1
|
Lépori CMO, Luna MA, Challier C, Beassoni PR, Correa NM, Falcone RD. Exploring the Properties of Unilamellar Vesicle Bilayers Formed by Ionic Liquid Surfactants for Future Applications in Nanomedicine. J Phys Chem B 2024; 128:6940-6950. [PMID: 38956449 DOI: 10.1021/acs.jpcb.4c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Two ionic liquids (ILs) with amphiphilic properties composed of 1-butyl-3-methylimidazolium dioctylsulfosuccinate (bmim-AOT) and 1-hexyl-3-methylimidazolium dioctylsulfosuccinate (hmim-AOT) form unilamellar vesicles spontaneously simply by dissolving the IL-like surfactant in water. These novel vesicles were characterized using two different and highly sensitive fluorescent probes: 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN) and trans-4-[4-(dimethylamino)-styryl]-1-methylpyridinium iodide (HC). These fluorescent probes provide information about the physicochemical properties of the bilayer, such as micropolarity, microviscosity, and electron-donor capacity. In addition, the biocompatibility of these vesicles with the blood medium was evaluated, and their toxicity was determined using Dictyostelium discoideum amoebas. First, using PRODAN and HC, it was found that the bilayer composition and the chemical structure of the ions at the interface produced differences between both amphiphiles, making the vesicles different. Thus, the bilayer of hmim-AOT vesicles is less polar, more rigid, and has a lower electron-donor capacity than those made by bmim-AOT. Finally, the results obtained from the hemolysis studies and the growth behavior of unicellular amoebas, particularly utilizing the D. discoideum assay, showed that both vesicular systems do not produce toxic effects up to a concentration of 0.02 mg/mL. This elegant assay, devoid of animal usage, highlights the potential of these newly organized systems for the delivery of drugs and bioactive molecules of different polarities.
Collapse
Affiliation(s)
- Cristian M O Lépori
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - M Alejandra Luna
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC., Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - Cecilia Challier
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - Paola R Beassoni
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto de Biotecnología Ambiental y de la Salud (INBIAS), CONICET-UNRC, X5804BYA Río Cuarto, Argentina
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC., Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC., Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| |
Collapse
|
2
|
Helmecke T, Hahn D, Ruland A, Tsurkan MV, Maitz MF, Werner C. Adsorbed polymer conjugates to adaptively inhibit blood coagulation activation by medical membranes. J Control Release 2024; 368:344-354. [PMID: 38417559 DOI: 10.1016/j.jconrel.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Adaptive drug release can combat coagulation and inflammation activation at the blood-material interface with minimized side effects. For that purpose, poly(styrene-alt-maleic-anhydride) copolymers were conjugated to heparin via coagulation-responsive linker peptides and shown to tightly adsorb onto poly(ethersulfone) (PES)-surfaces from aqueous solutions as monolayers. Coagulation-responsive release of unfractionated as well as low molecular weight heparins from the respective coatings was demonstrated to be functionally beneficial in human plasma and whole blood incubation with faster release kinetics resulting in stronger anticoagulant effects. Coated poly(ethersulfone)/poly(vinylpyrrolidone) (PES/PVP) flat membranes proved the technology to offer an easy, effective and robust anticoagulant interfacial functionalization of hemodialysis membranes. In perspective, the modularity of the adaptive release system will be used for inhibiting multiple activation processes.
Collapse
Affiliation(s)
- Tina Helmecke
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Dominik Hahn
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - André Ruland
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany; Technische Universität Dresden, Cluster of Excellence Physics of Life, Center for Regenerative Therapies Dresden and Faculty of Chemistry and Food Chemistry, Fetscherstraße 105, 01307 Dresden, Germany.
| |
Collapse
|
3
|
Peng YH, Hsiao SK, Gupta K, Ruland A, Auernhammer GK, Maitz MF, Boye S, Lattner J, Gerri C, Honigmann A, Werner C, Krieg E. Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture. NATURE NANOTECHNOLOGY 2023; 18:1463-1473. [PMID: 37550574 PMCID: PMC10716043 DOI: 10.1038/s41565-023-01483-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Three-dimensional cell and organoid cultures rely on the mechanical support of viscoelastic matrices. However, commonly used matrix materials lack control over key cell-instructive properties. Here we report on fully synthetic hydrogels based on DNA libraries that self-assemble with ultrahigh-molecular-weight polymers, forming a dynamic DNA-crosslinked matrix (DyNAtrix). DyNAtrix enables computationally predictable and systematic control over its viscoelasticity, thermodynamic and kinetic parameters by changing DNA sequence information. Adjustable heat activation allows homogeneous embedding of mammalian cells. Intriguingly, stress-relaxation times can be tuned over four orders of magnitude, recapitulating mechanical characteristics of living tissues. DyNAtrix is self-healing, printable, exhibits high stability, cyto- and haemocompatibility, and controllable degradation. DyNAtrix-based cultures of human mesenchymal stromal cells, pluripotent stem cells, canine kidney cysts and human trophoblast organoids show high viability, proliferation and morphogenesis. DyNAtrix thus represents a programmable and versatile precision matrix for advanced approaches to biomechanics, biophysics and tissue engineering.
Collapse
Affiliation(s)
- Yu-Hsuan Peng
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Syuan-Ku Hsiao
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Krishna Gupta
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - André Ruland
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Günter K Auernhammer
- Institute for Physical Chemistry and Polymer Physics, Polymer Interfaces, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Manfred F Maitz
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Susanne Boye
- Institute for Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Johanna Lattner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Claudia Gerri
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Carsten Werner
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Elisha Krieg
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Valtin J, Behrens S, Ruland A, Schmieder F, Sonntag F, Renner LD, Maitz MF, Werner C. A New In Vitro Blood Flow Model for the Realistic Evaluation of Antimicrobial Surfaces. Adv Healthc Mater 2023; 12:e2301300. [PMID: 37498721 DOI: 10.1002/adhm.202301300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Indexed: 07/29/2023]
Abstract
Device-associated bloodstream infections can cause serious medical problems and cost-intensive postinfection management, defining a need for more effective antimicrobial coatings. Newly developed coatings often show reduced bacterial colonization and high hemocompatibility in established in vitro tests, but fail in animal studies or clinical trials. The poor predictive power of these models is attributed to inadequate representation of in vivo conditions. Herein, a new single-pass blood flow model, with simultaneous incubation of the test surface with bacteria and freshly-drawn human blood, is presented. The flow model is validated by comparative analysis of a recently developed set of antiadhesive and contact-killing polymer coatings, and the corresponding uncoated polycarbonate surfaces. The results confirm the model's ability to differentiate the antimicrobial activities of the studied surfaces. Blood activation data correlate with bacterial surface coverage: low bacterial adhesion is associated with low inflammation and hemostasis. Shear stress correlates inversely with bacterial colonization, especially on antiadhesive surfaces. The introduced model is concluded to enable the evaluation of novel antimicrobial materials under in vivo-like conditions, capturing interactions between bacteria and biomaterials surfaces in the presence of key components of the ex vivo host response.
Collapse
Affiliation(s)
- Juliane Valtin
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - André Ruland
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Lars D Renner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
- Technische Universität Dresden, Cluster of Excellence Physics of Life, Center for Regenerative Therapies Dresden and Faculty of Chemistry and Food Chemistry, 01307, Dresden, Germany
| |
Collapse
|
5
|
Sperling C, Maitz MF, Körber V, Hänsel S, Werner C. Advanced in vitro hemocompatibility assessment of biomaterials using a new flow incubation system. BIOMATERIALS ADVANCES 2023; 153:213555. [PMID: 37478769 DOI: 10.1016/j.bioadv.2023.213555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Physiologically relevant in vitro hemocompatibility assessment of biomaterials remains challenging. We present a new setup that enables standardized whole blood incubation of biomedical materials under flow. A blood volume of 2 mL is recirculated over test surfaces in a custom-made parallel plate incubation system to determine the activation of hemostasis and inflammation. Controlled physiological shear rates between 125 s-1 and 1250 s-1 and minimized contact to air are combined with a natural-like pumping process. A unique feature of this setup allows tracing adhesion of blood cells to test surfaces microscopically in situ. Validation testing was performed in comparison to previously applied whole blood incubation methodologies. Experiments with the newly developed setup showed that even small obstacles to blood flow activate blood (independent of materials-induced blood activation levels); that adhesion of blood cells to biomaterials equilibrates within 5 to 10 min; that high shear rates (1250 compared to 375 s-1) induce platelet activation; and that hemolysis, platelet factor 4 (PF4) release and platelet loss - but not thrombin formation - depend on shear rate (within the range investigated, 125 to 1250 s-1).
Collapse
Affiliation(s)
- Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Vincent Körber
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Stefanie Hänsel
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
6
|
Dittfeld C, Welzel C, König U, Jannasch A, Alexiou K, Blum E, Bronder S, Sperling C, Maitz MF, Tugtekin SM. Hemocompatibility tuning of an innovative glutaraldehyde-free preparation strategy using riboflavin/UV crosslinking and electron irradiation of bovine pericardium for cardiac substitutes. BIOMATERIALS ADVANCES 2023; 147:213328. [PMID: 36764200 DOI: 10.1016/j.bioadv.2023.213328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Hemocompatibility tuning was adopted to explore and refine an innovative, GA-free preparation strategy combining decellularization, riboflavin/UV crosslinking, and low-energy electron irradiation (SULEEI) procedure. A SULEEI-protocol was established to avoid GA-dependent deterioration that results in insufficient long-term aortic valve bioprosthesis durability. Final SULEEI-pericardium, intermediate steps and GA-fixed reference pericardium were exposed in vitro to fresh human whole blood to elucidate effects of preparation parameters on coagulation and inflammation activation and tissue histology. The riboflavin/UV crosslinking step showed to be less efficient in inactivating extracellular matrix (ECM) protein activity than the GA fixation, leading to tissue-factor mediated blood clotting. Intensifying the riboflavin/UV crosslinking with elevated riboflavin concentration and dextran caused an enhanced activation of the complement system. Yet activation processes induced by the previous protocol steps were quenched with the final electron beam treatment step. An optimized SULEEI protocol was developed using an intense and extended, trypsin-containing decellularization step to inactivate tissue factor and a dextran-free, low riboflavin, high UV crosslinking step. The innovative and improved GA-free SULEEI-preparation protocol results in low coagulant and low inflammatory bovine pericardium for surgical application.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany.
| | - Cindy Welzel
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| | - Ulla König
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| | - Konstantin Alexiou
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| | - Ekaterina Blum
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Saskia Bronder
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Claudia Sperling
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute Biofunctional Polymer Materials, Dresden, Germany
| | - Manfred F Maitz
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute Biofunctional Polymer Materials, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| |
Collapse
|
7
|
Helmecke T, Hahn D, Matzke N, Ferdinand L, Franke L, Kühn S, Fischer G, Werner C, Maitz MF. Inflammation-Controlled Anti-Inflammatory Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206412. [PMID: 36581490 PMCID: PMC9982591 DOI: 10.1002/advs.202206412] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
While autoregulative adaptation is a common feature of living tissues, only a few feedback-controlled adaptive biomaterials are available so far. This paper herein reports a new polymer hydrogel platform designed to release anti-inflammatory molecules in response to the inflammatory activation of human blood. In this system, anti-inflammatory peptide drugs, targeting either the complement cascade, a complement receptor, or cyclophilin A, are conjugated to the hydrogel by a peptide sequence that is cleaved by elastase released from activated granulocytes. As a proof of concept, the adaptive drug delivery from the gel triggered by activated granulocytes and the effect of the released drug on the respective inflammatory pathways are demonstrated. Adjusting the gel functionalization degree is shown to allow for tuning the drug release profiles to effective doses within a micromolar range. Feedback-controlled delivery of covalently conjugated drugs from a hydrogel matrix is concluded to provide valuable safety features suitable to equip medical devices with highly active anti-inflammatory agents without suppressing the general immunosurveillance.
Collapse
Affiliation(s)
- Tina Helmecke
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Dominik Hahn
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Nadine Matzke
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Lisa Ferdinand
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Lars Franke
- Max Planck Institute for Multidisciplinary Sciences37077GöttingenGermany
| | - Sebastian Kühn
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Gunter Fischer
- Max Planck Institute for Multidisciplinary Sciences37077GöttingenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
- Technische Universität DresdenCluster of Excellence Physics of LifeCenter for Regenerative Therapies Dresden and Faculty of Chemistry and Food ChemistryFetscherstraße 10501307DresdenGermany
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| |
Collapse
|
8
|
Schimper CB, Pachschwöll P, Maitz MF, Werner C, Rosenau T, Liebner F. Hemocompatibility of cellulose phosphate aerogel membranes with potential use in bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1152577. [PMID: 37152648 PMCID: PMC10154571 DOI: 10.3389/fbioe.2023.1152577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Cellulose is an appealing material for tissue engineering. In an attempt to overcome some obstacles with cellulose II cell scaffolding materials related to insufficient biomineralization, lack of micron-size porosity, and deficiency in surface charge, respective solutions have been proposed. These included covalent phosphorylation of different cellulose materials targeting relatively low degrees of substitution (DS 0.18-0.23) and processing these cellulose derivatives into scaffolding materials by a dissolution/coagulation approach employing the hitherto rarely used TBAF/DMSO/H2O system for cellulose dissolution. Here, we report bioactivity and preliminary hemocompatibility testing of dual-porous cellulose phosphate aerogels (contrasted with the phosphate-free reference) obtained via coagulation (water/ethanol), solvent exchange and scCO2 drying. Deposition of hydroxyapatite from simulated body fluid (7 days of immersion) revealed good bioactivity (1.5-2.2 mg Ca2+ per mg scaffold). Incubation of the scCO2-dried and rehydrated scaffolding materials in heparin anticoagulated human whole blood was conducted to study selected parameters of hemostasis (prothrombin F1+2 fragment, PF4, count of thrombocyte-leukocyte conjugates) and inflammatory response (C5a fragment, leukocyte activation marker CD11b). Adhesion of leukocytes on the surface of the incubated substrates was assessed by scanning electron and fluorescence microscopy (DAPI staining). The results suggest that phosphorylation at low DS does not increase platelet activation. However, a significant increase in platelet activation and thrombin formation was observed after a certain fraction of the negative surface charges had been compensated by Ca2+ ions. The combination of both phosphorylation and calcification turned out to be a potent means for controlling the inflammatory response, which was close to baseline level for some of the studied samples.
Collapse
Affiliation(s)
- Christian B. Schimper
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Paul Pachschwöll
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Falk Liebner
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- *Correspondence: Falk Liebner,
| |
Collapse
|
9
|
Major R, Wilczek G, Więcek J, Gawlikowski M, Plutecka H, Kasperkiewicz K, Kot M, Pomorska M, Ostrowski R, Kopernik M. Hemocompatibile Thin Films Assessed under Blood Flow Shear Forces. Molecules 2022; 27:molecules27175696. [PMID: 36080463 PMCID: PMC9458224 DOI: 10.3390/molecules27175696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to minimize the risk of life-threatening thromboembolism in the ventricle through the use of a new biomimetic heart valve based on metal-polymer composites. Finite volume element simulations of blood adhesion to the material were carried out, encompassing radial flow and the cone and plane test together with determination of the effect of boundary conditions. Both tilt-disc and bicuspid valves do not have optimized blood flow due to their design based on rigid valve materials (leaflet made of pyrolytic carbon). The main objective was the development of materials with specific properties dedicated to contact with blood. Materials were evaluated by dynamic tests using blood, concentrates, and whole human blood. Hemostability tests under hydrodynamic conditions were related to the mechanical properties of thin-film materials obtained from tribological tests. The quality of the coatings was high enough to avoid damage to the coating even as they were exposed up to maximum loading. Analysis towards blood concentrates of the hydrogenated carbon sample and the nitrogen-doped hydrogenated carbon sample revealed that the interaction of the coating with erythrocytes was the strongest. Hemocompatibility evaluation under hydrodynamic conditions confirmed very good properties of the developed coatings.
Collapse
Affiliation(s)
- Roman Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
| | - Grażyna Wilczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa St. 9, 40-007 Katowice, Poland
| | - Justyna Więcek
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
| | - Maciej Gawlikowski
- Faculty of Biomedical Engineering, Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelt St. 40, 41-800 Zabrze, Poland
| | - Hanna Plutecka
- Division of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Skawinska St. 8, 31-066 Cracow, Poland
| | - Katarzyna Kasperkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska St., 2840-032 Katowice, Poland
| | - Marcin Kot
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Małgorzata Pomorska
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
| | - Roman Ostrowski
- Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warsaw, Poland
| | - Magdalena Kopernik
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
- Correspondence: ; Tel.: +48-12-617-51-26
| |
Collapse
|
10
|
Hahn D, Sonntag JM, Lück S, Maitz MF, Freudenberg U, Jordan R, Werner C. Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels-Expanding the Physicochemical Parameter Space of Biohybrid Materials. Adv Healthc Mater 2021; 10:e2101327. [PMID: 34541827 PMCID: PMC11481032 DOI: 10.1002/adhm.202101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics.
Collapse
Affiliation(s)
- Dominik Hahn
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Jannick M. Sonntag
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Steffen Lück
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Rainer Jordan
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Fetscherstr. 10501307DresdenGermany
| |
Collapse
|
11
|
Bioresponsive starPEG-heparin hydrogel coatings on vascular stents for enhanced hemocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112268. [PMID: 34474827 DOI: 10.1016/j.msec.2021.112268] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/02/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022]
Abstract
Hydrogel coatings can improve the biocompatibility of medical devices. However, stable surface bonding and homogeneity of hydrogel coatings are often challenging. This study exploits the benefits of biohybrid hydrogels of crosslinked four-armed poly(ethylene glycol) and heparin to enhance the hemocompatibility of cobalt‑chromium (CoCr) vascular stents. A bonding layer of dual silane and poly(ethylene-alt-maleic anhydride) (PEMA) treatment was applied to the stent to provide covalent immobilization and hydrophilicity for the homogeneous spreading of the hydrogel. A spray coating technology was used to distribute the aqueous solution of the reactive hydrogel precursors onto the sub-millimeter struts of the stents, where the solution polymerized to a homogeneous hydrogel film. The coating was mechanically stable on the stent after ethanol dehydration, and the stents could be stored in a dry state. The homogeneity and stability of the coating during stent expansion were verified. Quasistatic and dynamic whole blood incubation experiments showed substantial suppression of the pro-coagulant and inflammatory activity of the bare metal by the coating. Translation of the technology to industrial coating devices and future surface modification of stents with anti-inflammatory hydrogels are discussed.
Collapse
|
12
|
Major R, Gawlikowski M, Plutecka H, Surmiak M, Kot M, Dyner M, Lackner JM, Major B. Biocompatibility testing of composite biomaterial designed for a new petal valve construction for pulsatile ventricular assist device. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:118. [PMID: 34459990 PMCID: PMC8405480 DOI: 10.1007/s10856-021-06576-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
This paper presents the results of biocompatibility testing performed on several biomaterial variants for manufacturing a newly designed petal valve intended for use in a pulsatile ventricular assist device or blood pump. Both physical vapor deposition (PVD) and plasma-enhanced chemical vapor deposition (PECVD) were used to coat titanium-based substrates with hydrogenated tetrahedral amorphous carbon (ta-C:H) or amorphous hydrogenated carbon (a-C:H and a-C:H, N). Experiments were carried out using whole human blood under arterial shear stress conditions in a cone-plate analyzer (ap. 1800 1/s). In most cases, tested coatings showed good or very good haemocompatibility. Type a-C:H, N coating proved to be superior in terms of activation, risk of aggregation, and the effects of generating microparticles of apoptotic origin, and also demonstrated excellent mechanical properties. Therefore, a-C:H, N coatings were selected for further in vivo studies. In vivo animal studies were carried out according to the ISO 10993 standard. Intradermal reactivity was assessed in three rabbits and sub-acute toxicity and local effects after implantation were examined in 12 rabbits. Based on postmortem examination, no organ failure or wound tissue damage occurred during the required period of observation. In summary, our investigations demonstrated high biocompatibility of the biomaterials in relation to thrombogenicity, toxicity, and wound healing. Prototypes of the petal valves were manufactured and mounted on the pulsatile ventricular assist device. Hydrodynamic features and impact on red blood cells (hemolysis) as well as coagulation (systemic thrombogenicity) were assessed in whole blood.
Collapse
Affiliation(s)
- Roman Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta Str. 25, Cracow, Poland.
| | - Maciej Gawlikowski
- Foundation for Cardiac Surgery Development, Artificial Heart Laboratory, Wolnosci Str. 345, Zabrze, Poland
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelt Str. 40, Zabrze, Poland
| | - Hanna Plutecka
- Department of Medicine, Jagiellonian University Medical College, Skawinska Str. 8, Cracow, Poland
| | - Marcin Surmiak
- Department of Medicine, Jagiellonian University Medical College, Skawinska Str. 8, Cracow, Poland
| | - Marcin Kot
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicza Str. 30, Cracow, Poland
| | - Marcin Dyner
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, CHIRMED, 13/15 Armii Krajowej Av, Czestochowa, Poland
| | - Juergen M Lackner
- Joanneum Research Forschungsges.m.b.H., Institute of Surface Technologies and Photonics, Functional Surfaces, Leobner Str. 94, Niklasdorf, Austria
| | - Boguslaw Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta Str. 25, Cracow, Poland
| |
Collapse
|
13
|
Lee Y, Bandari VK, Li Z, Medina-Sánchez M, Maitz MF, Karnaushenko D, Tsurkan MV, Karnaushenko DD, Schmidt OG. Nano-biosupercapacitors enable autarkic sensor operation in blood. Nat Commun 2021; 12:4967. [PMID: 34426576 PMCID: PMC8382768 DOI: 10.1038/s41467-021-24863-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Today's smallest energy storage devices for in-vivo applications are larger than 3 mm3 and lack the ability to continuously drive the complex functions of smart dust electronic and microrobotic systems. Here, we create a tubular biosupercapacitor occupying a mere volume of 1/1000 mm3 (=1 nanoliter), yet delivering up to 1.6 V in blood. The tubular geometry of this nano-biosupercapacitor provides efficient self-protection against external forces from pulsating blood or muscle contraction. Redox enzymes and living cells, naturally present in blood boost the performance of the device by 40% and help to solve the self-discharging problem persistently encountered by miniaturized supercapacitors. At full capacity, the nano-biosupercapacitors drive a complex integrated sensor system to measure the pH-value in blood. This demonstration opens up opportunities for next generation intravascular implants and microrobotic systems operating in hard-to-reach small spaces deep inside the human body.
Collapse
Affiliation(s)
- Yeji Lee
- grid.6810.f0000 0001 2294 5505Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, Germany ,grid.6810.f0000 0001 2294 5505Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany ,grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Vineeth Kumar Bandari
- grid.6810.f0000 0001 2294 5505Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, Germany ,grid.6810.f0000 0001 2294 5505Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany ,grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Zhe Li
- grid.6810.f0000 0001 2294 5505Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, Germany ,grid.6810.f0000 0001 2294 5505Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany ,grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Mariana Medina-Sánchez
- grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Manfred F. Maitz
- grid.419239.40000 0000 8583 7301Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Daniil Karnaushenko
- grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Mikhail V. Tsurkan
- grid.419239.40000 0000 8583 7301Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Dmitriy D. Karnaushenko
- grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Oliver G. Schmidt
- grid.6810.f0000 0001 2294 5505Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, Germany ,grid.6810.f0000 0001 2294 5505Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany ,grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany ,grid.4488.00000 0001 2111 7257Nanophysics, Faculty of Physics, TU Dresden, Dresden, Germany
| |
Collapse
|
14
|
Zhou S, Di Luca M, Xu X, Ma N, Jung F, Lendlein A. Defeating antibiotic-resistant bacteria with protein-resistant polyGGE film. Clin Hemorheol Microcirc 2021; 79:609-623. [PMID: 34366331 DOI: 10.3233/ch-211250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biofouling on medical device surfaces, which is initiated by protein adsorption and adhesion of microbes especially the antibiotic-resistant bacteria, attracts global attention for centuries due to its enduring challenges in healthcare. Here, the antifouling effect of hydrophilic poly(glycerol glycidyl ether) (polyGGE) film is explored in comparison to hemocompatible and protein-resistant control polymers. The chemical and thermomechanical stability of polyGGE in hydrated conditions at body temperature was achieved via adjusting UV curing and KOH quenching time. The polyGGE surface is inert to the plasma protein adsorption and interfered the metabolism conditions, biofilm formation and growth of both Gram negative (Gram-) and antibiotic-resistant Gram positive (Gram+) bacteria. These results indicate the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading.
Collapse
Affiliation(s)
- Shuo Zhou
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | | | - Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Friedrich Jung
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Bozzi S, Roka-Moiia Y, Mencarini T, Vercellino F, Epifani I, Ammann KR, Consolo F, Slepian MJ, Redaelli A. Characterization of the competing role of surface-contact and shear stress on platelet activation in the setting of blood contacting devices. Int J Artif Organs 2021; 44:1013-1020. [PMID: 33845625 DOI: 10.1177/03913988211009909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Supraphysiological shear stress and surface-contact are recognized as driving mechanisms of platelet activation (PA) in blood contacting devices (BCDs). However, the competing role of these mechanisms in triggering thrombogenic events is poorly understood. Here, we characterized the dynamics of PA in response to the combined effect of shear stress and material exposure. Human platelets were stimulated with different levels of shear stress (500, 750, 1000 dynes/cm2) over a range of exposure times (10, 20, and 30 min) within capillary tubes made of various polymeric materials. Polyethylene (PE), polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), and polyether ether ketone (PEEK), used for BCDs fabrication, were investigated as compared to glass and thromboresistant Sigma™-coated glass. PA was quantified using the Platelet Activity State assay. Our results indicate that mechanical stimulation and polymer surface-contact both significantly contribute to PA. Notably, the contribution of the mechanical stimulus ranges between +36% and +43%, while that associated with polymer surface-contact ranges from +48% to +59%, depending on the exposure time. In more detail, our results indicate that: (i) PA increases with increasing shear stress magnitude; (ii) PA has a non-linear, time-dependent relationship to exposure time; (iii) PA is largely influenced by biomaterials, with PE and PEEK having respectively the lowest and highest prothrombotic potential; (iv) the effects of polymer surface-contact and shear stress are not correlated and can be studied separately. Our results suggest the importance of incorporating the evaluation of platelet activation driven by the combined effect of shear stress and polymer surface-contact for the comprehensive assessment, and eventually minimization, of BCDs thrombogenic potential.
Collapse
Affiliation(s)
- Silvia Bozzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Yana Roka-Moiia
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Tatiana Mencarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Federica Vercellino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Ilenia Epifani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kaitlyn R Ammann
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Filippo Consolo
- Università Vita-Salute San Raffaele, Facoltà di Medicina e Chirurgia, Milano, Italy
| | - Marvin J Slepian
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
16
|
In vitro hemocompatibility testing of medical devices. Thromb Res 2020; 195:146-150. [DOI: 10.1016/j.thromres.2020.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
|
17
|
Trembecka-Wójciga K, Kopernik M, Surmiak M, Major R, Gawlikowski M, Bruckert F, Kot M, Lackner JM. Effect of the mechanical properties of carbon-based coatings on the mechanics of cell-material interactions. Colloids Surf B Biointerfaces 2020; 197:111359. [PMID: 33032179 DOI: 10.1016/j.colsurfb.2020.111359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022]
Abstract
The paper presents an influence of the surface mechanical properties of thin-film materials on blood cell adhesion under shear stress conditions. Physical vapour deposited (PVD) coatings i.e. hydrogenated amorphous carbon (a-C:H) doped with nitrogen or silicon have been investigated. The mechanical properties of materials, namely their microhardness and Young's modulus were measured using indentation test with Rockwell indenter. The adhesion efficiency of blood cells in dynamic conditions were analysed using a radial flow chamber. Red blood cells (RBC) were used as representative cells to analyse cell-material interactions. The biomaterial examinations were performed under physiological flow conditions at the single-cell level. The 3D FVM (finite volume method) model of multi-phase radial flow test was developed to reproduce the physical test and to predict distributions of shear stresses and velocity during blood washout with PBS. Cell-material interactions were found to be strongly associated with the mechanical properties of the thin-film material. The decrease in the hardness of the coatings translated into a weaker cell - material interactions.
Collapse
Affiliation(s)
- K Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, Cracow, Poland
| | - M Kopernik
- AGH University of Science and Technology, Mickiewicza Str. 30, Cracow, Poland.
| | - M Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Skawinska Str. 8, Cracow, Poland
| | - R Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, Cracow, Poland
| | - M Gawlikowski
- Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biosensors and Processing of Biomedical Signals, Roosevelt Str. 40, Zabrze, Poland
| | - F Bruckert
- Laboratoire des Matériaux et du Génie Physique - UMR 5628, 3 parvis Louis Néel, Grenoble Cedex 1, France
| | - M Kot
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicza Str. 30, Cracow, Poland
| | - J M Lackner
- Joanneum Research Forschungsges mbH, Institute of Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712, Niklasdorf, Austria
| |
Collapse
|
18
|
Singh T, Hook AL, Luckett J, Maitz MF, Sperling C, Werner C, Davies MC, Irvine DJ, Williams P, Alexander MR. Discovery of hemocompatible bacterial biofilm-resistant copolymers. Biomaterials 2020; 260:120312. [PMID: 32866726 PMCID: PMC7534038 DOI: 10.1016/j.biomaterials.2020.120312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Blood-contacting medical devices play an important role within healthcare and are required to be biocompatible, hemocompatible and resistant to microbial colonization. Here we describe a high throughput screen for copolymers with these specific properties. A series of weakly amphiphilic monomers are combinatorially polymerized with acrylate glycol monomers of varying chain lengths to create a library of 645 multi-functional candidate materials containing multiple chemical moieties that impart anti-biofilm, hemo- and immuno-compatible properties. These materials are screened in over 15,000 individual biological assays, targeting two bacterial species, one Gram negative (Pseudomonas aeruginosa) and one Gram positive (Staphylococcus aureus) commonly associated with central venous catheter infections, using 5 different measures of hemocompatibility and 6 measures of immunocompatibililty. Selected copolymers reduce platelet activation, platelet loss and leukocyte activation compared with the standard comparator PTFE as well as reducing bacterial biofilm formation in vitro by more than 82% compared with silicone. Poly(isobornyl acrylate-co-triethylene glycol methacrylate) (75:25) is identified as the optimal material across all these measures reducing P. aeruginosa biofilm formation by up to 86% in vivo in a murine foreign body infection model compared with uncoated silicone.
Collapse
Affiliation(s)
- Taranjit Singh
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Andrew L Hook
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jeni Luckett
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Centre for Biomaterials Dresden, Hohe Str. 6, D-01069, Dresden, Germany
| | - Claudia Sperling
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Centre for Biomaterials Dresden, Hohe Str. 6, D-01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Centre for Biomaterials Dresden, Hohe Str. 6, D-01069, Dresden, Germany
| | - Martyn C Davies
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Derek J Irvine
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
19
|
Braune S, Latour RA, Reinthaler M, Landmesser U, Lendlein A, Jung F. In Vitro Thrombogenicity Testing of Biomaterials. Adv Healthc Mater 2019; 8:e1900527. [PMID: 31612646 DOI: 10.1002/adhm.201900527] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Indexed: 12/29/2022]
Abstract
The short- and long-term thrombogenicity of implant materials is still unpredictable, which is a significant challenge for the treatment of cardiovascular diseases. A knowledge-based approach for implementing biofunctions in materials requires a detailed understanding of the medical device in the biological system. In particular, the interplay between material and blood components/cells as well as standardized and commonly acknowledged in vitro test methods allowing a reproducible categorization of the material thrombogenicity requires further attention. Here, the status of in vitro thrombogenicity testing methods for biomaterials is reviewed, particularly taking in view the preparation of test materials and references, the selection and characterization of donors and blood samples, the prerequisites for reproducible approaches and applied test systems. Recent joint approaches in finding common standards for a reproducible testing are summarized and perspectives for a more disease oriented in vitro thrombogenicity testing are discussed.
Collapse
Affiliation(s)
- Steffen Braune
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| | - Robert A. Latour
- Rhodes Engineering Research CenterDepartment of BioengineeringClemson University Clemson SC 29634 USA
| | - Markus Reinthaler
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Department for CardiologyCharité UniversitätsmedizinCampus Benjamin Franklin Hindenburgdamm 30 12203 Berlin Germany
| | - Ulf Landmesser
- Department for CardiologyCharité UniversitätsmedizinCampus Benjamin Franklin Hindenburgdamm 30 12203 Berlin Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Institute of ChemistryUniversity of Potsdam Karl‐Liebknecht‐Strasse 24‐25 14476 Potsdam Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| |
Collapse
|
20
|
Sarode DN, Roy S. In Vitro models for thrombogenicity testing of blood-recirculating medical devices. Expert Rev Med Devices 2019; 16:603-616. [PMID: 31154869 DOI: 10.1080/17434440.2019.1627199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Blood-recirculating medical devices, such as mechanical circulatory support (MCS), extracorporeal membrane oxygenators (ECMO), and hemodialyzers, are commonly used to treat or improve quality of life in patients with cardiac, pulmonary, and renal failure, respectively. As part of their regulatory approval, guidelines for thrombosis evaluation in pre-clinical development have been established. In vitro testing evaluates a device's potential to produce thrombosis markers in static and dynamic flow loops. AREAS COVERED This review focuses on in vitro static and dynamic models to assess thrombosis in blood-recirculating medical devices. A summary of key devices is followed by a review of molecular markers of contact activation. Current thrombosis testing guidance documents, ISO 10993-4, ASTM F-2888, and F-2382 will be discussed, followed by analysis of their application to in vitro testing models. EXPERT OPINION In general, researchers have favored in vivo models to thoroughly evaluate thrombosis, limiting in vitro evaluation to hemolysis. In vitro studies are not standardized and it is often difficult to compare studies on similar devices. As blood-recirculating devices have advanced to include wearable and implantable artificial organs, expanded guidelines standardizing in vitro testing are needed to identify the thrombotic potential without excessive use of in vivo resources during pre-clinical development.
Collapse
Affiliation(s)
- Deepika N Sarode
- a Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , CA , USA
| | - Shuvo Roy
- a Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , CA , USA
| |
Collapse
|
21
|
Reinthaler M, Johansson JB, Braune S, Al-Hindwan HSA, Lendlein A, Jung F. Shear-induced platelet adherence and activation in an in-vitro dynamic multiwell-plate system. Clin Hemorheol Microcirc 2019; 71:183-191. [PMID: 30584128 DOI: 10.3233/ch-189410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circulating blood cells are prone to varying flow conditions when contacting cardiovascular devices. For a profound understanding of the complex interplay between the blood components/cells and cardiovascular implant surfaces, testing under varying shear conditions is required. Here, we study the influence of arterial and venous shear conditions on the in vitro evaluation of the thrombogenicity of polymer-based implant materials.Medical grade poly(dimethyl siloxane) (PDMS), polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE) films were included as reference materials. The polymers were exposed to whole blood from healthy humans. Blood was agitated orbitally at low (venous shear stress: 2.8 dyne · cm-2) and high (arterial shear stress: 22.2 dyne · cm-2) agitation speeds in a well-plate based test system. Numbers of non-adherent platelets, platelet activation (P-Selectin positive platelets), platelet function (PFA100 closure times) and platelet adhesion (laser scanning microscopy (LSM)) were determined.Microscopic data and counting of the circulating cells revealed increasing numbers of material-surface adherent platelets with increasing agitation speed. Also, activation of the platelets was substantially increased when tested under the high shear conditions (P-Selectin levels, PFA-100 closure times). At low agitation speed, the platelet densities did not differ between the three materials. Tested at the high agitation speed, lowest platelet densities were observed on PDMS, intermediate levels on PET and highest on PTFE. While activation of the circulating platelets was affected by the implant surfaces in a similar manner, PFA closure times did not reflect this trend.Differences in the thrombogenicity of the studied polymers were more pronounced when tested at high agitation speed due to the induced shear stresses. Testing under varying shear stresses, thus, led to a different evaluation of the implant thrombogenicity, which emphasizes the need for testing under various flow conditions. Our data further confirmed earlier findings where the same reference implants were tested under static (and not dynamic) conditions and with fresh human platelet rich plasma instead of whole blood. This supports that the application of common reference materials may improve inter-study comparisons, even under varying test conditions.
Collapse
Affiliation(s)
- Markus Reinthaler
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Department of Cardiology, Medical Clinic II, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Johan Bäckemo Johansson
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Steffen Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Haitham Saleh Ali Al-Hindwan
- Department of Cardiology, Medical Clinic II, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
22
|
Liu C, Lin Z, Qiao C, Zhao Z, Wang C, Sun X, Shi Y. Hemocompatibility assay of a micro-catheter using hydrophilic coating biomaterials. Biomed Mater Eng 2019; 30:1-9. [DOI: 10.3233/bme-181028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Chenghu Liu
- Shandong Quality Inspection Center for Medical Devices, , China
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, , China
| | - Zhenhua Lin
- Shandong Quality Inspection Center for Medical Devices, , China
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, , China
| | - Chunxia Qiao
- Shandong Quality Inspection Center for Medical Devices, , China
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, , China
| | - Zenglin Zhao
- Shandong Quality Inspection Center for Medical Devices, , China
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, , China
| | - Changbin Wang
- Shandong Quality Inspection Center for Medical Devices, , China
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, , China
| | - Xiaoxia Sun
- Shandong Quality Inspection Center for Medical Devices, , China
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, , China
| | - Yanping Shi
- Shandong Quality Inspection Center for Medical Devices, , China
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, , China
| |
Collapse
|
23
|
Mukhopadhyay S, Veroniaina H, Chimombe T, Han L, Zhenghong W, Xiaole Q. Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: an overview. RSC Adv 2019; 9:35566-35578. [PMID: 35528069 PMCID: PMC9074774 DOI: 10.1039/c9ra06127d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Protean mesoporous silica nanoparticles are propitious candidates over decades for nanoscale drug delivery systems due to their unique characteristics, including changeable pore size, mesoporosity, high drug loading capacity and biodegradability.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | | | - Tadious Chimombe
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Lidong Han
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Wu Zhenghong
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Qi Xiaole
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| |
Collapse
|
24
|
Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front Bioeng Biotechnol 2018; 6:99. [PMID: 30062094 PMCID: PMC6054932 DOI: 10.3389/fbioe.2018.00099] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Hemocompatibility of blood-contacting biomaterials is one of the most important criteria for their successful in vivo applicability. Thus, extensive in vitro analyses according to ISO 10993-4 are required prior to clinical applications. In this review, we summarize essential aspects regarding the evaluation of the hemocompatibility of biomaterials and the required in vitro analyses for determining the blood compatibility. Static, agitated, or shear flow models are used to perform hemocompatibility studies. Before and after the incubation of the test material with fresh human blood, hemolysis, cell counts, and the activation of platelets, leukocytes, coagulation and complement system are analyzed. Furthermore, the surface of biomaterials are evaluated concerning attachment of blood cells, adsorption of proteins, and generation of thrombus and fibrin networks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Sperling C, Fischer M, Maitz MF, Werner C. Neutrophil extracellular trap formation upon exposure of hydrophobic materials to human whole blood causes thrombogenic reactions. Biomater Sci 2018; 5:1998-2008. [PMID: 28745733 DOI: 10.1039/c7bm00458c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neutrophil extracellular trap (NET) formation, a reaction of the innate immune system to fight pathogens, was shown to be involved in thrombus formation. In the present study blood-contacting biomaterials with graded surface characteristics were investigated as a potential cause of NET formation on medical devices. Surface properties are known to govern protein adsorption, cell adhesion and ultimately the activation of several other host defense pathways - potentially also the formation of NETs. Model materials of defined hydrophilic or hydrophobic properties (glass, and thin films of poly(ethylene-alt-maleic anhydride), self-assembled monolayers of methyl terminated alkanethiols, and Teflon AF™) were incubated either with isolated human granulocytes after pre-adsorption with plasma proteins or with human whole blood. NET formation - detected as extracellular DNA, citrullinated histones, elastase and reactive oxygen species (ROS) - was observed on hydrophobic surfaces. Furthermore, NET formation on the hydrophobic surface Teflon AF™ resulted in elevated thrombin generation in hirudin-anticoagulated whole blood, but not in heparinized whole blood. Disintegration of surface-bound NETs by DNase treatment resulted in significantly lower pro-coagulant effects. Thus, NET formation can contribute to the thrombogenicity of clinically applied hydrophobic materials, suggesting NETosis as well as NET surface anchorage as new targets of anticoagulation strategies.
Collapse
Affiliation(s)
- Claudia Sperling
- Institute of Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials Dresden, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany.
| | | | | | | |
Collapse
|
26
|
Schulz S, Maitz M, Hänsel S, Renner LD, Werner C. Analyzing the antiseptic capacity of silver-functionalized poly(ethylene glycol)–heparin hydrogels after human whole blood exposure. Biomater Sci 2018. [DOI: 10.1039/c7bm01140g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advanced blood contacting biomaterials are designed to combine antiseptic and anticoagulant functionalities.
Collapse
Affiliation(s)
- Sandra Schulz
- Max Bergmann Center of Biomaterials
- Leibniz-Institut für Polymerforschung Dresden e.V
- Dresden
- Germany
| | - Manfred Maitz
- Max Bergmann Center of Biomaterials
- Leibniz-Institut für Polymerforschung Dresden e.V
- Dresden
- Germany
| | - Stefanie Hänsel
- Max Bergmann Center of Biomaterials
- Leibniz-Institut für Polymerforschung Dresden e.V
- Dresden
- Germany
| | - Lars D. Renner
- Max Bergmann Center of Biomaterials
- Leibniz-Institut für Polymerforschung Dresden e.V
- Dresden
- Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials
- Leibniz-Institut für Polymerforschung Dresden e.V
- Dresden
- Germany
- Center for Regenerative Therapies Dresden
| |
Collapse
|
27
|
Sperling C, Maitz MF, Grasso S, Werner C, Kanse SM. A Positively Charged Surface Triggers Coagulation Activation Through Factor VII Activating Protease (FSAP). ACS APPLIED MATERIALS & INTERFACES 2017; 9:40107-40116. [PMID: 29091393 DOI: 10.1021/acsami.7b14281] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Contact between biomedical materials and blood often initiates undesirable pro-coagulant and pro-inflammatory processes. On negatively charged materials, blood coagulation is known to be triggered through autoactivation of Factor XII, while activation on cationic surfaces follows a distinct and so far enigmatic mechanism. Because Factor VII activating protease (FSAP) is known to be activated on positively and on negatively charged macromolecules in plasma, we have investigated its interaction with charged biomaterials and its consequences for coagulation. Several activation processes in blood and plasma were characterized after contact with material surfaces with varied charge. FSAP was found to be exclusively activated by the positively charged surfaces polyethylenimine (PEI) and poly-l-lysine (PLL), not by the negatively charged glass or self-assembled monolayer with carboxyl group termination (SAM-COOH), as well as uncharged (Teflon AF) surfaces. Whole blood incubation on PEI showed that this activation was concomitant with coagulation as determined by thrombin and fibrin formation, which was high for glass (F1+2, 138 nM) and PEI (F1+2, 44 nM) but low for Teflon AF (F1+2, 3.3 nM) and SAM COOH (F1+2, 5.8 nM). Contact phase inhibitor diminished coagulation to background levels for all surfaces except PEI (F1+2: ^PEI 43 to 25 nM; glass, 58 to 1.5 nM) indicating that coagulation activation is not dependent on FXII activation on the PEI surface. A decisive role of endogenous FSAP for coagulation however was confirmed with the use of FSAP inhibitory antibodies which showed no influence on Teflon AF, glass and SAM COOH but diminished F1+2 on PEI to less than 50%. We propose that FSAP activation could be a novel mechanism of surface-driven coagulation. An inhibition of this protease might improve hemocompatibility of cationic surfaces and therefore facilitate the application of polycationic surfaces in blood.
Collapse
Affiliation(s)
- Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Strasse 6, 01069 Dresden, Germany
| | - Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Strasse 6, 01069 Dresden, Germany
| | - Simona Grasso
- Oslo University Hospital and University of Oslo , 0372 Oslo, Norway
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Strasse 6, 01069 Dresden, Germany
| | - Sandip M Kanse
- Oslo University Hospital and University of Oslo , 0372 Oslo, Norway
| |
Collapse
|
28
|
Maitz MF, Sperling C, Wongpinyochit T, Herklotz M, Werner C, Seib FP. Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2633-2642. [DOI: 10.1016/j.nano.2017.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/29/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
|
29
|
Chen YW, Venault A, Jhong JF, Ho HT, Liu CC, Lee RH, Hsiue GH, Chang Y. Developing blood leukocytes depletion membranes from the design of bio-inert PEGylated hydrogel interfaces with surface charge control. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Maitz MF, Zitzmann J, Hanke J, Renneberg C, Tsurkan MV, Sperling C, Freudenberg U, Werner C. Adaptive release of heparin from anticoagulant hydrogels triggered by different blood coagulation factors. Biomaterials 2017; 135:53-61. [PMID: 28486148 DOI: 10.1016/j.biomaterials.2017.04.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 12/23/2022]
Abstract
Feedback-controlled anticoagulant hydrogels were formed by crosslinking the anticoagulant heparin with star-shaped poly(ethylene glycol) using peptide linkers, which are selectively cleaved by different activated blood coagulation factors acting as proteolytic enzymes. Various cleavable peptide units, differing either in their thrombin turnover rates or in their responsiveness to factors activated earlier in the course of blood coagulation, were used for the formation of the biohybrid materials. Release triggered by the early coagulation factors Xa (FXa) or FXIIa/kallikrein was shown to enhance the efficiency of the released anticoagulant. Furthermore, FXa-cleavable gels enabled a faster release of heparin, which was attributed to the lower affinity of the factor for heparin. Combining early and fast responses, FXa-cleavable gels were shown to provide anticoagulant protection of biomaterial surfaces at low levels of released heparin in human whole-blood incubation experiments. The results demonstrate the potential for employing biomolecular circuits in the design of functional biomaterials to tailor the adaptive delivery of bioactive molecules.
Collapse
Affiliation(s)
- Manfred F Maitz
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
| | - Jan Zitzmann
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Jasmin Hanke
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Claudia Renneberg
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Mikhail V Tsurkan
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Claudia Sperling
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Uwe Freudenberg
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
31
|
Herklotz M, Hanke J, Hänsel S, Drichel J, Marx M, Maitz MF, Werner C. Biomaterials trigger endothelial cell activation when co-incubated with human whole blood. Biomaterials 2016; 104:258-68. [PMID: 27472163 DOI: 10.1016/j.biomaterials.2016.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/11/2016] [Accepted: 07/16/2016] [Indexed: 12/25/2022]
Abstract
Endothelial cell activation resulting from biomaterial contact or biomaterial-induced blood activation may in turn also affect hemostasis and inflammatory processes in the blood. Current in vitro hemocompatibility assays typically ignore these modulating effects of the endothelium. This study describes a co-incubation system of human whole blood, biomaterial and endothelial cells (ECs) that was developed to overcome this limitation. First, human endothelial cells were characterized in terms of their expression of coagulation- and inflammation-relevant markers in response to various activators. Subsequently, their capacity to regulate hemostasis as well as complement and granulocyte activation was monitored in a hemocompatibility assay. After blood contact, quiescent ECs exhibited anticoagulant and anti-inflammatory properties. When they were co-incubated with surfaces exhibiting pro-coagulant or pro-inflammatory characteristics, the ECs down-regulated coagulation but not complement or leukocyte activation. Analysis of intracellular levels of the endothelial activation markers E-selectin and tissue factor showed that co-incubation with model surfaces and blood significantly increased the activation state of ECs. Finally, the coagulation- and inflammation-modulating properties of the ECs were tested after blood/biomaterial exposure. Pre-activation of ECs by biomaterials in the blood induced a pro-coagulant and pro-inflammatory state of the ECs, wherein the pro-coagulant response was higher for biomaterial/blood pre-activated ECs than for TNF-α-pre-activated cells. This work provides evidence that biomaterials, even without directly contacting the endothelium, affect the endothelial activation state with and have consequences for plasmatic and cellular reactions in the blood.
Collapse
Affiliation(s)
- Manuela Herklotz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| | - Jasmin Hanke
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| | - Stefanie Hänsel
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| | - Juliane Drichel
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| | - Monique Marx
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| |
Collapse
|
32
|
Boudot C, Boccoz A, Düregger K, Kuhnla A. A novel blood incubation system for the in-vitro assessment of interactions between platelets and biomaterial surfaces under dynamic flow conditions: The Hemocoater. J Biomed Mater Res A 2016; 104:2430-40. [PMID: 27213915 DOI: 10.1002/jbm.a.35787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 11/12/2022]
Abstract
Hemocompatibility evaluation of biomaterials necessitates the use of blood incubation systems which simulate physiological flow conditions. However, most of the current systems have various limitations, especially restricted material variability, poor access to the test surface or damage of blood cells due to the use of a pump. In this paper, we combined the advantages of existent setups and developed a new planar shaped incubation test bench to lift those restrictions and mimic the pulsatile in-vivo situation. The adjustable flow conditions at the tested material surface were defined and corresponded to those in blood vessels. Platelet/material-interaction, as major aspect of hemocompatibility, was investigated for four common polymeric materials (polyoxymethylene, polypropylene, polyethylene and silicone elastomer) with platelet deprivation and platelet adhesion tests. Highly significant differences in the adhesion of platelets onto the tested material surfaces were measured. The number of adhered platelets on the most hydrophobic sample (silicone elastomer) was four-times higher than on the most hydrophilic sample (polyoxymethylene). These findings were confirmed with a scanning microscopic analysis and demonstrated the suitability of the testing device for the evaluation of platelet/material interactions. Moreover, hemolysis measurements demonstrated that the system did not provoke blood damage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2430-2440, 2016.
Collapse
Affiliation(s)
- Cécile Boudot
- Institute of Medical and Polymer Engineering, Technical University of Munich, Garching, D-85748, Germany
| | - Ana Boccoz
- Institute of Medical and Polymer Engineering, Technical University of Munich, Garching, D-85748, Germany
| | - Katharina Düregger
- Institute of Medical and Polymer Engineering, Technical University of Munich, Garching, D-85748, Germany
| | - Ariane Kuhnla
- Institute of Medical and Polymer Engineering, Technical University of Munich, Garching, D-85748, Germany
| |
Collapse
|
33
|
Reyes-Garcés N, Bojko B, Hein D, Pawliszyn J. Solid phase microextraction devices prepared on plastic support as potential single-use samplers for bioanalytical applications. Anal Chem 2015; 87:9722-30. [PMID: 26340252 DOI: 10.1021/acs.analchem.5b01849] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study presents new thin-film solid phase microextraction (SPME) devices prepared on plastic as potential single-use samplers for bioanalysis. Polybutylene terephthalate (PBT) was selected as a support due to its well-known chemical resistance, low cost, and suitability as a material for different medical grade components. The herein proposed samplers were prepared by applying a hydrophilic-lipophilic balanced (HLB)-polyacrylonitrile (PAN) coating on rounded and flat PBT pieces previously sanded with regular sandpaper. SPME devices prepared on PBT were evaluated in terms of robustness, chemical stability, and possible interferences upon exposure to different solvents and matrixes. Rewarding results were found when these samplers were employed for the quantitative analysis of multiple doping substances in common biological matrixes such as urine, plasma, and whole blood. Finally, the proposed thin-film SPME devices made on a PBT were evaluated by conducting multiple extractions from whole blood and plasma using the Concept 96 system. Results showed that more than 20 extractions from plasma and whole blood can be performed without observed decreases in coating performance or peeling of the extraction phase from the plastic surface. These findings demonstrate the robustness of PAN-based coatings applied on such polymeric substrate and open up the possibility of introducing new alternatives and cost-effective materials as support to manufacture SPME biocompatible devices for a wide range of applications, particularly in the clinical field.
Collapse
Affiliation(s)
- Nathaly Reyes-Garcés
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Barbara Bojko
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Dietmar Hein
- Professional Analytical System (PAS) Technology , Richard-Wagner St. 10, 99441, Magdala, Germany
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
34
|
Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity. Biomaterials 2015; 56:198-205. [DOI: 10.1016/j.biomaterials.2015.03.056] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/28/2015] [Accepted: 03/29/2015] [Indexed: 11/18/2022]
|
35
|
Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Bio-responsive polymer hydrogels homeostatically regulate blood coagulation. Nat Commun 2014; 4:2168. [PMID: 23868446 PMCID: PMC3759053 DOI: 10.1038/ncomms3168] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/19/2013] [Indexed: 01/19/2023] Open
Abstract
Bio-responsive polymer architectures can empower medical therapies by engaging molecular feedback-response mechanisms resembling the homeostatic adaptation of living tissues to varying environmental constraints. Here we show that a blood coagulation-responsive hydrogel system can deliver heparin in amounts triggered by the environmental levels of thrombin, the key enzyme of the coagulation cascade, which—in turn—becomes inactivated due to released heparin. The bio-responsive hydrogel quantitatively quenches blood coagulation over several hours in the presence of pro-coagulant stimuli and during repeated incubation with fresh, non-anticoagulated blood. These features enable the introduced material to provide sustainable, autoregulated anticoagulation, addressing a key challenge of many medical therapies. Beyond that, the explored concept may facilitate the development of materials that allow the effective and controlled application of drugs and biomolecules. Implementing biomolecular recognition mechanisms in synthetic materials may enable a wealth of biomedical and related applications. Here Maitz et al. present a bio-responsive hydrogel that releases the anticoagulant heparin in amounts proportional to the environmental levels of the procoagulatory protein thrombin.
Collapse
|
37
|
Seib FP, Herklotz M, Burke KA, Maitz MF, Werner C, Kaplan DL. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications. Biomaterials 2013; 35:83-91. [PMID: 24099708 DOI: 10.1016/j.biomaterials.2013.09.053] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/16/2013] [Indexed: 12/16/2022]
Abstract
Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications.
Collapse
Affiliation(s)
- F Philipp Seib
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| | | | | | | | | | | |
Collapse
|
38
|
Schulze A, Maitz MF, Zimmermann R, Marquardt B, Fischer M, Werner C, Went M, Thomas I. Permanent surface modification by electron-beam-induced grafting of hydrophilic polymers to PVDF membranes. RSC Adv 2013. [DOI: 10.1039/c3ra43659d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
The effect of octadecyl chain immobilization on the hemocompatibility of poly (2-hydroxyethyl methacrylate). Biomaterials 2012; 33:7677-85. [DOI: 10.1016/j.biomaterials.2012.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022]
|
40
|
Lackner JM, Waldhauser W, Hartmann P, Bruckert F, Weidenhaupt M, Major R, Sanak M, Wiesinger M, Heim D. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers. J Funct Biomater 2012; 3:283-97. [PMID: 24955532 PMCID: PMC4047937 DOI: 10.3390/jfb3020283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 01/22/2023] Open
Abstract
Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.
Collapse
Affiliation(s)
- Juergen M Lackner
- Joanneum Research Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Straße 94, Niklasdorf A-8712, Austria.
| | - Wolfgang Waldhauser
- Joanneum Research Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Straße 94, Niklasdorf A-8712, Austria.
| | - Paul Hartmann
- Joanneum Research Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Straße 94, Niklasdorf A-8712, Austria.
| | - Franz Bruckert
- Grenoble Institute of Technology, Parvis Louis Néel, 38000 Grenoble Cedex 9, France.
| | - Marianne Weidenhaupt
- Grenoble Institute of Technology, Parvis Louis Néel, 38000 Grenoble Cedex 9, France.
| | - Roman Major
- Institute of Metallurgy and Materials Sciences, Polish Academy of Sciences, Reymonta 25, Krakow 30-059, Poland.
| | - Marek Sanak
- Department of Medicine, Jagiellonian University Medical College, Kopernika 23, Kraków 31-501, Poland.
| | - Martin Wiesinger
- Faculty of Technical and Environmental Sciences, University of Applied Sciences Upper Austria, Franz-Fritsch-Straße 11, Wels 4600, Austria.
| | - Daniel Heim
- Faculty of Technical and Environmental Sciences, University of Applied Sciences Upper Austria, Franz-Fritsch-Straße 11, Wels 4600, Austria.
| |
Collapse
|
41
|
Doliška A, Strnad S, Stana J, Martinelli E, Ribitsch V, Stana-Kleinschek K. In Vitro Haemocompatibility Evaluation of PET Surfaces Using the Quartz Crystal Microbalance Technique. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:697-714. [DOI: 10.1163/092050611x559232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Aleš Doliška
- a Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; Center of Excellence for Polymer Materials and Technologies, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| | - Simona Strnad
- b Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Jan Stana
- c Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Volker Ribitsch
- e Institute for Chemistry, University of Graz, Graz, Austria
| | - Karin Stana-Kleinschek
- f Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; Center of Excellence for Polymer Materials and Technologies, Tehnološki park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Doliška A, Ribitsch V, Stana Kleinschek K, Strnad S. Viscoelastic properties of fibrinogen adsorbed onto poly(ethylene terephthalate) surfaces by QCM-D. Carbohydr Polym 2012; 93:246-55. [PMID: 23465926 DOI: 10.1016/j.carbpol.2012.02.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
Abstract
In presented study a new approach using QCM-D for biocompatibility determination was introduced. The adsorption of fibrinogen on PET and modified PET surfaces was monitored in situ using QCM-D. Protein layer thicknesses were estimated on the basis of a Voight based viscoelastic model. The hydrophilicities and morphologies of the surfaces were investigated using a goniometer and AFM. The results showed that PET surfaces coated with sulphated polysaccharides are more hydrophilic and more fibrinogen-repulsive than non-modified PET surfaces. QCM-D equipped with QTools modelling software is well-applicable to the characterisation of surface properties and can be optimised for biocompatibility determination.
Collapse
Affiliation(s)
- Aleš Doliška
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia.
| | | | | | | |
Collapse
|
43
|
Seib FP, Maitz MF, Hu X, Werner C, Kaplan DL. Impact of processing parameters on the haemocompatibility of Bombyx mori silk films. Biomaterials 2011; 33:1017-23. [PMID: 22079005 DOI: 10.1016/j.biomaterials.2011.10.063] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/22/2011] [Indexed: 01/04/2023]
Abstract
Silk has traditionally been used for surgical sutures due to its lasting strength and durability; however, the use of purified silk proteins as a scaffold material for vascular tissue engineering goes beyond traditional use and requires application-orientated biocompatibility testing. For this study, a library of Bombyx mori silk films was generated and exposed to various solvents and treatment conditions to reflect current silk processing techniques. The films, along with clinically relevant reference materials, were exposed to human whole blood to determine silk blood compatibility. All substrates showed an initial inflammatory response comparable to polylactide-co-glycolide (PLGA), and a low to moderate haemostasis response similar to polytetrafluoroethylene (PTFE) substrates. In particular, samples that were water annealed at 25 °C for 6 h demonstrated the best blood compatibility based on haemostasis parameters (e.g. platelet decay, thrombin-antithrombin complex, platelet factor 4, granulocytes-platelet conjugates) and inflammatory parameters (e.g. C3b, C5a, CD11b, surface-associated leukocytes). Multiple factors such as treatment temperature and solvent influenced the biological response, though no single physical parameter such as β-sheet content, isoelectric point or contact angle accurately predicted blood compatibility. These findings, when combined with prior in vivo data on silk, support a viable future for silk-based vascular grafts.
Collapse
Affiliation(s)
- F Philipp Seib
- Tufts University, Department of Biomedical Engineering, MA 02155, USA
| | | | | | | | | |
Collapse
|
44
|
Weaver JD, Ku DN. Biomaterial testing for covered stent membranes: Evaluating thrombosis and restenosis potential. J Biomed Mater Res B Appl Biomater 2011; 100:103-10. [DOI: 10.1002/jbm.b.31927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/16/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
|
45
|
Stroncek JD, Xue Y, Haque N, Lawson JH, Reichert WM. In vitro functional testing of endothelial progenitor cells that overexpress thrombomodulin. Tissue Eng Part A 2011; 17:2091-100. [PMID: 21466416 DOI: 10.1089/ten.tea.2010.0631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated the augmentation of endothelial progenitor cell (EPC) thromboresistance by using gene therapy to overexpress thrombomodulin (TM), an endothelial cell membrane glycoprotein that has potent anti-coagulant properties. Late outgrowth EPCs were isolated from peripheral blood of patients with documented coronary artery disease and transfected with an adenoviral vector containing human TM. EPC transfection conditions for maximizing TM expression, transfection efficiency, and cell viability were employed. TM-overexpressing EPCs had a fivefold increase in the rate of activated protein C production over native EPCs and EPCs transfected with an adenoviral control vector expressing β-galactosidase (p<0.05). TM upregulation caused a significant threefold reduction in platelet adhesion compared to native EPCs, and a 12-fold reduction compared to collagen I-coated wells. Additionally, the clotting time of TM-transfected EPCs incubated with whole blood was significantly extended by 19% over native cells (p<0.05). These data indicate that TM-overexpression has the potential to improve the antithrombotic performance of patient-derived EPCs for endothelialization applications.
Collapse
Affiliation(s)
- John D Stroncek
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | | | | | | | | |
Collapse
|
46
|
Muthusubramaniam L, Lowe R, Fissell WH, Li L, Marchant RE, Desai TA, Roy S. Hemocompatibility of silicon-based substrates for biomedical implant applications. Ann Biomed Eng 2011; 39:1296-305. [PMID: 21287275 PMCID: PMC3069312 DOI: 10.1007/s10439-011-0256-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/18/2011] [Indexed: 11/24/2022]
Abstract
Silicon membranes with highly uniform nanopore sizes fabricated using microelectromechanical systems (MEMS) technology allow for the development of miniaturized implants such as those needed for renal replacement therapies. However, the blood compatibility of silicon has thus far been an unresolved issue in the use of these substrates in implantable biomedical devices. We report the results of hemocompatibility studies using bare silicon, polysilicon, and modified silicon substrates. The surface modifications tested have been shown to reduce protein and/or platelet adhesion, thus potentially improving biocompatibility of silicon. Hemocompatibility was evaluated under four categories—coagulation (thrombin–antithrombin complex, TAT generation), complement activation (complement protein, C3a production), platelet activation (P-selectin, CD62P expression), and platelet adhesion. Our tests revealed that all silicon substrates display low coagulation and complement activation, comparable to that of Teflon and stainless steel, two materials commonly used in medical implants, and significantly lower than that of diethylaminoethyl (DEAE) cellulose, a polymer used in dialysis membranes. Unmodified silicon and polysilicon showed significant platelet attachment; however, the surface modifications on silicon reduced platelet adhesion and activation to levels comparable to that on Teflon. These results suggest that surface-modified silicon substrates are viable for the development of miniaturized renal replacement systems.
Collapse
Affiliation(s)
- Lalitha Muthusubramaniam
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco–University of California, Berkeley, San Francisco, CA USA
| | - Rachel Lowe
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
| | - William H. Fissell
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH USA
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH USA
| | - Lingyan Li
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH USA
| | - Roger E. Marchant
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco–University of California, Berkeley, San Francisco, CA USA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco–University of California, Berkeley, San Francisco, CA USA
| |
Collapse
|
47
|
Maitz MF, Sperling C, Werner C. Immobilization of the irreversible thrombin inhibitor D-Phe-Pro-Arg-chloromethylketone: a concept for hemocompatible surfaces? J Biomed Mater Res A 2010; 94:905-12. [PMID: 20730927 DOI: 10.1002/jbm.a.32780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The irreversible thrombin inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK) was covalently immobilized to PEGylated polymer thin films at its primary alpha-amino group. Activity assays and capture of radioconjugated thrombin reveal that the PPACK-decorated surfaces could bind thrombin forming up to 30% of a monolayer density. Back-calculation of this high thrombin-inhibiting capacity indicated that the surface immobilization of the inhibitor was still associated with more than two orders of magnitude of loss of activity; increasing activity was observed at higher surface densities. PPACK-containing polymer films almost duplicated the plasma coagulation time when compared with the reference substrate without inhibitor. In whole blood, however, the anticoagulant properties were below those previously found for benzamidine-type reversible thrombin inhibitors; in addition, the surface exhibited inflammatory properties. It is concluded that immobilized reversible thrombin inhibitors are more effective by passivating higher amounts of thrombin in a cooperative action with antithrombin III.
Collapse
Affiliation(s)
- Manfred F Maitz
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
| | | | | |
Collapse
|
48
|
Fischer M, Sperling C, Werner C. Synergistic effect of hydrophobic and anionic surface groups triggers blood coagulation in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:931-937. [PMID: 19851837 DOI: 10.1007/s10856-009-3912-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/09/2009] [Indexed: 05/28/2023]
Abstract
Biomaterial induced coagulation encompasses plasmatic and cellular processes. The functional loss of biomedical devices possibly resulting from these thrombotic reactions motivates the need for a better understanding of processes occurring at blood-biomaterial interfaces. Well defined model surfaces providing specific chemical-physical properties (self assembled monolayers (SAMs)) displaying hydrophobic or/and acidic terminal groups were used to uncover initial mechanisms of biomaterial induced coagulation. We investigated the influence of electrical charge and wettability on platelet- and contact activation, the two main actors of blood coagulation, which are often considered as separate mechanisms in biomaterials research. Our results show a dependence of contact activation on acidic surface groups and a correlation of platelet adhesion to surface hydrophobicity. Clot formation resulting from the interplay of blood platelets and contact activation was only found on surfaces combining both acidic and hydrophobic surface groups but not on monolayers displaying extreme hydrophobic/acidic properties.
Collapse
Affiliation(s)
- Marion Fischer
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
| | | | | |
Collapse
|
49
|
Fischer M, Sperling C, Tengvall P, Werner C. The ability of surface characteristics of materials to trigger leukocyte tissue factor expression. Biomaterials 2010; 31:2498-507. [DOI: 10.1016/j.biomaterials.2009.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 12/03/2009] [Indexed: 11/17/2022]
|
50
|
Maitz MF, Teichmann J, Sperling C, Werner C. Surface endotoxin contamination and hemocompatibility evaluation of materials. J Biomed Mater Res B Appl Biomater 2009; 90:18-25. [PMID: 18973273 DOI: 10.1002/jbm.b.31247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To evaluate the blood compatibility of new materials, a clear distinction between properties of the materials and effects due to surface contamination by adsorbed endotoxins is essential. This study compares direct contact approaches and elution methods with water, organic solvents, nonionic, and zwitterionic detergents for determination of surface-adsorbed endotoxin by the limulus amoebocyte lysate (LAL) test and determines the blood compatibility of various surfaces with controlled endotoxin contamination in vitro. The LAL test in direct contact with an endotoxin-contaminated surface was concluded to be not practicable for most devices and its sensitivity showed a high dependence on surface characteristics. Among the elution methods, 0.2% Tween-20 showed most stable elution characteristics and appears therefore preferable. Biological reactions at in vitro blood exposure were found to be only minimally influenced by adsorbed endotoxin during the time window of 2 h, allowing for a straightforward discrimination between materials and endotoxin-dependent reactions.
Collapse
Affiliation(s)
- Manfred F Maitz
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
| | | | | | | |
Collapse
|