1
|
Liu Y, Tao J, Mo Y, Bao R, Pan C. Ultrasensitive Touch Sensor for Simultaneous Tactile and Slip Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313857. [PMID: 38335503 DOI: 10.1002/adma.202313857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Touch is a general term to describe mechanical stimuli. It is extremely difficult to develop touch sensors that can detect different modes of contact forces due to their low sensitivity and data decoupling. Simultaneously conducting tactile and slip sensing presents significant challenges for the design, structure, and performance of sensors. In this work, a highly sensitive sandwich-structured sensor is achieved by exploiting the porosity and compressive modulus of the sensor's functional layer materials. The sensor shows an ultra-high sensitivity of 1167 kPa-1 and a low-pressure detection limit of 1.34 Pa due to its considerably low compression modulus of 23.8 Pa. Due to this ultra-high sensitivity, coupled with spectral analysis, it allows for dual-mode detection of both tactile and slip sensations simultaneously. This novel fabrication strategy and signal analysis method provides a new direction for the development of tactile/slip sensors.
Collapse
Affiliation(s)
- Yue Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Juan Tao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yepei Mo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Rongrong Bao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, P. R. China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
Mahara A, Kojima K, Yamamoto M, Hirano Y, Yamaoka T. Accelerated tissue regeneration in decellularized vascular grafts with a patterned pore structure. J Mater Chem B 2021; 10:2544-2550. [PMID: 34787632 DOI: 10.1039/d1tb02271g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Decellularized tissue is expected to be utilized as a regenerative scaffold. However, the migration of host cells into the central region of the decellularized tissues is minimal because the tissues are mainly formed with dense collagen and elastin fibers. This results in insufficient tissue regeneration. Herein, it is demonstrated that host cell migration can be accelerated by using decellularized tissue with a patterned pore structure. Patterned pores with inner diameters of 24.5 ± 0.4 μm were fabricated at 100, 250, and 500 μm intervals in the decellularized vascular grafts via laser ablation. The grafts were transplanted into rat subcutaneous tissue for 1, 2, and 4 weeks. All the microporous grafts underwent faster recellularization with macrophages and fibroblast cells than the non-porous control tissue. In the case of non-porous tissue, the cells infiltrated approximately 50% of the area four weeks after transplantation. However, almost the entire area was occupied by the cells after two weeks when the micropores were aligned at a distance of less than 250 μm. These results suggest that host cell infiltration depends on the micropore interval, and a distance shorter than 250 μm can accelerate cell migration into decellularized tissues.
Collapse
Affiliation(s)
- Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe-shin Machi, Suita, Osaka 564-8565, Japan.
| | - Kentaro Kojima
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe-shin Machi, Suita, Osaka 564-8565, Japan. .,Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 565-8680, Japan
| | - Masami Yamamoto
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe-shin Machi, Suita, Osaka 564-8565, Japan. .,Faculty of Medical Engineering, Suzuka University of Medical Science, Suzuka, Mie 510-0293, Japan
| | - Yoshiaki Hirano
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 565-8680, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe-shin Machi, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
3
|
Kuźmińska A, Kwarta D, Ciach T, Butruk-Raszeja BA. Cylindrical Polyurethane Scaffold Fabricated Using the Phase Inversion Method: Influence of Process Parameters on Scaffolds' Morphology and Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2977. [PMID: 34072853 PMCID: PMC8198356 DOI: 10.3390/ma14112977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
This work presents a method of obtaining cylindrical polymer structures with a given diameter (approx. 5 mm) using the phase inversion technique. As part of the work, the influence of process parameters (polymer hardness, polymer solution concentration, the composition of the non-solvent solution, process time) on the scaffolds' morphology was investigated. Additionally, the influence of the addition of porogen on the scaffold's mechanical properties was analyzed. It has been shown that the use of a 20% polymer solution of medium hardness (ChronoFlex C45D) and carrying out the process for 24 h in 0:100 water/ethanol leads to the achievement of repeatable structures with adequate flexibility. Among the three types of porogens tested (NaCl, hexane, polyvinyl alcohol), the most favorable results were obtained for 10% polyvinyl alcohol (PVA). The addition of PVA increases the range of pore diameters and the value of the mean pore diameter (9.6 ± 3.2 vs. 15.2 ± 6.4) while reducing the elasticity of the structure (Young modulus = 3.6 ± 1.5 MPa vs. 9.7 ± 4.3 MPa).
Collapse
Affiliation(s)
- Aleksandra Kuźmińska
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| | - Dominika Kwarta
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Beata A. Butruk-Raszeja
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| |
Collapse
|
4
|
Antolín-Cerón VH, Altamirano-Gutiérrez A, Astudillo-Sánchez PD, Barrera-Rivera KA, Martínez-Richa A. Development of novel nanocomposite polyurethane ultrafiltration membranes based on multiwalled carbon nanotubes functionalized with PAMAM dendrimer. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1871624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Villani M, Bertoglio F, Restivo E, Bruni G, Iervese S, Arciola CR, Carulli F, Iannace S, Bertini F, Visai L. Polyurethane-Based Coatings with Promising Antibacterial Properties. MATERIALS 2020; 13:ma13194296. [PMID: 32993029 PMCID: PMC7579457 DOI: 10.3390/ma13194296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/03/2023]
Abstract
In coatings technology, the possibility of introducing specific characteristics at the surface level allows for the manufacture of medical devices with efficient and prolonged antibacterial properties. This efficiency is often achieved by the use of a small amount of antibacterial molecules, which can fulfil their duty while limiting eventual releasing problems. The object of this work was the preparation and characterization of silver, titanium dioxide and chitosan polyurethane-based coatings. Coatings with the three antibacterials were prepared using different deposition techniques, using a brush or a bar coater automatic film applicator, and compared to solvent casted films prepared with the same components. For silver containing materials, an innovative strategy contemplating the use and preparation of silver nanoparticles in a single step-method was employed. This preparation was obtained starting from a silver precursor and using a single compound as the reducing agent and stabilizer. Ultraviolet-visible spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, contact angle measurements and adhesion test experiments were used to characterize the prepared coatings. Promising antibacterial properties, measured via direct and indirect methods, were registered for all the silver-based materials.
Collapse
Affiliation(s)
- Maurizio Villani
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, Via A. Corti 12, 20133 Milano, Italy; (F.C.); (S.I.); (F.B.)
- Correspondence: or (M.V.); (L.V.)
| | - Federico Bertoglio
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; (F.B.); (E.R.); (S.I.)
| | - Elisa Restivo
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; (F.B.); (E.R.); (S.I.)
| | - Giovanna Bruni
- Center for Colloid and Surfaces Science (C.S.G.I.), Department of Chemistry, Physical Chemistry Section, University of Pavia, viale Taramelli 16, 27100 Pavia, Italy;
| | - Stefano Iervese
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; (F.B.); (E.R.); (S.I.)
| | - Carla Renata Arciola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via S. Giacomo, 14, 40126 Bologna, Italy;
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Carulli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, Via A. Corti 12, 20133 Milano, Italy; (F.C.); (S.I.); (F.B.)
| | - Salvatore Iannace
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, Via A. Corti 12, 20133 Milano, Italy; (F.C.); (S.I.); (F.B.)
| | - Fabio Bertini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, Via A. Corti 12, 20133 Milano, Italy; (F.C.); (S.I.); (F.B.)
| | - Livia Visai
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; (F.B.); (E.R.); (S.I.)
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A Società Benefit, IRCCS, Via S. Boezio, 28, 27100 Pavia, Italy
- Correspondence: or (M.V.); (L.V.)
| |
Collapse
|
6
|
Ge C, Wang S, Zhai W. Influence of cell type and skin-core structure on the tensile elasticity of the microcellular thermoplastic polyurethane foam. J CELL PLAST 2019. [DOI: 10.1177/0021955x19864381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this work, the foaming process was employed to achieve lightweight thermoplastic polyurethane materials, and then the hysteresis and residual strain of corresponding materials in the tensile process were quantitatively calculated. In order to study the deformed mechanism, the influences of cell type and skin-core structure on the tensile elasticity of thermoplastic polyurethane foam were investigated. The open-cell thermoplastic polyurethane foam exhibited much lower hysteresis and residual strain compared to thermoplastic polyurethane film without cell structure, which demonstrated that the open-cell structure benefited to the tensile elasticity. In the case of closed-cell thermoplastic polyurethane foam, it had lower hysteresis and residual strain than thermoplastic polyurethane film; however, higher value than the thermoplastic polyurethane film can be observed beyond 100% strain, resulting from the stress concentration in the skin-core structure. Consequently, the hysteresis phenomenon can be improved by adjusting the ratio of skin-core structure. Moreover, the influence of density on the elasticity of the open-cell thermoplastic polyurethane foam was also discussed in this study.
Collapse
Affiliation(s)
- Chengbiao Ge
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiping Wang
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province, China
| | - Wentao Zhai
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Wang H, Wang L, Liu C, Xu Y, Zhuang Y, Zhou Y, Gu S, Xu W, Yang H. Effect of temperature on the morphology of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets. Int J Biol Macromol 2019; 133:902-910. [DOI: 10.1016/j.ijbiomac.2019.04.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/20/2019] [Indexed: 12/20/2022]
|
8
|
Shaker A, Hassanin AH, Shaalan NM, Hassan MA, El-Moneim AA. Micropatterned flexible strain gauge sensor based on wet electrospun polyurethane/PEDOT: PSS nanofibers. SMART MATERIALS AND STRUCTURES 2019; 28:075029. [DOI: 10.1088/1361-665x/ab20a2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Chinyerenwa AC, Wang H, Zhang Q, Zhuang Y, Munna KH, Ying C, Yang H, Xu W. Structure and thermal properties of porous polylactic acid membranes prepared via phase inversion induced by hot water droplets. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Liu J, Xue Z, Zhang W, Yan M, Xia Y. Preparation and properties of wet-spun agar fibers. Carbohydr Polym 2018; 181:760-767. [DOI: 10.1016/j.carbpol.2017.11.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/01/2017] [Accepted: 11/22/2017] [Indexed: 01/18/2023]
|
11
|
Facile Fabrication of Porous Conductive Thermoplastic Polyurethane Nanocomposite Films via Solution Casting. Sci Rep 2017; 7:17470. [PMID: 29234094 PMCID: PMC5727098 DOI: 10.1038/s41598-017-17647-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Porous conductive polymers are one of important materials, featuring lightweight, large specific surface area and high porosity. Non-solvent induced phase separation is widely employed to prepare porous polymer sheet materials. Through utilizing water vapor in ambient environment as the non-solvent, a facile approach was developed to produce porous conductive polymer nanocomposites using the conventional solution-casting method. Without using any non-solvent liquids, porous carbon nanofiber/thermoplastic polyurethane (CNF/TPU) nanocomposites were prepared directly by solution casting of their dimethylformamide (DMF) solutions under ambient conditions. The strength of the CNF framework played a key role in preventing the collapse of pores during DMF evaporation. The dependence of porous structures on CNF loading was studied by scanning electron microscopy and porosity measurement. The influence of CNF loading on the mechanical properties, electrical conductivity and piezoresistive behavior was explored.
Collapse
|
12
|
Zhuang Y, Zhang Q, Feng J, Wang N, Xu W, Yang H. The effect of native silk fibroin powder on the physical properties and biocompatibility of biomedical polyurethane membrane. Proc Inst Mech Eng H 2017; 231:337-346. [PMID: 28332447 DOI: 10.1177/0954411917697357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Naturally derived fibers such as silk fibroin can potentially enhance the biocompatibility of currently used biomaterials. This study investigated the physical properties of native silk fibroin powder and its effect on the biocompatibility of biomedical polyurethane. Native silk fibroin powder with an average diameter of 3 µm was prepared on a purpose-built machine. A simple method of phase inversion was used to produce biomedical polyurethane/native silk fibroin powder hybrid membranes at different blend ratios by immersing a biomedical polyurethane/native silk fibroin powder solution in deionized water at room temperature. The physical properties of the membranes including morphology, hydrophilicity, roughness, porosity, and compressive modulus were characterized, and in vitro biocompatibility was evaluated by seeding the human umbilical vein endothelial cells on the top surface. Native silk fibroin powder had a concentration-dependent effect on the number and morphology of human umbilical vein endothelial cells growing on the membranes; cell number increased as native silk fibroin powder content in the biomedical polyurethane/native silk fibroin powder hybrid membrane was increased from 0% to 50%, and cell morphology changed from spindle-shaped to cobblestone-like as the native silk fibroin powder content was increased from 0% to 70%. The latter change was related to the physical characteristics of the membrane, including hydrophilicity, roughness, and mechanical properties. The in vivo biocompatibility of the native silk fibroin powder-modified biomedical polyurethane membrane was evaluated in a rat model; the histological analysis revealed no systemic toxicity. These results indicate that the biomedical polyurethane/native silk fibroin powder hybrid membrane has superior in vitro and in vivo biocompatibility relative to 100% biomedical polyurethane membranes and thus has potential applications in the fabrication of small-diameter vascular grafts and in tissue engineering.
Collapse
Affiliation(s)
- Yan Zhuang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Qian Zhang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Jinqi Feng
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Na Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| |
Collapse
|
13
|
Wang YF, Barrera CM, Dauer EA, Gu W, Andreopoulos F, Huang CYC. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds. J Mech Behav Biomed Mater 2017; 65:657-664. [DOI: 10.1016/j.jmbbm.2016.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 01/23/2023]
|
14
|
Mi HY, Jing X, McNulty J, Salick MR, Peng XF, Turng LS. Approaches to Fabricating Multiple-Layered Vascular Scaffolds Using Hybrid Electrospinning and Thermally Induced Phase Separation Methods. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b03462] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hao-Yang Mi
- The
Key Laboratory for Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, China
| | - Xin Jing
- The
Key Laboratory for Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, China
| | | | | | - Xiang-Fang Peng
- The
Key Laboratory for Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, China
| | | |
Collapse
|
15
|
Hu R, Pi Y, Wang N, Zhang Q, Feng J, Xu W, Dong X, Wang D, Yang H. The formation of the S-shaped edge-on lamellae on the thin porous polylactic acid membrane via phase separation induced by water microdroplets. J Appl Polym Sci 2016. [DOI: 10.1002/app.43355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruiqing Hu
- College of Material Science and Engineering; Wuhan Textile University; Wuhan 430000 People's Republic of China
| | - Yuping Pi
- College of Material Science and Engineering; Wuhan Textile University; Wuhan 430000 People's Republic of China
| | - Na Wang
- College of Material Science and Engineering; Wuhan Textile University; Wuhan 430000 People's Republic of China
| | - Qian Zhang
- College of Material Science and Engineering; Wuhan Textile University; Wuhan 430000 People's Republic of China
| | - Jinqi Feng
- College of Material Science and Engineering; Wuhan Textile University; Wuhan 430000 People's Republic of China
| | - Weilin Xu
- College of Material Science and Engineering; Wuhan Textile University; Wuhan 430000 People's Republic of China
| | - Xia Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Hongjun Yang
- College of Material Science and Engineering; Wuhan Textile University; Wuhan 430000 People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| |
Collapse
|
16
|
Sinha MK, Gao J, Stowell CET, Wang Y. Synthesis and biocompatibility of a biodegradable and functionalizable thermo-sensitive hydrogel. Regen Biomater 2015; 2:177-85. [PMID: 26814023 PMCID: PMC4669011 DOI: 10.1093/rb/rbv009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/08/2015] [Accepted: 06/23/2015] [Indexed: 11/17/2022] Open
Abstract
Injectable thermal gels are a useful tool for drug delivery and tissue engineering. However, most thermal gels do not solidify rapidly at body temperature (37°C). We addressed this by synthesizing a thermo-sensitive, rapidly biodegrading hydrogel. Our hydrogel, poly(ethylene glycol)-co-poly(propanol serinate hexamethylene urethane) (EPSHU), is an ABA block copolymer comprising A, methoxy poly ethylene glycol group and B, poly (propanol L-serinate hexamethylene urethane). EPSHU was characterized by gel permeation chromatography for molecular weight and 1H NMR and Fourier transformed infrared for structure. Rheological studies measured the phase transition temperature. In vitro degradation in cholesterol esterase and in Dulbecco's phosphate buffered saline (DPBS) was tracked using the average molecular weight measured by gel permeation chromatography. LIVE/DEAD and resazurin reduction assays performed on NIH 3T3 fibroblasts exposed to EPSHU extracts demonstrated no cytotoxicity. Subcutaneous implantation into BALB/cJ mice indicated good biocompatibility in vivo. The biodegradability and biocompatibility of EPSHU together make it a promising candidate for drug delivery applications that demand carrier gel degradation within months.
Collapse
Affiliation(s)
- Mantosh K Sinha
- Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jin Gao
- Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Chelsea E T Stowell
- Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yadong Wang
- Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA;; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA;; Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA;; Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA and; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
17
|
Chen Y, Li Y, Xu D, Zhai W. Fabrication of stretchable, flexible conductive thermoplastic polyurethane/graphene composites via foaming. RSC Adv 2015. [DOI: 10.1039/c5ra12515d] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The introduction of cellular structures into TPU/graphene composites helps to improve their elasticity, making them much more suitable in the fields of novel electronics associated with stretchable smart sensors.
Collapse
Affiliation(s)
- Yuejuan Chen
- Ningbo Key Lab of Polymer Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Yang Li
- Ningbo Key Lab of Polymer Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Donghua Xu
- State Key Lab of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Wentao Zhai
- Ningbo Key Lab of Polymer Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| |
Collapse
|
18
|
Yang H, Ye Q, Zhou Y, Xiang Y, Xing Q, Dong X, Wang D, Xu W. Formation, morphology and control of high-performance biomedical polyurethane porous membranes by water micro-droplet induced phase inversion. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.08.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Xie X, Eberhart A, Guidoin R, Marois Y, Douville Y, Zhang Z. Five Types of Polyurethane Vascular Grafts in Dogs: The Importance of Structural Design and Material Selection. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:1239-64. [DOI: 10.1163/092050609x12481751806295] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xingyi Xie
- a Department of Polymeric Biomaterials and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China; Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5
| | - Andreas Eberhart
- b Department of Surgery, Faculty of Medicine, Laval University; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5
| | - Robert Guidoin
- c Department of Surgery, Faculty of Medicine, Laval University; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5
| | - Yves Marois
- d Department of Surgery, Faculty of Medicine, Laval University; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5
| | - Yvan Douville
- e Department of Surgery, Faculty of Medicine, Laval University; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5
| | - Ze Zhang
- f Department of Surgery, Faculty of Medicine, Laval University; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5;,
| |
Collapse
|
20
|
Yang H, Zhu G, Zhang Z, Wang Z, Fang J, Xu W. Influence of weft-knitted tubular fabric on radial mechanical property of coaxial three-layer small-diameter vascular graft. J Biomed Mater Res B Appl Biomater 2011; 100:342-9. [DOI: 10.1002/jbm.b.31955] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 05/04/2011] [Accepted: 08/29/2011] [Indexed: 11/07/2022]
|
21
|
Park D, Wu W, Wang Y. A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer. Biomaterials 2011; 32:777-86. [PMID: 20937526 DOI: 10.1016/j.biomaterials.2010.09.044] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/19/2010] [Indexed: 11/28/2022]
Abstract
Injectable reverse thermal gels have great potentials as biomaterials for tissue engineering and drug delivery. However, most existing gels lack functional groups that can be modified with biomolecules that can guide cell/material interactions. We created an amine-functionalized ABA block copolymer, poly(ethylene glycol)-poly(serinol hexamethylene urethane), or ESHU. This reverse thermal gel consists of a hydrophobic block (B): poly(serinol hexamethylene urethane) and a hydrophilic block (A): poly(ethylene glycol). The polymer was characterized by GPC, FTIR and (1)H FTNMR. Rheological study demonstrated that ESHU solution in phosphate-buffered saline initiated phase transition at 32 °C and reached maximum elastic modulus at 37 °C. The in vitro degradation tests performed in PBS and cholesterol esterase solutions revealed that the polymer was hydrolyzable and the presence of cholesterol esterase greatly accelerated the hydrolysis. The in vitro cytotoxicity tests carried out using baboon smooth muscle cells demonstrated that ESHU had good cytocompatibility with cell viability indistinguishable from tissue culture treated polystyrene. Subcutaneous implantation in rats revealed well tolerated accurate inflammatory response with moderate ED-1 positive macrophages in the early stages, which largely resolved 4 weeks post-implantation. We functionalized ESHU with a hexapeptide, Ile-Lys-Val-Ala-Val-Ser (IKVAVS), which gelled rapidly at body temperature. We expect this new platform of functionalizable reverse thermal gels to provide versatile biomaterials in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Daewon Park
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
22
|
Sarkar S, Burriesci G, Wojcik A, Aresti N, Hamilton G, Seifalian AM. Manufacture of small calibre quadruple lamina vascular bypass grafts using a novel automated extrusion-phase-inversion method and nanocomposite polymer. J Biomech 2009; 42:722-30. [DOI: 10.1016/j.jbiomech.2009.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/05/2009] [Accepted: 01/09/2009] [Indexed: 11/29/2022]
|
23
|
Saraswathy G, Gopalakrishna G, Das BN, Radhakrishnan G, Pal S. Development of polyurethane-based sheets by phase inversion method for therapeutic footwear applications: Synthesis, fabrication, and characterization. J Appl Polym Sci 2009. [DOI: 10.1002/app.29256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|