1
|
Saadi SB, Ranjbarzadeh R, Ozeir kazemi, Amirabadi A, Ghoushchi SJ, Kazemi O, Azadikhah S, Bendechache M. Osteolysis: A Literature Review of Basic Science and Potential Computer-Based Image Processing Detection Methods. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:4196241. [PMID: 34646317 PMCID: PMC8505126 DOI: 10.1155/2021/4196241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Osteolysis is one of the most prominent reasons of revision surgeries in total joint arthroplasty. This biological phenomenon is induced by wear particles and corrosion products that stimulate inflammatory biological response of surrounding tissues. The eventual responses of osteolysis are the activation of macrophages leading to bone resorption and prosthesis failure. Various factors are involved in the initiation of osteolysis from biological issues, design, material specifications, and model of the prosthesis to the health condition of the patient. Nevertheless, the factors leading to osteolysis are sometimes preventable. Changes in implant design and polyethylene manufacturing are striving to improve overall wear. Osteolysis is clinically asymptomatic and can be diagnosed and analyzed during follow-up sessions through various imaging modalities and methods, such as serial radiographic, CT scan, MRI, and image processing-based methods, especially with the use of artificial neural network algorithms. Deep learning algorithms with a variety of neural network structures such as CNN, U-Net, and Seg-UNet have proved to be efficient algorithms for medical image processing specifically in the field of orthopedics for the detection and segmentation of tumors. These deep learning algorithms can effectively detect and analyze osteolytic lesions well in advance during follow-up sessions in order to administer proper treatments before reaching a critical point. Osteolysis can be treated surgically or nonsurgically with medications. However, revision surgeries are the only solution for the progressive osteolysis. In this literature review, the underlying causes, mechanisms, and treatments of osteolysis are discussed with the main focus on the possible computer-based methods and algorithms that can be effectively employed for the detection of osteolysis.
Collapse
Affiliation(s)
- Soroush Baseri Saadi
- Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Ramin Ranjbarzadeh
- Department of Telecommunications Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Ozeir kazemi
- PPD - Global Pharmaceutical Contract Research Organization, Central Lab, Zaventem, Belgium
| | - Amir Amirabadi
- Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | | | | | - Sonya Azadikhah
- R.E.D. Laboratories N.V./S.A., Z.1 Researchpark, Zellik, Belgium
| | - Malika Bendechache
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Dublin, Ireland
| |
Collapse
|
2
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
3
|
Bone temperature during cementation with a heatsink: a bovine model pilot study. BMC Res Notes 2014; 7:494. [PMID: 25099248 PMCID: PMC4126909 DOI: 10.1186/1756-0500-7-494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
Background Bone cement is an effective means of supporting implants, but reaches high temperatures while undergoing polymerisation. Bone has been shown to be sensitive to thermal injury with osteonecrosis reported after one minute at 47°C. Necrosis during cementing may lead to loosening of the prosthesis. Some surgeons fill the joint cavity with cool irrigation fluid to provide a heatsink during cementing, but this has not been supported by research. This paper assesses a simple technique to investigate the efficacy of this method. Findings We used a model acetabulum in a bovine humerus to allow measurement of bone temperatures in cementing. Models were prepared with a 50 mm diameter acetabulum and three temperature probe holes; two as close as possible to the acetabular margin at half the depth of the acetabulum and at the full depth of the acetabulum, and one 10 mm from the acetabular rim. Four warmed models were cemented with Palacos RG using a standard mixing system and a 10 mm polyethylene disc to represent an acetabular component. Two of the acetabular models were filled with room temperature water to provide a heatsink. An electronic probe measured temperature at 5 second intervals from the moment of cementing. In the models with no heatsink, peak temperature was 40.3°C. The mean temperature rise was 10.9°C. In the models with a heatsink, there was an average fall in the bone temperature during cementing of 4.4°C. Conclusions These results suggest that using a heatsink while cementing prostheses may reduce the peak bone temperature. This study demonstrates a simple, repeatable technique which may be useful for larger trials.
Collapse
|
4
|
Utzschneider S, Lorber V, Dedic M, Paulus AC, Schröder C, Gottschalk O, Schmitt-Sody M, Jansson V. Biological activity and migration of wear particles in the knee joint: an in vivo comparison of six different polyethylene materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1599-1612. [PMID: 24562818 DOI: 10.1007/s10856-014-5176-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
Wear of polyethylene causes loosening of joint prostheses because of the particle mediated activity of the host tissue. It was hypothesized that conventional and crosslinked polyethylene particles lead to similar biological effects around the knee joint in vivo as well as to a similar particle distribution in the surrounding tissues. To verify these hypotheses, particle suspensions of six different polyethylene materials were injected into knee joints of Balb/C mice and intravital microscopic, histological and immunohistochemical evaluations were done after 1 week. Whereas the biological effects on the synovial layer and the subchondral bone of femur and tibia were similar for all the polyethylenes, two crosslinked materials showed an elevated cytokine expression in the articular cartilage. Furthermore, the distribution of particles around the joint was dependent on the injected polyethylene material. Those crosslinked particles, which remained mainly in the joint space, showed an increased expression of TNF-alpha in articular cartilage. The data of this study support the use of crosslinked polyethylene in total knee arthroplasty. In contrast, the presence of certain crosslinked wear particles in the joint space can lead to an elevated inflammatory reaction in the remaining cartilage, which challenges the potential use of those crosslinked polyethylenes for unicondylar knee prostheses.
Collapse
Affiliation(s)
- S Utzschneider
- Department of Orthopedic Surgery, University Hospital of Munich (LMU), Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Sanz-Ruiz P, Paz E, Abenojar J, Carlos del Real J, Vaquero J, Forriol F. Effects of vancomycin, cefazolin and test conditions on the wear behavior of bone cement. J Arthroplasty 2014; 29:16-22. [PMID: 23702270 DOI: 10.1016/j.arth.2013.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 02/01/2023] Open
Abstract
Antibiotic cement has been recommended in the treatment of prosthetic infections. The purpose of this study was to investigate the mechanical behavioral changes in cement loaded with two antibiotics, vancomycin and cefazolin, in dry and liquid medium. Six groups and four study conditions were established according to the doses of antibiotic used and the ageing (immersion in phosphate buffered saline) of the samples. Properties evaluated were friction coefficient and wear. Samples in dry medium showed higher wears than in liquid. Antibiotic selection did not influence wear properties tested in dry conditions, however, in liquid medium, there were higher frictional coefficients and wear for cefazolin loaded cement after one week and for vancomycin and cefazolin after one month. The results suggest that antibiotic cements behave differently in liquid and that the molecular characteristics of antibiotics are essential for determining this influence.
Collapse
Affiliation(s)
- Pablo Sanz-Ruiz
- Department of Traumatology and Orthopaedic Surgery, General University Hospital Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Yadav J, Samelko L, Gilvar P, McAllister K, Hallab NJ. Osteoclasts lose innate inflammatory reactivity to metal and polymer implant debris compared to monocytes/macrophages. Open Orthop J 2013; 7:605-13. [PMID: 24198853 PMCID: PMC3812786 DOI: 10.2174/1874325001307010605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022] Open
Abstract
Long-term aseptic failures of joint replacements are generally attributed to implant debris-induced inflammation and osteolysis. This response is largely mediated by immune and bone cells (monocytes/macrophages and osteoclasts, respectively), that in the presence of implant debris (e.g. metal particles and ions), release pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6. The relative degree to which implant debris can illicit inflammatory response(s) from osteoclasts vs monocytes/macrophages is unknown, i.e. are osteoclasts a viable target for anti-inflammatory therapy for implant debris? We investigated relative monocyte versus osteoclast inflammatory responses in a side-by-side comparison using implant debris from the perspective of both danger signaling (IL-1β) and pathogenic recognition (TNF-α) reactivity (Challenge Agents: Cobalt-alloy, Titanium-alloy, and PMMA particles, 0.9-1.8um-dia ECD and Cobalt, and Nickel-ions 0.01-0.1mM, all with and without LPS priming). Human monocytes/macrophages reacted to implant debris with >100 fold greater production of cytokines compared to osteoclast-like cells. Particulate Co-alloy challenge induced >1000 pg/ml of IL-1β and TNF-α, in monocytes and <50pg/mL IL-1β and TNF-α in osteoclasts. Cobalt ions induced >3000pg/mL IL-1β and TNF-α in monocytes/macrophages and <50pg/mL IL-1β and TNF-α in osteoclasts. The paracrine effect of supernatants from debris-treated monocytes/macrophages was capable of inducing greater osteoclastogenesis (TRAP+, p<0.06) and inflammation than direct debris challenge on osteoclasts. Our results indicate that as monocytes/macrophages differentiate into osteoclasts, they largely lose their innate immune reactivity to implant debris and thus may not be as relevant a therapeutic target as monocytes/macrophages for mitigating debris-induced inflammation.
Collapse
Affiliation(s)
- Jessica Yadav
- Department of Bioengineering, University of Illinois in Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
7
|
Superior 11-year survival but higher polyethylene wear of hydroxyapatite-coated Mallory-Head cups. Hip Int 2012; 22:35-40. [PMID: 22383319 DOI: 10.5301/hip.2012.9075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 02/04/2023]
Abstract
Hydroxyapatite (HA) coating of implant surfaces is believed to improve longevity of uncemented total hip arthroplasty (THA). However; it is speculated that HA particles may cause third body wear of the polyethylene (PE) liner with subsequent osteolysis and aseptic loosening of implants. We performed a retrospective comparison of two patient populations with cementless Mallory-Head acetabular components. The patients were identified in the Danish hip arthroplasty Registry (DHR); 77 patients had HA-coated cups and 73 patients had non-HA coated cups. Anteroposterior (AP) radiographs were analysed for PE wear, osteolysis was quantified and survival of the acetabular components was compared. The mean follow-up was 11 years. There were no cup revisions in the HA group and 7 cup revisions in the non-HA group (P<0.01). The reason for revision in all cases was aseptic loosening of both stem and cup. The amount of osteolysis was significantly increased around cups in the non-HA group. The two-dimensional linear PE wear-rate of 0.18 mm/year was higher (P<0.001) in the group with HA coated cups compared with 0.12 mm/year in the group with non-HA coated cups. The mean age was lower (P=0.001) in the HA group (57 years) compared with the non-HA group (63 years). After 11.1 years of follow-up non-HA coated cups had a higher revision rate. Increased PE wear with HA-coated cups did not have a negative influence on the revision rate, but may result in a need for revision surgery over time.
Collapse
|
8
|
Abstract
BACKGROUND Biologic-reactivity to implant-debris is the primary determinant of long-term clinical performance. The following reviews: 1) the physical aspects of spinal-implant debris and 2) the local and systemic biologic responses to implant debris. METHODS Methods included are: 1) gravimetric wear analysis; 2) SEM and LALLS; 3) metal-ion analysis; 4) ELISA, toxicity testing, patch testing; and 5) metal-lymphocyte transformation testing (metal-LTT). RESULTS Wear and corrosion of spine-implants produce particles and ions. Particles (0.01-1000 μm) are generally submicron ( <1 µm). Wear rates of metal-on-polymer and metal-on-metal disc arthroplasties are approximately 2-20 and 1 mm(3)/yr, respectively. Metal-on-metal total disc replacement components have significant increases in circulating metal (less than 10-fold that of controls at 4 ppb-Co and 3 ppb-Cr or ng/mL). Debris reactivity is local and systemic. Local inflammation is caused primarily by ingestion of debris by local macrophages, which produce pro-inflammatory cytokines TNFα, IL-1β, IL-6, and PGE2. Systemic responses associated with implant-debris have been limited to hypersensitivity reactions. Elevated amounts of in the liver, spleen, etc of patients with failed TJA have not been associated with remote toxicological or carcinogenic pathology to date. Implant debris are differentially bioreactive. Greater numbers are pro-inflammatory; the smaller-sized debris are more bioreactive by virtue of their greater numbers (dose) for a given amount of implant mass loss (one 100-μm-diameter particle is equivalent in mass to 1 million 1-μm-diameter particles). Elongated particles are pro-inflammatory (ie, aspect ratio of greater than 3). Metal particles are more proinflammatory than polymers, ceteris paribus. CONCLUSION Spinal arthroplasty designs have been in use for more than 20 years internationally; therefore, concerns about neuropathology, toxicity, and carcinogenicity are mitigated. Debris-induced inflammation still depends on the individual and the type of debris. The consequence of debris-induced inflammation is continued; vigilance by physicians is recommended monitoring of spinal implants using physical exams and testing of metal content and bioreactivity, as is planning for the likelihood of revision in younger individuals.
Collapse
Affiliation(s)
- Nadim James Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
9
|
Wang ML, Massie J, Allen RT, Lee YP, Kim CW. Altered bioreactivity and limited osteoconductivity of calcium sulfate-based bone cements in the osteoporotic rat spine. Spine J 2008; 8:340-50. [PMID: 17983844 DOI: 10.1016/j.spinee.2007.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 03/21/2007] [Accepted: 06/13/2007] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Previous studies documenting the osteoconductive nature of calcium sulfate (CaSO(4))-based biomaterials have been largely limited to animal models exhibiting nonosteoporotic bone biology. In addition to diminished bone mineral density (BMD) and altered bone microarchitecture, the osteoporosis phenotype is associated with a proinflammatory and pro-osteolytic state. Thus, osteoporosis may elicit an amplified bioreactivity to common orthopedic biomaterials, potentially limiting their full osteoconductive capabilities in vivo. PURPOSE The purpose of this study is to test the hypothesis that CaSO(4)-based bone cements exhibit altered bioreactivity and limited osteoconductivity in response to osteoporotic conditions. STUDY DESIGN 1) Microcomputed tomography (micro-CT) radiomorphometry study and 2) histological analysis. METHODS Our laboratory has previously established a preclinical model of osteoporosis using the rodent osteoporotic spine (OS). Caudal vertebral defects were filled with either CaSO(4) or CaSO(4)/CaPO(4) (Hybrid) cement for each group (n=4). Over 8 weeks, cement resorption profiles, BMD, average cortical thickness, average trabecular thickness, average trabecular spacing, and diaphyseal bone volume fraction were assessed via micro-CT radiomorphometry. Histological analysis was performed on vertebrae obtained postsurgery and at Week 8. RESULTS Both materials displayed an accelerated cement resorption profile after implantation into the OS vertebrae. Hybrid cement exhibited slower resorption compared with that of CaSO(4) under both normal female rats (NL) and OS conditions. The cement-mediated bone augmentation observed in the NL spine was altered under OS conditions. CONCLUSIONS This study suggests that cement bioreactivity is heightened and osteoconductivity may be limited in a preclinical model of the OS. The disparity between the two resorption profiles suggests that this accelerated cement resorption is a material-dependent phenomenon. The proinflammatory and pro-osteolytic bone environment associated with the osteoporosis disease state may contribute to the accelerated resorption and altered osteoconductivity exhibited by both materials. Future study of potential biomaterials intended for use within the OS may necessitate further exploration of the relationship between biomaterial performance and osteoporosis bone biology.
Collapse
Affiliation(s)
- Mark L Wang
- Department of Orthopedic Surgery, University of California, 200 West Arbor Drive MC 8894, San Diego, CA 92103, USA
| | | | | | | | | |
Collapse
|