1
|
Wahed SB, Dunstan CR, Boughton PA, Ruys AJ, Faisal SN, Wahed TB, Salahuddin B, Cheng X, Zhou Y, Wang CH, Islam MS, Aziz S. Functional Ultra-High Molecular Weight Polyethylene Composites for Ligament Reconstructions and Their Targeted Applications in the Restoration of the Anterior Cruciate Ligament. Polymers (Basel) 2022; 14:polym14112189. [PMID: 35683861 PMCID: PMC9182730 DOI: 10.3390/polym14112189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
The selection of biomaterials as biomedical implants is a significant challenge. Ultra-high molecular weight polyethylene (UHMWPE) and composites of such kind have been extensively used in medical implants, notably in the bearings of the hip, knee, and other joint prostheses, owing to its biocompatibility and high wear resistance. For the Anterior Cruciate Ligament (ACL) graft, synthetic UHMWPE is an ideal candidate due to its biocompatibility and extremely high tensile strength. However, significant problems are observed in UHMWPE based implants, such as wear debris and oxidative degradation. To resolve the issue of wear and to enhance the life of UHMWPE as an implant, in recent years, this field has witnessed numerous innovative methodologies such as biofunctionalization or high temperature melting of UHMWPE to enhance its toughness and strength. The surface functionalization/modification/treatment of UHMWPE is very challenging as it requires optimizing many variables, such as surface tension and wettability, active functional groups on the surface, irradiation, and protein immobilization to successfully improve the mechanical properties of UHMWPE and reduce or eliminate the wear or osteolysis of the UHMWPE implant. Despite these difficulties, several surface roughening, functionalization, and irradiation processing technologies have been developed and applied in the recent past. The basic research and direct industrial applications of such material improvement technology are very significant, as evidenced by the significant number of published papers and patents. However, the available literature on research methodology and techniques related to material property enhancement and protection from wear of UHMWPE is disseminated, and there is a lack of a comprehensive source for the research community to access information on the subject matter. Here we provide an overview of recent developments and core challenges in the surface modification/functionalization/irradiation of UHMWPE and apply these findings to the case study of UHMWPE for ACL repair.
Collapse
Affiliation(s)
- Sonia B. Wahed
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
- Correspondence: (S.B.W.); (S.A.)
| | - Colin R. Dunstan
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
| | - Philip A. Boughton
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
| | - Andrew J. Ruys
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
| | - Shaikh N. Faisal
- ARC Centre of Excellence for Electromaterials Science & Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Tania B. Wahed
- Department of Pharmacy, Jahangirnagar University, Savar 1342, Bangladesh;
| | - Bidita Salahuddin
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xinying Cheng
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Yang Zhou
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Chun H. Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Mohammad S. Islam
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Shazed Aziz
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
- Correspondence: (S.B.W.); (S.A.)
| |
Collapse
|
2
|
Sharma V, Gupta RK, Kailas SV, Basu B. Probing lubricated sliding wear properties of HDPE/UHMWPE hybrid bionanocomposite. J Biomater Appl 2022; 37:204-218. [PMID: 35502987 DOI: 10.1177/08853282221085633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ultra-high molecular weight polyethylene (UHMWPE) and its derivatives have been clinically used as an acetabular liner material in total hip joint replacement (THR) over last six decades. Despite significant efforts, the longevity of UHMWPE implants is still impaired due to their compromised tribological performance, leading to osteolysis and aseptic loosening. The present study aims to critically evaluate and analyze the tribological performance, of the next generation acetabular liner material, that is, a chemically modified graphene oxide (GO) reinforced HDPE/UHMWPE (HU) bionanocomposite (HUmGO), against stainless steel (SS 316L) counterface in lubricated conditions. This work also provides a performance comparative assessment of HUmGO with respect to medical grades, UHMWPE (UC) and crosslinked UHMWPE (XL-UC). Significant attempts have been made to correlate the tribological properties (frictional behavior, wear rate, wear debris shape and size, wear mechanism) with the physicomechanical conditions (contact stresses) at sliding contact and the variation in molecular architecture of different UHMWPE materials. Additionally, an emphasis is put forward to critically anlyze the nature of lubrication regime based on the bearing characterstic parameters. HUmGO exhibited a lower COF (0.07) and specific wear rate (2.86 × 10-8 mm3/Nm) than UC and XL-UC under identical sliding conditions. The worn surfaces on HUmGO revealed the signatures of less abrasive wear and limited deformation. Based on the estimated lambda (λ) ratio and Sommerfield number, all the investigated sliding contacts exhibited boundary lubrication. Taken together, the modified GO reinforced HDPE/UHMWPE bionanocomposite can be considered as a new generation biomaterial for the fabrication of acetabular liner for hip-joint prosthesis.
Collapse
Affiliation(s)
- Vidushi Sharma
- Laboratory for Biomaterials, Materials Research Centre, 29120Indian Institute of Science, Bangalore, India.,Centre of Excellence for Dental and Orthopedic Applications, Material Research Centre, 29120Indian Institute of Science, Bangalore, India
| | - Rajeev K Gupta
- Surface Interaction and Manufacturing Laboratory, Department of Mechanical Engineering, 29120Indian Institute of Science, Bangalore, India
| | - Satish V Kailas
- Surface Interaction and Manufacturing Laboratory, Department of Mechanical Engineering, 29120Indian Institute of Science, Bangalore, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, 29120Indian Institute of Science, Bangalore, India.,Centre of Excellence for Dental and Orthopedic Applications, Material Research Centre, 29120Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, 29120Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Hussain M, Naqvi RA, Abbas N, Khan SM, Nawaz S, Hussain A, Zahra N, Khalid MW. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers (Basel) 2020; 12:polym12020323. [PMID: 32033140 PMCID: PMC7077409 DOI: 10.3390/polym12020323] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Ultra-High Molecular Weight Polyethylene (UHMWPE) is used in biomedical applications due to its high wear-resistance, ductility, and biocompatibility. A great deal of research in recent decades has focused on further improving its mechanical and tribological performances in order to provide durable implants in patients. Several methods, including irradiation, surface modifications, and reinforcements have been employed to improve the tribological and mechanical performance of UHMWPE. The effect of these modifications on tribological and mechanical performance was discussed in this review.
Collapse
Affiliation(s)
- Muzamil Hussain
- Mechanical Engineering Department, NFC Institute of Engineering and Technology, Multan 60000, Pakistan;
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 42000, Pakistan;
| | - Rizwan Ali Naqvi
- Department of Unmanned Vehicle Engineering, Sejong University, Seoul 05006, Korea;
| | - Naseem Abbas
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
- Correspondence:
| | - Shahzad Masood Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 42000, Pakistan;
| | - Saad Nawaz
- Department of Mechanical Engineering, University of Engineering & Technology Lahore, KSK-Campus, Sheikhupura 39350, Pakistan;
| | - Arif Hussain
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, Korea;
| | - Nida Zahra
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Waqas Khalid
- Biomedical Engineering Technology Department, NFC Institute of Engineering and Technology, Multan 60000, Pakistan;
| |
Collapse
|
4
|
Variation of mechanical properties and oxidation with radiation dose and source in highly crosslinked remelted UHMWPE. J Mech Behav Biomed Mater 2018; 82:112-119. [DOI: 10.1016/j.jmbbm.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 11/17/2022]
|
5
|
Reinitz SD, Engler AJ, Carlson EM, Van Citters DW. Equal channel angular extrusion of ultra-high molecular weight polyethylene. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:623-628. [PMID: 27287161 DOI: 10.1016/j.msec.2016.05.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/15/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Abstract
Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications.
Collapse
Affiliation(s)
- Steven D Reinitz
- Thayer School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States.
| | - Alexander J Engler
- Thayer School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Evan M Carlson
- Thayer School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Douglas W Van Citters
- Thayer School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| |
Collapse
|
6
|
Mehmood MS, Sanawar A, Siddiqui N, Yasin T. Quantification of silane grafting efficacy, weak IR vibration bands and percentage crystallinity in post e-beam irradiated UHMWPE. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1709-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Puértolas J, Pascual F, Martínez-Morlanes M. Impact resistance and fractography in ultra high molecular weight polyethylenes. J Mech Behav Biomed Mater 2014; 30:111-22. [DOI: 10.1016/j.jmbbm.2013.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
8
|
Abstract
We reviewed the literature on the currently available choices of bearing surface in total hip replacement (THR). We present a detailed description of the properties of articulating surfaces review the understanding of the advantages and disadvantages of existing bearing couples. Recent technological developments in the field of polyethylene and ceramics have altered the risk of fracture and the rate of wear, although the use of metal-on-metal bearings has largely fallen out of favour, owing to concerns about reactions to metal debris. As expected, all bearing surface combinations have advantages and disadvantages. A patient-based approach is recommended, balancing the risks of different options against an individual’s functional demands. Cite this article: Bone Joint J 2014;96-B:147–56.
Collapse
Affiliation(s)
- A. Rajpura
- Wrightington Hospital, The Centre
for Hip Surgery, Appley Bridge, Wigan
WN6 9EP, UK
| | - D. Kendoff
- Helios ENDO Klinik, Holstenstr. 2, 22767
Hamburg, Germany
| | - T. N. Board
- Wrightington Hospital, The Centre
for Hip Surgery, Appley Bridge, Wigan
WN6 9EP, UK
| |
Collapse
|
9
|
Highly crosslinked polyethylene does not reduce the wear in total knee arthroplasty: in vivo study of particles in synovial fluid. J Arthroplasty 2013; 28:1333-7. [PMID: 23507066 DOI: 10.1016/j.arth.2013.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/05/2012] [Accepted: 01/21/2013] [Indexed: 02/01/2023] Open
Abstract
The aim was to assess if the reduction in polyethylene wear with highly crosslinked polyethylene suggested by studies with knee simulators is confirmed in patients with a knee arthroplasty. The use of a conventional or a highly crosslinked polyethylene was randomly assigned intraoperatively. Twelve months after surgery a knee arthrocentesis was performed and the synovial fluid of 17 patients in each group was studied analysing the number, size and shape of the polyethylene particles by scanning electron microscope. We found no significant differences in the concentration, size or morphology of polyethylene particles between groups. The great variability in the number of particles between individuals suggests that in vivo polyethylene wear depends on many factors and probably the type of polyethylene is not the most significant.
Collapse
|