1
|
Dubrovskii AV, Berezhnov AV, Kim AL, Tikhonenko SA. Behaviour of FITC-Labeled Polyallylamine in Polyelectrolyte Microcapsules. Polymers (Basel) 2023; 15:3330. [PMID: 37631389 PMCID: PMC10459286 DOI: 10.3390/polym15163330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
There are many studies devoted to the application of polyelectrolyte microcapsules (PMC) in various fields; however, there are significantly fewer studies devoted to the study of the polyelectrolyte microcapsules themselves. The study examined the mutual arrangement of the polyelectrolytes in 13-layered PMC capsules composed of (PAH/PSS)6PAH. The research showed that different layers of the polyelectrolyte microcapsules dissociate equally, as in the case of 13-layered PMC capsules composed of (PAH/PSS)6PAH with a well-defined shell, and in the case of 7-layered PMC capsules composed of (PAH/PSS)3PAH, where the shell is absent. The study showed that polyallylamine layers labeled with FITC migrate to the periphery of the microcapsule regardless of the number of layers. This is due to an increase in osmotic pressure caused by the rapid flow of ions from the interior of the microcapsule into the surrounding solution. In addition, FITC-polyallylamine has a lower charge density and less interaction with polystyrene sulfonate in the structure of the microcapsule. Meanwhile, the hydrophilicity of FITC-polyallylamine does not change or decreases slightly. The results suggest that this effect promotes the migration of labeled polyallylamine to a more hydrophilic region of the microcapsule, towards its periphery.
Collapse
Affiliation(s)
- Alexey V. Dubrovskii
- Institute of Theoretical and Experimental Biophysics Russian Academy of Science, 3, Institutskaya Str., 142290 Pushchino, Moscow Region, Russia (A.L.K.)
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia;
| | - Aleksandr L. Kim
- Institute of Theoretical and Experimental Biophysics Russian Academy of Science, 3, Institutskaya Str., 142290 Pushchino, Moscow Region, Russia (A.L.K.)
| | - Sergey A. Tikhonenko
- Institute of Theoretical and Experimental Biophysics Russian Academy of Science, 3, Institutskaya Str., 142290 Pushchino, Moscow Region, Russia (A.L.K.)
| |
Collapse
|
2
|
Kingsley DM, Roberge CL, Rudkouskaya A, Faulkner DE, Barroso M, Intes X, Corr DT. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater 2019; 95:357-370. [PMID: 30776506 PMCID: PMC7171976 DOI: 10.1016/j.actbio.2019.02.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/17/2022]
Abstract
3D multicellular aggregates, and more advanced organotypic systems, have become central tools in recent years to study a wide variety of complex biological processes. Most notably, these model systems have become mainstream within oncology (multicellular tumor spheroids) and regenerative medicine (embryoid bodies) research. However, the biological behavior of these in vitro tissue surrogates is extremely sensitive to their aggregate size and geometry. Indeed, both of these geometrical parameters are key in producing pathophysiological gradients responsible for cellular and structural heterogeneity, replicating in vivo observations. Moreover, the fabrication techniques most widely used for producing these models lack the ability to accurately control cellular spatial location, an essential component for regulating homotypic and heterotypic cell signaling. Herein, we report on a 3D bioprinting technique, laser direct-write (LDW), that enables precise control of both spatial patterning and size of cell-encapsulating microbeads. The generated cell-laden beads are further processed into core-shelled structures, allowing for the growth and formation of self-contained, self-aggregating cells (e.g., breast cancer cells, embryonic stem cells). Within these structures we demonstrate our ability to produce multicellular tumor spheroids (MCTSs) and embryoid bodies (EBs) with well-controlled overall size and shape, that can be designed on demand. Furthermore, we investigated the impact of aggregate size on the uptake of a commonly employed ligand for receptor-mediated drug delivery, Transferrin, indicating that larger tumor spheroids exhibit greater spatial heterogeneity in ligand uptake. Taken together, these findings establish LDW as a versatile biomanufacturing platform for bioprinting and patterning core-shelled structures to generate size-controlled 3D multicellular aggregates. STATEMENT OF SIGNIFICANCE: Multicellular 3D aggregates are powerful in vitro models used to study a wide variety of complex biological processes, particularly within oncology and regenerative medicine. These tissue surrogates are fabricated using environments that encourage cellular self-assembly. However, specific applications require control of aggregate size and position to recapitulate key in vivo parameters (e.g., pathophysiological gradients and homotypic/heterotypic cell signaling). Herein, we demonstrate the ability to create and spatially pattern size-controlled embryoid bodies and tumor spheroids, using laser-based 3D bioprinting. Furthermore, we investigated the effect of tumor spheroid size on internalization of Transferrin, a common ligand for targeted therapy, finding greater spatial heterogeneity in our large aggregates. Overall, this technique offers incredible promise and flexibility for fabricating idealized 3D in vitro models.
Collapse
Affiliation(s)
- David M Kingsley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - Cassandra L Roberge
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Denzel E Faulkner
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| |
Collapse
|
3
|
Akasov R, Drozdova M, Zaytseva-Zotova D, Leko M, Chelushkin P, Marc A, Chevalot I, Burov S, Klyachko N, Vandamme T, Markvicheva E. Novel Doxorubicin Derivatives: Synthesis and Cytotoxicity Study in 2D and 3D in Vitro Models. Adv Pharm Bull 2017; 7:593-601. [PMID: 29399549 PMCID: PMC5788214 DOI: 10.15171/apb.2017.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose: Multidrug resistance (MDR) of tumors to chemotherapeutics often leads to failure of cancer treatment. The aim of the study was to prepare novel MDR-overcoming chemotherapeutics based on doxorubicin (DOX) derivatives and to evaluate their efficacy in 2D and 3D in vitro models. Methods: To overcome MDR, we synthesized five DOX derivatives, and then obtained non-covalent complexes with human serum albumin (HSA). Drug efficacy was evaluated for two tumor cell lines, namely human breast adenocarcinoma MCF-7 cells and DOX resistant MCF-7/ADR cells. Additionally, MCF-7 cells were entrapped in alginate-oligochitosan microcapsules, and generated tumor spheroids were used as a 3D in vitro model to study cytotoxicity of the DOX derivatives. Results: Due to 3D structure, the tumor spheroids were more resistant to chemotherapy compared to monolayer culture. DOX covalently attached to palmitic acid through hydrazone linkage (DOX-N2H-Palm conjugate) was found to be the most promising derivative. Its accumulation levels within MCF-7/ADR cells was 4- and 10-fold higher than those of native DOX when the conjugate was added to cultivation medium without serum and to medium supplemented with 10% fetal bovine serum, respectively. Non-covalent complex of the conjugate with HSA was found to reduce the IC50 value from 32.9 µM (for free DOX-N2H-Palm) to 16.8 µM (for HSA-DOX-N2H-Palm) after 72 h incubation with MCF-7/ADR cells. Conclusion: Palm-N2H-DOX conjugate was found to be the most promising DOX derivative in this research. The formation of non-covalent complex of Palm-N2H-DOX conjugate with HSA allowed improving its anti-proliferative activity against both MCF-7 and MCF-7/ADR cells.
Collapse
Affiliation(s)
- Roman Akasov
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia
| | - Maria Drozdova
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia
| | - Daria Zaytseva-Zotova
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| | - Maria Leko
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Pavel Chelushkin
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Annie Marc
- UMR CNRS 7274, Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54518, 2 avenue de la Fort de Haye, Vandoeuvre lès Nancy, France
| | - Isabelle Chevalot
- UMR CNRS 7274, Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54518, 2 avenue de la Fort de Haye, Vandoeuvre lès Nancy, France
| | - Sergey Burov
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Natalia Klyachko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| | - Thierry Vandamme
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Elena Markvicheva
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| |
Collapse
|
4
|
Kingsley DM, Dias AD, Corr DT. Microcapsules and 3D customizable shelled microenvironments from laser direct-written microbeads. Biotechnol Bioeng 2016; 113:2264-74. [PMID: 27070458 PMCID: PMC9202818 DOI: 10.1002/bit.25987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 01/05/2023]
Abstract
Microcapsules are shelled 3D microenvironments, with a liquid core. These core-shelled structures enable cell-cell contact, cellular proliferation and aggregation within the capsule, and can be utilized for controlled release of encapsulated contents. Traditional microcapsule fabrication methods provide limited control of capsule size, and are unable to control capsule placement. To overcome these limitations, we demonstrate size and spatial control of poly-l-lysine and chitosan microcapsules, using laser direct-write (LDW) printing, and subsequent processing, of alginate microbeads. Additionally, microbeads were used as volume pixels (voxels) to form continuous 3D hydrogel structures, which were processed like capsules, to form custom shelled aqueous-core 3D structures of prescribed geometry; such as strands, rings, and bifurcations. Heterogeneous structures were also created with controlled initial locations of different cell types, to demonstrate the ability to prescribe cell signaling (heterotypic and homotypic) in co-culture conditions. Herein, we demonstrate LDW's ability to fabricate intricate 3D structures, essentially with "printed macroporosity," and to precisely control structural composition by bottom-up fabrication in a bead-by-bead manner. The structural and compositional control afforded by this process enables the creation of a wide range of new constructs, with many potential applications in tissue engineering and regenerative medicine. Biotechnol. Bioeng. 2016;113: 2264-2274. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Kingsley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, New York 12180
| | - Andrew D Dias
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, New York 12180
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, New York 12180.
| |
Collapse
|
5
|
Akasov R, Gileva A, Zaytseva-Zotova D, Burov S, Chevalot I, Guedon E, Markvicheva E. 3D in vitro co-culture models based on normal cells and tumor spheroids formed by cyclic RGD-peptide induced cell self-assembly. Biotechnol Lett 2016; 39:45-53. [DOI: 10.1007/s10529-016-2218-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/13/2016] [Indexed: 01/19/2023]
|
6
|
Formation of multicellular tumor spheroids induced by cyclic RGD-peptides and use for anticancer drug testing in vitro. Int J Pharm 2016; 506:148-57. [DOI: 10.1016/j.ijpharm.2016.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/11/2016] [Accepted: 04/01/2016] [Indexed: 11/22/2022]
|
7
|
Design of polyelectrolyte core-shells with DNA to control TMPyP binding. Colloids Surf B Biointerfaces 2016; 146:127-35. [PMID: 27285535 DOI: 10.1016/j.colsurfb.2016.05.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/19/2016] [Accepted: 05/16/2016] [Indexed: 11/23/2022]
Abstract
The interaction of DNA with 5,10,15,20-tetrakis(4-N-methylpyridiniumyl)porphyrin (TMPyP) in polyelectrolyte core-shells obtained via layer by layer adsorption of poly(sodium 4-styrenesulfonate), PSS, and poly(allylamine hydrochloride), PAH, polyelectrolytes was followed by steady state, time resolved fluorescence and by Fluorescence Lifetime Imaging Microscopy (FLIM). Our results show that DNA adsorption onto polyelectrolyte core-shell changes the TMPyP interaction within PSS/PAH core-shells structure and increase significantly the TMPyP uptake. Specific DNA/TMPyP interactions are also altered by DNA adsorption favouring porphyrin intercalation onto GC pair rich regions. Circular dichroism (CD) spectra reveal that DNA undergoes important conformational changes upon adsorption onto the core-shell surface, which are reverted upon TMPyP encapsulation.
Collapse
|
8
|
Akasov R, Borodina T, Zaytseva E, Sumina A, Bukreeva T, Burov S, Markvicheva E. Ultrasonically Assisted Polysaccharide Microcontainers for Delivery of Lipophilic Antitumor Drugs: Preparation and in Vitro Evaluation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16581-16589. [PMID: 26158302 DOI: 10.1021/acsami.5b04141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High toxicity, poor selectivity, and severe side effects are major drawbacks of anticancer drugs. Various drug delivery systems could be proposed to overcome these limitations. The aim of this study was to fabricate polysaccharide microcontainers (MCs) loaded with thymoquinone (TQ) by a one-step ultrasonication technique and to study their cellular uptake and cytotoxicity in vitro. Two MC fractions with a mean size of 500 nm (MC-0.5) and 2 μM (MC-2) were prepared and characterized. Uptake of the MCs by mouse melanoma M-3 cells was evaluated in both 2D (monolayer culture) and 3D (multicellular tumor spheroids) models by confocal microscopy, flow cytometry, and fluorimetry. The higher cytotoxicity of the TQ-MC-0.5 sample than the TQ-MC-2 fraction was in good correlation with higher MC-0.5 accumulation in the cells. The MC-0.5 beads were more promising than the MC-2 particles because of a higher cellular uptake in both 2D and 3D models, an enhanced antitumor effect, and a lower nonspecific toxicity.
Collapse
Affiliation(s)
- Roman Akasov
- †Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
- ‡Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of the Russian Academy of Sciences, 119333, Leninskii Prospekt 59, Moscow, Russia
| | - Tatiana Borodina
- ‡Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of the Russian Academy of Sciences, 119333, Leninskii Prospekt 59, Moscow, Russia
| | - Ekaterina Zaytseva
- †Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| | - Anastasia Sumina
- †Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| | - Tatiana Bukreeva
- ‡Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of the Russian Academy of Sciences, 119333, Leninskii Prospekt 59, Moscow, Russia
- §National Research Centre, Kurchatov Institute, 123182, Akademika Kurchatova Ploshchad 1, Moscow, Russia
| | - Sergey Burov
- ∥Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoy Prospekt 31, Saint-Petersburg, Russia
| | - Elena Markvicheva
- †Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| |
Collapse
|
9
|
Sakai S, Inamoto K, Ashida T, Takamura R, Taya M. Cancer stem cell marker-expressing cell-rich spheroid fabrication from PANC-1 cells using alginate microcapsules with spherical cavities templated by gelatin microparticles. Biotechnol Prog 2015; 31:1071-6. [DOI: 10.1002/btpr.2111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/30/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Shinji Sakai
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Kazuya Inamoto
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Tomoaki Ashida
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Ryo Takamura
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Masahito Taya
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
10
|
Li N, Xu XX, Sun GW, Guo X, Liu Y, Wang SJ, Zhang Y, Yu WT, Wang W, Ma XJ. The effect of electrostatic microencapsulation process on biological properties of tumour cells. J Microencapsul 2013; 30:530-7. [DOI: 10.3109/02652048.2012.758181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions. JOURNAL OF PHARMACEUTICS 2012; 2013:103527. [PMID: 26555963 PMCID: PMC4595965 DOI: 10.1155/2013/103527] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/15/2012] [Indexed: 01/17/2023]
Abstract
Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed.
Collapse
|
12
|
Sakai S, Inamoto K, Liu Y, Tanaka S, Arii S, Taya M. Multicellular tumor spheroid formation in duplex microcapsules for analysis of chemosensitivity. Cancer Sci 2012; 103:549-54. [PMID: 22168771 DOI: 10.1111/j.1349-7006.2011.02187.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Multicellular tumor spheroids (MTS) are gaining increased recognition as valuable tools and key elements in anticancer drug discovery and tumor therapy test programs. However, the lack of reproducible and uniform MTS sizes is a major problem for pharmaceutical assays. Here, we show the usefulness of duplex microcapsules with a Ca-alginate gel membrane as a platform for producing MTS with a highly homogeneous size distribution. HeLa cells were enclosed with 86.9% viability within the microcapsules. The enclosed cells grew and formed MTS with the same size as the cavity of the microcapsules by arresting their growth with the microcapsule membrane. The cells in the resultant MTS had a higher proportion in G(0)/G(1) phase (71.2%) than 2-D cultured cells in the stationary phase (64.3%) or those in MTS formed on a non-adherent surface (65.3%) (P < 0.01). Furthermore, the cells in MTS formed within microcapsules showed higher tolerance to mitomycin C (1-1000 nM) and gemcitabine (4.5-4500 nM) than 2-D cultured cells (P < 0.01). In addition, the expression of MDR1, MCT1, HIF-1α, and GRP78 mRNA was 2.9-, 3.2-, 3.8-, and 5.5-fold higher, respectively, than those in 2-D cultured cells (P < 0.04). Cryopreserved encapsulated cells in the microcapsules showed 80.5% viability and formed MTS with a comparable tolerance of 100 and 1000 nM mitomycin C to those that were not cryopreserved (P > 0.09). These findings suggest the duplex microcapsule may be a promising tool for producing MTS for pharmaceutical applications.
Collapse
Affiliation(s)
- Shinji Sakai
- Division of Chemical Engineering, Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Kejík Z, Kaplánek R, Bříza T, Králová J, Martásek P, Král V. Supramolecular approach for target transport of photodynamic anticancer agents. Supramol Chem 2011. [DOI: 10.1080/10610278.2011.631705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Zdeněk Kejík
- a Department of Analytical Chemistry , Faculty of Chemical Engineering, Institute of Chemical Technology , Technická 5, 166 28, Prague 6 , Czech Republic
- b First Faculty of Medicine, Charles University in Prague , Katerinská 32, 121 08, Prague 2 , Czech Republic
| | - Robert Kaplánek
- a Department of Analytical Chemistry , Faculty of Chemical Engineering, Institute of Chemical Technology , Technická 5, 166 28, Prague 6 , Czech Republic
| | - Tomáš Bříza
- a Department of Analytical Chemistry , Faculty of Chemical Engineering, Institute of Chemical Technology , Technická 5, 166 28, Prague 6 , Czech Republic
- b First Faculty of Medicine, Charles University in Prague , Katerinská 32, 121 08, Prague 2 , Czech Republic
| | - Jarmila Králová
- c Institute of Molecular Genetics, Academy of Sciences of the Czech Republic , Vídenská 1083, 142 20, Prague 4 , Czech Republic
| | - Pavel Martásek
- b First Faculty of Medicine, Charles University in Prague , Katerinská 32, 121 08, Prague 2 , Czech Republic
| | - Vladimír Král
- a Department of Analytical Chemistry , Faculty of Chemical Engineering, Institute of Chemical Technology , Technická 5, 166 28, Prague 6 , Czech Republic
- d Zentiva R&D, part of Sanofi-Aventis , U Kabelovny 130, 102 37, Prague 10 , Czech Republic
| |
Collapse
|