
Arcuri S, Pennarossa G, Prasadani M, Gandolfi F, Brevini TAL. Use of Decellularized Bio-Scaffolds for the Generation of a Porcine Artificial Intestine. Methods Protoc 2024; 7:76. [PMID: 39452790 PMCID: PMC11510128 DOI: 10.3390/mps7050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
In recent years, great interest has been focused on the development of highly reproducible 3D in vitro models that are able to mimic the physiological architecture and functionality of native tissues. To date, a wide range of techniques have been proposed to recreate an intestinal barrier in vitro, including synthetic scaffolds and hydrogels, as well as complex on-a-chip systems and organoids. Here, we describe a novel protocol for the generation of an artificial intestine based on the creation of decellularized bio-scaffolds and their repopulation with intestinal stromal and epithelial cells. Organs collected at the local slaughterhouse are subjected to a decellularization protocol that includes a freezing/thawing step, followed by sequential incubation in 1% SDS for 12 h, 1% Triton X-100 for 12 h, and 2% deoxycholate for 12 h. At the end of the procedure, the generated bio-scaffolds are repopulated with intestinal fibroblasts and then with epithelial cells. The protocol described here represents a promising and novel strategy to generate an in vitro bioengineered intestine platform able to mimic some of the complex functions of the intestinal barrier, thus constituting a promising 3D strategy for nutritional, pharmaceutical, and toxicological studies.
Collapse
Affiliation(s)
- Sharon Arcuri
- Department of Veterinary Medicine, Università degli Studi di Sassari, Via Vienna, 07100 Sassari, Italy;
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| | - Madhusha Prasadani
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| |
Collapse
|
2
|
Wang F, Wang H, Shan X, Mei J, Wei P, Song Q, Chen W. High-strength and high-toughness ECM films with the potential for peripheral nerve repair. Biomed Mater 2023; 19:015010. [PMID: 38048625 DOI: 10.1088/1748-605x/ad11fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
Extracellular matrix (ECM) scaffolds are widely applied in the field of regeneration as the result of their irreplaceable biological advantages, and the preparation of ECM scaffolds into ECM hydrogels expands the applications to some extent. However, weak mechanical properties of current ECM materials limit the complete exploitation of ECM's biological advantages. To enable ECM materials to be utilized in applications requiring high strength, herein, we created a kind of new ECM material, ECM film, and evaluated its mechanical properties. ECM films exhibited outstanding toughness with no cracks after arbitrarily folding and crumpling, and dramatically high strength levels of 86 ± 17.25 MPa, the maximum of which was 115 MPa. Such spectacular high-strength and high-toughness films, containing only pure ECM without any crosslinking agents and other materials, far exceed current pure natural polymer gel films and even many composite gel films and synthetic polymer gel films. In addition, both PC12 cells and Schwann cells cultured on the surface of ECM films, especially Schwann cells, showed good proliferation, and the neurite outgrowth of the PC12 cells was promoted, indicating the application potential of ECM film in peripheral nerve repair.
Collapse
Affiliation(s)
- Fangfang Wang
- Medical Research Center, The First Affiliated Hospital of Ningbo University; Ningbo University, Ningbo 315010, People's Republic of China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, People's Republic of China
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Haiyang Wang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Xiaotong Shan
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Jin Mei
- Medical Research Center, The First Affiliated Hospital of Ningbo University; Ningbo University, Ningbo 315010, People's Republic of China
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Qinghua Song
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Weiwei Chen
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| |
Collapse
|
3
|
Xiao H, Chen X, Shan J, Liu X, Sun Y, Shen J, Chai Y, We G, Yu Y. A spatiotemporal release hydrogel based on an M1-to-M2 immunoenvironment for wound management. J Mater Chem B 2023; 11:3994-4004. [PMID: 37165902 DOI: 10.1039/d3tb00463e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cutaneous wounds remain a major clinical challenge that urgently requires the development of advanced and functional wound dressings. During the wound healing process, macrophages are well known to exhibit temporal dynamics with a pro-inflammatory phenotype at early stages and a pro-healing phenotype at late stages, thus playing an important role in regulating inflammatory responses and tissue regeneration. Meanwhile, disrupted temporal dynamics of macrophages caused by poor wound local conditions and deficiency of macrophage function always impair the wound-healing progression. Here in this work, we proposed a novel controllable strategy to construct a spatiotemporal dynamical immune-microenvironment for the treatment of cutaneous wounds. To achieve this goal, a concentric decellularized dermal hydrogel was constructed with the combination of type 1 and type 2 macrophage-associated cytokine complexes in the sheath portion and core portion, respectively. The in vitro degradation experiment exhibited a sequential cascade release of pro-inflammatory cytokines and pro-healing cytokines. The enhanced cell biocompatibility and tube formation of HUVECs were confirmed. A full-thickness skin defect model of rats was developed to analyze the effect of the spatiotemporal dynamical bioactive hydrogels on wound healing. Remarkable angiogenesis, rapid wound restoration, moderate extracellular matrix deposition and obvious skin appendage neogenesis were identified at different time points after treatment with the macrophage cytokine-based decellularized hydrogels. Consequently, the concentric decellularized hydrogels with spatiotemporal dynamics of immune cytokines have considerable potential for cell-free therapy for wound healing.
Collapse
Affiliation(s)
- Huimin Xiao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xin Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jianyang Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen We
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|