1
|
Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. ADVANCED MATERIALS INTERFACES 2021. [DOI: 10.1002/admi.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Huang
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Min Yu
- Department of Anesthesiology North‐Kuanren General Hospital No. 69 Xingguang Avenue, Yubei District Chongqing 401121 P. R. China
| | - Hao Li
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Xufeng Wan
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zichuan Ding
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Weinan Zeng
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zongke Zhou
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| |
Collapse
|
2
|
No YJ, Castilho M, Ramaswamy Y, Zreiqat H. Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904511. [PMID: 31814177 DOI: 10.1002/adma.201904511] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Engineering synthetic scaffolds to repair and regenerate ruptured native tendon and ligament (T/L) tissues is a significant engineering challenge due to the need to satisfy both the unique biological and biomechanical properties of these tissues. Long-term clinical outcomes of synthetic scaffolds relying solely on high uniaxial tensile strength are poor with high rates of implant rupture and synovitis. Ideal biomaterials for T/L repair and regeneration need to possess the appropriate biological and biomechanical properties necessary for the successful repair and regeneration of ruptured tendon and ligament tissues.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
3
|
Feng P, He J, Peng S, Gao C, Zhao Z, Xiong S, Shuai C. Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:809-825. [PMID: 30948118 DOI: 10.1016/j.msec.2019.03.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/02/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
Abstract
It is difficult for a single component biopolymer to meet the requirements of scaffold at present. The development of multicomponent biopolymer based scaffold provides an effective method to solve the issue based on the advantages of each kind of the biomaterials. However, the compatibility between different components might be very poor due to the difficulties in forming strong interfacial bonding, and thereby significantly degrading the integrated mechanical properties of the scaffold. In recent years, interface phase introduction, surface modification and in situ growth have been the major strategies for enhancing interfacial bonding. This article presents a comprehensive overview on the research in the area of constructing multicomponent biopolymer based scaffold and reinforcing their interfacial properties, and more importantly, the interfacial bonding mechanisms are systematically summarized. Detailly, interface phase introduction can build a bridge between biopolymer and other components to form strong interface bonding with the two phases under the action of interface phase. Surface modification can graft organic molecules or polymers containing functional groups onto other components to crosslink with biopolymer. In situ growth can directly in situ synthesize other components with the action of nucleating agent serving as an adherent platform for the nucleation and growth of other components to biopolymer surface by chemical bonding. In addition, the mechanical properties (including strength and modulus) and biological properties (including bioactivity, cytocompatibility and biosensing in vitro, and tissue compatibility, bone regeneration capacity in vivo) of multicomponent biopolymer based scaffold after interfacial reinforcing are also reviewed and discussed. Finally, suggestions for further research are given with highlighting the need for specific investigations to assess the interface formation, structure, properties, and more in vivo studies of scaffold before applications.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jiyao He
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zhenyu Zhao
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Shixian Xiong
- Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi University of Science and Technology, Ganzhou 341000, China; Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| |
Collapse
|
4
|
No YJ, Li JJ, Zreiqat H. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E153. [PMID: 28772513 PMCID: PMC5459133 DOI: 10.3390/ma10020153] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 02/06/2023]
Abstract
Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO-ySiO₂ system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney 2006, Australia.
| | - Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney 2006, Australia.
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
5
|
Mohammadi H, Sepantafar M. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant. IRANIAN BIOMEDICAL JOURNAL 2016; 20:189-200. [PMID: 26979401 PMCID: PMC4983673 DOI: 10.7508/ibj.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/08/2015] [Accepted: 09/02/2015] [Indexed: 01/05/2023]
Abstract
Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated.
Collapse
Affiliation(s)
- Hossein Mohammadi
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Mohammadmajid Sepantafar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Semnan, Semnan, Iran
| |
Collapse
|
6
|
Chen S, Jian Z, Huang L, Xu W, Liu S, Song D, Wan Z, Vaughn A, Zhan R, Zhang C, Wu S, Hu M, Li J. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration. Int J Nanomedicine 2015; 10:3815-27. [PMID: 26082632 PMCID: PMC4459617 DOI: 10.2147/ijn.s82543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Zhiyuan Jian
- The First General Surgery Department of Shiyan Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, People's Republic of China
| | - Linsheng Huang
- The First General Surgery Department of Shiyan Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, People's Republic of China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Shaohua Liu
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Dajiang Song
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Zongmiao Wan
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Amanda Vaughn
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Ruisen Zhan
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Chaoyue Zhang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Minghua Hu
- Department of Anthropotomy, Changsha Medical College, Changsha, Hunan, People's Republic of China
| | - Jinsong Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
7
|
Feng P, Guo X, Gao C, Gao D, Xiao T, Shuai X, Shuai C, Peng S. Diopside modified porous polyglycolide scaffolds with improved properties. RSC Adv 2015. [DOI: 10.1039/c5ra06312d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this research, diopside was incorporated into PGA scaffolds for enhancing mechanical and biological properties. The porous scaffolds were fabricated via selective laser sintering.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing
- Central South University
- Changsha
- China
| | - Xiaoning Guo
- Department of Orthopedics
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing
- Central South University
- Changsha
- China
| | - Dan Gao
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine
- Central South University
- Changsha
- China
- School of Basic Medical Science
| | - Tao Xiao
- Department of Orthopedics
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Xiong Shuai
- State Key Laboratory of Powder Metallurgy
- Central South University
- Changsha
- China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing
- Central South University
- Changsha
- China
- Orthopedic Biomedical Materials Institute
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine
- Central South University
- Changsha
- China
- School of Basic Medical Science
| |
Collapse
|
8
|
Yi D, Wu C, Ma B, Ji H, Zheng X, Chang J. Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility. J Biomater Appl 2013; 28:1343-53. [DOI: 10.1177/0885328213508165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that bredigite (Ca7MgSi4O16) bioceramics possessed excellent biocompatibility, apatite-mineralization ability and mechanical properties. In this paper, the bredigite coating on Ti-6Al-4 V substrate was prepared by plasma spraying technique. The main compositions of the coating were bredigite crystal phase with small parts of amorphous phases. The bonding strength of the coating to Ti-6Al-4 V substrate reached 49.8 MPa, which was significantly higher than that of hydroxyapatite coating and other silicate-based bioceramic coatings prepared by same method. After immersed in simulated body fluid for 2 days, a distinct apatite layer was deposited on the surface of bredigite coating, indicating that the prepared bredigite coating has excellent apatite-mineralization ability. The prepared bredigite coating supported the attachment and proliferation of rabbit bone marrow stem cells. The proliferation level of bone marrow stem cells was significantly higher than that on the hydroxyapatite coating. Our further study showed that the released SiO44– and Mg2+ ions from bredigite coating as well as the formed nano-apatite layer on the coating surface might mainly contribute to the improvement of cell proliferation. The results indicated that the bredigite coating may be applied on orthopedic implants due to its excellent bonding strength, apatite mineralization and cytocompatibility.
Collapse
Affiliation(s)
- Deliang Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Bing Ma
- School of Life Science, East China Normal University, Shanghai, China
| | - Heng Ji
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Félix Lanao RP, Jonker AM, Wolke JG, Jansen JA, van Hest JC, Leeuwenburgh SC. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:380-90. [PMID: 23350707 PMCID: PMC3690090 DOI: 10.1089/ten.teb.2012.0443] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/11/2013] [Indexed: 11/12/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is the most often used synthetic polymer within the field of bone regeneration owing to its biocompatibility and biodegradability. As a consequence, a large number of medical devices comprising PLGA have been approved for clinical use in humans by the American Food and Drug Administration. As compared with the homopolymers of lactic acid poly(lactic acid) and poly(glycolic acid), the co-polymer PLGA is much more versatile with regard to the control over degradation rate. As a material for bone regeneration, the use of PLGA has been extensively studied for application and is included as either scaffolds, coatings, fibers, or micro- and nanospheres to meet various clinical requirements.
Collapse
Affiliation(s)
- Rosa P. Félix Lanao
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Anika M. Jonker
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joop G.C. Wolke
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - John A. Jansen
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan C.M. van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sander C.G. Leeuwenburgh
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Xu M, Zhang Y, Zhai D, Chang J, Wu C. Mussel-inspired bioactive ceramics with improved bioactivity, cell proliferation, differentiation and bone-related gene expression of MC3T3 cells. Biomater Sci 2013; 1:933-941. [DOI: 10.1039/c3bm60028a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Yi D, Wu C, Ma X, Ji H, Zheng X, Chang J. Preparation and in vitro evaluation of plasma-sprayed bioactive akermanite coatings. Biomed Mater 2012; 7:065004. [PMID: 23159958 DOI: 10.1088/1748-6041/7/6/065004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bioactive ceramic coatings on titanium (Ti) alloys play an important role in orthopedic applications. In this study, akermanite (Ca(2)MgSi(2)O(7)) bioactive coatings are prepared through a plasma spraying technique. The bonding strength between the coatings and Ti-6Al-4V substrates is around 38.7-42.2 MPa, which is higher than that of plasma sprayed hydroxyapatite (HA) coatings reported previously. The prepared akermanite coatings reveal a distinct apatite-mineralization ability in simulated body fluid. Furthermore, akermanite coatings support the attachment and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs). The proliferation rate of BMSCs on akermanite coatings is obviously higher than that on HA coatings.
Collapse
Affiliation(s)
- Deliang Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Stem cell-biomaterial interactions for regenerative medicine. Biotechnol Adv 2011; 30:338-51. [PMID: 21740963 DOI: 10.1016/j.biotechadv.2011.06.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/27/2011] [Accepted: 06/13/2011] [Indexed: 12/11/2022]
Abstract
The synergism of stem cell biology and biomaterial technology promises to have a profound impact on stem-cell-based clinical applications for tissue regeneration. Biomaterials development is rapidly advancing to display properties that, in a precise and physiological fashion, could drive stem-cell fate both in vitro and in vivo. Thus, the design of novel materials is trying to recapitulate the molecular events involved in the production, clearance and interaction of molecules within tissue in pathologic conditions and regeneration of tissue/organs. In this review we will report on the challenges behind translating stem cell biology and biomaterial innovations into novel clinical therapeutic applications for tissue and organ replacements (graphical abstract).
Collapse
|