1
|
Zhai W, Bai L, Zhou R, Fan X, Kang G, Liu Y, Zhou K. Recent Progress on Wear-Resistant Materials: Designs, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003739. [PMID: 34105292 PMCID: PMC8188226 DOI: 10.1002/advs.202003739] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/01/2021] [Indexed: 05/26/2023]
Abstract
There has been tremendous interest in the development of different innovative wear-resistant materials, which can help to reduce energy losses resulted from friction and wear by ≈40% over the next 10-15 years. This paper provides a comprehensive review of the recent progress on designs, properties, and applications of wear-resistant materials, starting with an introduction of various advanced technologies for the fabrication of wear-resistant materials and anti-wear structures with their wear mechanisms. Typical strategies of surface engineering and matrix strengthening for the development of wear-resistant materials are then analyzed, focusing on the development of coatings, surface texturing, surface hardening, architecture, and the exploration of matrix compositions, microstructures, and reinforcements. Afterward, the relationship between the wear resistance of a material and its intrinsic properties including hardness, stiffness, strength, and cyclic plasticity is discussed with underlying mechanisms, such as the lattice distortion effect, bonding strength effect, grain size effect, precipitation effect, grain boundary effect, dislocation or twinning effect. A wide range of fundamental applications, specifically in aerospace components, automobile parts, wind turbines, micro-/nano-electromechanical systems, atomic force microscopes, and biomedical devices are highlighted. This review is concluded with prospects on challenges and future directions in this critical field.
Collapse
Affiliation(s)
- Wenzheng Zhai
- State Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and Technology1037 Luoyu RoadWuhan430074P. R. China
| | - Lichun Bai
- Key Laboratory of Traffic Safety on TrackMinistry of EducationSchool of Traffic and Transportation EngineeringCentral South University22 South Shaoshan RoadChangsha410075P. R. China
| | - Runhua Zhou
- State Key Laboratory of Powder MetallurgyCentral South University932 Yuelushan South RoadChangsha410083P. R. China
| | - Xueling Fan
- State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of Aerospace EngineeringXi'an Jiaotong University28 Xianning WestXi'an710049P. R. China
| | - Guozheng Kang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan ProvinceSchool of Mechanics and EngineeringSouthwest Jiaotong University111 Second Ring RoadChengdu610031P. R. China
| | - Yong Liu
- State Key Laboratory of Powder MetallurgyCentral South University932 Yuelushan South RoadChangsha410083P. R. China
| | - Kun Zhou
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Environmental Process Modelling CentreNanyang Environment and Water Research InstituteNanyang Technological University1 CleanTech LoopSingapore637141Singapore
| |
Collapse
|
2
|
Li L, Liu LL, Li X, Guo P, Ke P, Wang A. Enhanced Tribocorrosion Performance of Cr/GLC Multilayered Films for Marine Protective Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13187-13198. [PMID: 29601725 DOI: 10.1021/acsami.8b00628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The corrosion and tribology are all closely related to the interface/surface of materials, which are extremely important for the mechanical components used in harsh marine environments. In this work, we fabricated Cr/graphite-like carbon (GLC) multilayered films with different modulation periods on the 316L stainless steels by direct current magnetron sputtering. Tribocorrosion tests in artificial seawater show that the tribocorrosion resistance of the Cr/GLC films is improved as the modulation period decreases from 1000 to 333 nm and then drastically drops with further decreasing to 250 nm. By taking a top-layer thickening strategy for the Cr/GLC film with 250 nm modulation period, the tribocorrosion performance is significantly enhanced. The corresponded mechanisms are discussed in terms of the film structure and electrochemical corrosion behavior.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lin-Lin Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
| | - Xiaowei Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
| | - Peng Guo
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
| | - Peiling Ke
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
| | - Aiying Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
| |
Collapse
|
3
|
Improved wear resistance of functional diamond like carbon coated Ti–6Al–4V alloys in an edge loading conditions. J Mech Behav Biomed Mater 2016; 59:586-595. [DOI: 10.1016/j.jmbbm.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
|
4
|
Abstract
This chapter examines the importance of surface characteristics such as microstructure, composition, crystallographic texture, and surface free energy in achieving desired biocompatibility and tribological properties thereby improving in vivo life of artificial articulating implants. Current implants often fail prematurely due to inadequate mechanical, tribological, biocompatibility, and osseointegration properties, apart from issues related to design and surgical procedures. For long-term in vivo stability, artificial implants intended for articulating joint replacement must exhibit long-term stable articulation surface without stimulating undesirable in vivo effects. Since the implant's surface plays a vital and decisive role in their response to biological environment, and vice versa, surface modification of implants assumes a significant importance. Therefore, overview on important surface modification techniques, their capabilities, properties of modified surfaces/implants are presented in the chapter. The clinical performance of surface modified implants and new surfaces for potential next-generation articulating implant applications are discussed at the end.
Collapse
Affiliation(s)
| | - Mitun Das
- CSIR-Central Glass and Ceramic Research Institute, India
| | - Someswar Datta
- CSIR-Central Glass and Ceramic Research Institute, India
| | | |
Collapse
|
5
|
On interlayer stability and high-cycle simulator performance of diamond-like carbon layers for articulating joint replacements. Int J Mol Sci 2014; 15:10527-40. [PMID: 24921709 PMCID: PMC4100166 DOI: 10.3390/ijms150610527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 04/29/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022] Open
Abstract
Diamond like carbon (DLC) coatings have been proven to be an excellent choice for wear reduction in many technical applications. However, for successful adaption to the orthopaedic field, layer performance, stability and adhesion in physiologically relevant setups are crucial and not consistently investigated. In vitro wear testing as well as adequate corrosion tests of interfaces and interlayers are of great importance to verify the long term stability of DLC coated load bearing implants in the human body. DLC coatings were deposited on articulating lumbar spinal disks made of CoCr28Mo6 biomedical implant alloy using a plasma-activated chemical vapor deposition (PACVD) process. As an adhesion promoting interlayer, tantalum films were deposited by magnetron sputtering. Wear tests of coated and uncoated implants were performed in physiological solution up to a maximum of 101 million articulation cycles with an amplitude of ±2° and −3/+6° in successive intervals at a preload of 1200 N. The implants were characterized by gravimetry, inductively coupled plasma optical emission spectrometry (ICP-OES) and cross section scanning electron microscopy (SEM) analysis. It is shown that DLC coated surfaces with uncontaminated tantalum interlayers perform very well and no corrosive or mechanical failure could be observed. This also holds true in tests featuring overload and third-body wear by cortical bone chips present in the bearing pairs. Regarding the interlayer tolerance towards interlayer contamination (oxygen), limits for initiation of potential failure modes were established. It was found that mechanical failure is the most critical aspect and this mode is hypothetically linked to the α-β tantalum phase switch induced by increasing oxygen levels as observed by X-ray diffraction (XRD). It is concluded that DLC coatings are a feasible candidate for near zero wear articulations on implants, potentially even surpassing the performance of ceramic vs. ceramic.
Collapse
|
6
|
Chang YY, Huang HL, Chen YC, Hsu JT, Shieh TM, Tsai MT. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films. PLoS One 2014; 9:e95590. [PMID: 24760085 PMCID: PMC3997409 DOI: 10.1371/journal.pone.0095590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/28/2014] [Indexed: 02/06/2023] Open
Abstract
Tantalum (Ta) is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC) and TaC/amorphous carbon (a-C) coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C), was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics.
Collapse
Affiliation(s)
- Yin-Yu Chang
- Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin, Taiwan
| | - Heng-Li Huang
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Ya-Chi Chen
- Department of Materials Science and Engineering, Mingdao University, Changhua, Taiwan
| | - Jui-Ting Hsu
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan
| | - Ming-Tzu Tsai
- Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
7
|
What's next? Alternative materials for articulation in total joint replacement. Acta Biomater 2012; 8:2434-41. [PMID: 22446959 DOI: 10.1016/j.actbio.2012.03.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/13/2012] [Accepted: 03/18/2012] [Indexed: 11/21/2022]
Abstract
The use of an artificial joint is always related to a certain amount of wear. Its biological effects, e.g., the osteolysis potential, are a function of the bulk material as well as its debris. Following comprehensive experiences with polyethylene (PE) wear, material science is tracking two ways to minimize the risk of a particle-induced aseptic implant loosening: (i) reduction of the PE debris by a low-wearing articulation partner; and (ii) replacement of the PE by other materials. Therefore, new ceramics (e.g., ZTA, Si(3)N(4)), as well as coatings (e.g., TiN, "diamond-like" carbon) and modifications of a bulk metal (e.g., oxidizes zirconium) or cushion bearings (polyurethane, hydrogels), are currently available for total joint replacements or have been used for pre-clinical testing. This review gives a brief overview and evaluates the potential of those that have recently been published in literature.
Collapse
|
8
|
Abstract
This review paper presents a fail-safe approach in designing biomaterials against wear for application in an artificial total hip replacement in view of the recent advances in orthopedic bioengineering materials. It has been established that substantially different alloys should be used for minimizing wear in bearing surfaces. Frictional forces at these rubbing counter-faces must be minimized to prevent loosening of the femoral stem and acetabular socket assembly from their positions secured by the fixation agent. A comparative analysis of various wear-resistant biomaterials resulted in the lowest production of wear particles in a total hip where a ceramic socket articulates against the ceramic ball: it produces only 0.004 cubic millimeters of ceramic wear particles. Surface modification, through the application of coatings, offers the potential to reduce the wear rate without compromising the bulk mechanical behavior of the implant material. These hard coatings were found to include diamond-like carbon, amorphous diamond, and titanium nitride.
Collapse
|
9
|
Alakoski E, Tiainen VM, Soininen A, Konttinen YT. Load-bearing biomedical applications of diamond-like carbon coatings - current status. Open Orthop J 2008; 2:43-50. [PMID: 19478929 PMCID: PMC2687109 DOI: 10.2174/1874325000802010043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 02/19/2008] [Accepted: 03/10/2008] [Indexed: 11/22/2022] Open
Abstract
The current status of diamond-like carbon (DLC) coatings for biomedical applications is reviewed with emphasis on load-bearing coatings. Although diamond-like carbon coating materials have been studied for decades, no indisputably successful commercial biomedical applications for high load situations exist today. High internal stress, leading to insufficient adhesion of thick coatings, is the evident reason behind this delay of the break-through of DLC coatings for applications. Excellent adhesion of thick DLC coatings is of utmost importance for load-bearing applications. According to this review superior candidate material for articulating implants is thick and adherent DLC on both sliding surfaces. With the filtered pulsed arc discharge method, all the necessary requirements for the deposition of thick and adherent DLC are fulfilled, provided that the substrate material is selected properly.
Collapse
Affiliation(s)
- Esa Alakoski
- ORTON Research Institute, Tenholantie 10, FIN-00280, Helsinki, Finland
| | | | | | | |
Collapse
|
10
|
Das T, Ghosh D, Bhattacharyya TK, Maiti TK. Biocompatibility of diamond-like nanocomposite thin films. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:493-500. [PMID: 17334700 DOI: 10.1007/s10856-007-2009-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Accepted: 10/24/2005] [Indexed: 05/14/2023]
Abstract
Diamond-like nanocomposite (DLN) films consist of network structure of amorphous carbon and quartz like silicon. In the present work, DLN films have been synthesized on pyrex glass and subsequently, their biocompatibility have been investigated through primary and secondary cell adhesion, cytotoxicity, protein adsorption and murine peritoneal macrophage activation experiments. Variable degree of cell and protein response have been found based on variable film synthesis parameters but in overall, required biocompatibility has been established for all types of film-coating.
Collapse
Affiliation(s)
- T Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | | | | | | |
Collapse
|
11
|
Adams JE, Zobitz ME, Reach JS, An KN, Lewallen DG, Steinmann SP. Canine carpal joint fusion: a model for four-corner arthrodesis using a porous tantalum implant. J Hand Surg Am 2005; 30:1128-35. [PMID: 16344167 DOI: 10.1016/j.jhsa.2005.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 02/02/2023]
Abstract
PURPOSE Interest has focused on porous materials that promote bony ingrowth. In this study a porous tantalum implant was used as an adjunct to intercarpal stabilization in a canine model of wrist arthrodesis. METHODS A defect was created at the junction of the radiocarpal, ulnocarpal, and fourth carpal bones, analogous to a four-corner fusion site in humans. A tantalum cylinder was press-fit and stabilized with K-wires. Controls were represented by creating the defect without implant placement. Animals were killed at 4, 8, and 12 weeks. RESULTS Histology showed bony ingrowth as early as 4 weeks and mechanical testing showed a statistically significant increase in strength of the construct over time. Controls failed to achieve union at any time point. CONCLUSIONS The implant served as an adjunct to stabilization of the carpus in this model of four-corner fusion, suggesting a novel application of this material in conditions in which bone graft has been required previously. This study represents a preliminary investigation of the use of a tantalum device for intercarpal stabilization; it does not compare this technique with conventional methods.
Collapse
Affiliation(s)
- Julie E Adams
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|