1
|
Franklyn J, Ramesh S, Madhuri V, Patel B, Dhivya A, Nair PD, Kumar A, Chacko G, Samarasam I. Abdominal Wall Reconstruction with Tissue-Engineered Mesh Using Muscle-Derived Stem Cells in an Animal Model. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Utrabo CAL, Czeczko NG, Busato CR, Montemór-Netto MR, Lipinski L, Malafaia O. BETWEEN PROLENE®, ULTRAPRO® AND BARD SOFT® MESHES WHICH PRESENTS THE BEST PERFORMANCE IN THE REPAIR OF THE ABDOMINAL WALL? ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2021; 34:e1577. [PMID: 34133524 PMCID: PMC8195468 DOI: 10.1590/0102-672020210001e1577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the definition of the mesh to be used to correct hernias, porosity, amount of absorbable material and polypropylene should be considered in the different stages of healing process. AIM To evaluate the inflammatory reaction in the use of macro and microporous meshes of high and low weight in the repair of defects in the abdominal wall of rats. METHODS Ninety Wistar rats (Rattus norvegicus albinus) were used. The animals were submitted to similar surgical procedures, with lesion of the ventral abdominal wall, maintaining the integrity of the parietal peritoneum and correction using the studied meshes (Prolene®, Ultrapro® and Bard Soft®). Euthanasia was performed at 30, 60 and 120 days after surgery. The abdominal wall segments were submitted to histological analysis using H&E, Masson's trichrome, immunohistochemistry, picrosirius red and tensiometric evaluation. RESULTS On the 120th day, the tensiometric analysis was superior with Ultrapro® macroporous mesh. The inflammatory process score showed a significant prevalence of subacute process at the beginning and at the end of the study. Microporous meshes showed block encapsulation and in macroporous predominance of filamentous encapsulation. CONCLUSION The Ultrapro® mesh showed better performance than the others in healing process of the abdominal wall.
Collapse
Affiliation(s)
| | - Nicolau Gregori Czeczko
- Post-Graduate Program in Principles of Surgery, Evangelical Mackenzie Faculty of Paraná, Curitiba, PR, Brazil
| | | | | | - Leandro Lipinski
- Post-Graduate Program in Principles of Surgery, Evangelical Mackenzie Faculty of Paraná, Curitiba, PR, Brazil
| | - Osvaldo Malafaia
- Post-Graduate Program in Principles of Surgery, Evangelical Mackenzie Faculty of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
3
|
Liu W, Xie Y, Zheng Y, He W, Qiao K, Meng H. Regulatory science for hernia mesh: Current status and future perspectives. Bioact Mater 2021; 6:420-432. [PMID: 32995670 PMCID: PMC7490592 DOI: 10.1016/j.bioactmat.2020.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022] Open
Abstract
Regulatory science for medical devices aims to develop new tools, standards and approaches to assess the safety, effectiveness, quality and performance of medical devices. In the field of biomaterials, hernia mesh is a class of implants that have been successfully translated to clinical applications. With a focus on hernia mesh and its regulatory science system, this paper collected and reviewed information on hernia mesh products and biomaterials in both Chinese and American markets. The current development of regulatory science for hernia mesh, including its regulations, standards, guidance documents and classification, and the scientific evaluation of its safety and effectiveness was first reported. Then the research prospect of regulatory science for hernia mesh was discussed. New methods for the preclinical animal study and new tools for the evaluation of the safety and effectiveness of hernia mesh, such as computational modeling, big data platform and evidence-based research, were assessed. By taking the regulatory science of hernia mesh as a case study, this review provided a research basis for developing a regulatory science system of implantable medical devices, furthering the systematic evaluation of the safety and effectiveness of medical devices for better regulatory decision-making. This was the first article reviewing the regulatory science of hernia mesh and biomaterial-based implants. It also proposed and explained the concepts of evidence-based regulatory science and technical review for the first time.
Collapse
Affiliation(s)
- Wenbo Liu
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
- Center for Medical Device Evaluation, National Medical Products Administration, Intellectual Property Publishing House Mansion, Qixiang Road, Haidian District, Beijing, China
| | - Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Wei He
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Kun Qiao
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| |
Collapse
|
4
|
Mehrban N, Pineda Molina C, Quijano LM, Bowen J, Johnson SA, Bartolacci J, Chang JT, Scott DA, Woolfson DN, Birchall MA, Badylak SF. Host macrophage response to injectable hydrogels derived from ECM and α-helical peptides. Acta Biomater 2020; 111:141-152. [PMID: 32447065 DOI: 10.1016/j.actbio.2020.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Tissue engineering materials play a key role in how closely the complex architectural and functional characteristics of native healthy tissue can be replicated. Traditional natural and synthetic materials are superseded by bespoke materials that cross the boundary between these two categories. Here we present hydrogels that are derived from decellularised extracellular matrix and those that are synthesised from de novo α-helical peptides. We assess in vitro activation of murine macrophages to our hydrogels and whether these gels induce an M1-like or M2-like phenotype. This was followed by the in vivo immune macrophage response to hydrogels injected into rat partial-thickness abdominal wall defects. Over 28 days we observe an increase in mononuclear cell infiltration at the hydrogel-tissue interface without promoting a foreign body reaction and see no evidence of hydrogel encapsulation or formation of multinucleate giant cells. We also note an upregulation of myogenic differentiation markers and the expression of anti-inflammatory markers Arginase1, IL-10, and CD206, indicating pro-remodelling for all injected hydrogels. Furthermore, all hydrogels promote an anti-inflammatory environment after an initial spike in the pro-inflammatory phenotype. No difference between the injected site and the healthy tissue is observed after 28 days, indicating full integration. These materials offer great potential for future applications in regenerative medicine and towards unmet clinical needs. STATEMENT OF SIGNIFICANCE: Materials play a key role in how closely the complex architectural and functional characteristics of native healthy tissue can be replicated in tissue engineering. Here we present injectable hydrogels derived from decellularised extracellular matrix and de novo designed α-helical peptides. Over 28 days in the rat abdominal wall we observe an increase in mononuclear cell infiltration at the hydrogel-tissue interface with no foreign body reaction, no evidence of hydrogel encapsulation and no multinucleate giant cells. Our data indicate pro-remodelling and the promotion of an anti-inflammatory environment for all injected hydrogels with evidence of full integration with healthy tissue after 28 days. These unique materials offer great potential for future applications in regenerative medicine and towards designing materials for unmet clinical needs.
Collapse
Affiliation(s)
- Nazia Mehrban
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA; UCL Ear Institute, University College London, 332 Grays Inn Rd, London, WC1X 8EE, UK.
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA; Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Lina M Quijano
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA; Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - James Bowen
- School of Engineering & Innovation, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Scott A Johnson
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA; Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Joseph Bartolacci
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA; Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| | - Jordan T Chang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA
| | - David A Scott
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK; School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Martin A Birchall
- UCL Ear Institute, University College London, 332 Grays Inn Rd, London, WC1X 8EE, UK
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA; Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| |
Collapse
|
5
|
Lanzalaco S, Del Valle LJ, Turon P, Weis C, Estrany F, Alemán C, Armelin E. Polypropylene mesh for hernia repair with controllable cell adhesion/de-adhesion properties. J Mater Chem B 2020; 8:1049-1059. [PMID: 31939983 DOI: 10.1039/c9tb02537e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, a versatile bilayer system, composed by a polypropylene (PP) mesh and a covalently bonded poly(N-isopropylacrylamide) (PNIPAAm) hydrogel, is reported. The cell adhesion mechanism was successfully modulated by controlling the architecture of the hydrogel in terms of duration of PNIPAAm grafting time, crosslinker content, and temperature of material exposure in PBS solutions (below and above the LCST of PNIPAAm). The best in vitro results with fibroblast (COS-1) and epithelial (MCF-7) cells was obtained with a mesh modified with a porous iPP-g-PNIPAAm bilayer system, prepared via PNIPAAm grafting for 2 h at the lowest N,N'-methylene bis(acrylamide) (MBA) concentration (1 mM). Under these conditions, the detachment of the fibroblast-like cells was 50% lower than that of the control, after 7 days of cell incubation, which represents a high de-adhesion of cells in a short period. Moreover, the whole system showed excellent stability in dry or wet media, proving that the thermosensitive hydrogel was well adhered to the polymer surface, after PP fibre activation by cold plasma. This study provides new insights on the development of anti-adherent meshes for abdominal hernia repair.
Collapse
Affiliation(s)
- Sonia Lanzalaco
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona, 08019, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, Barcelona, 08019, Spain
| | - Luis Javier Del Valle
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona, 08019, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, Barcelona, 08019, Spain
| | - Pau Turon
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona, 08019, Spain. and Research and Development, B. Braun Surgical, S.A. Carretera de Terrassa 121, 08191 Rubí (Barcelona), Spain
| | - Christine Weis
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona, 08019, Spain. and Research and Development, B. Braun Surgical, S.A. Carretera de Terrassa 121, 08191 Rubí (Barcelona), Spain
| | - Francesc Estrany
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona, 08019, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, Barcelona, 08019, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona, 08019, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, Barcelona, 08019, Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona, 08019, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, Barcelona, 08019, Spain
| |
Collapse
|
6
|
Wang ZL, Wu SZ, Li ZF, Guo JH, Zhang Y, Pi JK, Hu JG, Yang XJ, Huang FG, Xie HQ. Comparison of small intestinal submucosa and polypropylene mesh for abdominal wall defect repair. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:663-682. [PMID: 29375018 DOI: 10.1080/09205063.2018.1433419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhu-Le Wang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shi-Zhou Wu
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhi-Feng Li
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jin-Hai Guo
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
- Department of Orthopedics, Jin Tang Hospital, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jin-Kui Pi
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi-Jing Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fu-Guo Huang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
7
|
Aydemir Sezer U, Sanko V, Gulmez M, Sayman E, Aru B, Yuksekdag ZN, Aktekin A, Vardar Aker F, Sezer S. A Polypropylene-Integrated Bilayer Composite Mesh with Bactericidal and Antiadhesive Efficiency for Hernia Operations. ACS Biomater Sci Eng 2017; 3:3662-3674. [DOI: 10.1021/acsbiomaterials.7b00757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | | | - Basak Aru
- Department
of Immunology Section, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Zehra Nur Yuksekdag
- Faculty
of
Sciences, Department of Biology, Gazi University, Ankara 06500, Turkey
| | | | | | | |
Collapse
|
8
|
Rago AP, Duggan MJ, Hannett P, Brennecke LH, LaRochelle A, Khatri C, Zugates GT, Chang Y, Sharma U, King DR. Chronic safety assessment of hemostatic self-expanding foam: 90-day survival study and intramuscular biocompatibility. J Trauma Acute Care Surg 2016; 79:S78-84. [PMID: 26131784 DOI: 10.1097/ta.0000000000000571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Noncompressible hemorrhage is a significant cause of preventable death in trauma, with no effective presurgical treatments. We previously described the efficacy and 28-day safety of a self-expanding hemostatic foam in swine models. We hypothesized that the 28-day results would be confirmed at a second site and that results would be consistent over 90 days. Finally, we hypothesized that the foam material would be biocompatible following intramuscular implantation. METHODS Foam treatment was administered in swine following a closed-cavity splenic injury. The material was explanted after 3 hours, and the animals were monitored to 28 days (n = 6) or 90 days (n = 4). Results were compared with a control group with injury alone (n = 6 at 28 days, n = 3 at 90 days). In a separate study, foam samples were implanted in rabbit paravertebral muscle and assessed at 28 days and 90 days relative to a Food and Drug Administration-approved polyurethane mesh (n = 3 per group). RESULTS All animals survived the acute phase of the study, and the foam animals required enterorrhaphy. One animal developed postoperative ileus and was euthanized; all other animals survived to the 28-day or 90-day end point without clinically significant complications. Histologic evaluation demonstrated that remnant particles were associated with a fibrotic capsule and mild inflammation. The foam was considered biocompatible in 28-day and 90-day intramuscular implant studies. CONCLUSION Foam treatment was not associated with significant evidence of end-organ dysfunction or toxicity at 28 days or 90 days. Remnant foam particles were well tolerated. These results support the long-term safety of this intervention for severely bleeding patients.
Collapse
Affiliation(s)
- Adam P Rago
- From the Division of Trauma, Emergency Surgery and Surgical Critical Care (M.J.D., Y.C., D.R.K.), Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston; Arsenal Medical, Inc. (A.P.R., P.H., C.K., G.T.Z., U.S.), Watertown; and CBSET Inc. (A.L.), Lexington, Massachusetts; Charles River Laboratories (L.H.B.), PAI, Frederick, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Aslam MF, Krashin J, Denman MA. Recurrent urethro-vaginal fistula following urethral injury and repair at the time of transobturator tape sling insertion. J OBSTET GYNAECOL 2014; 34:542-3. [PMID: 24833259 DOI: 10.3109/01443615.2014.914477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- M F Aslam
- From the Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Oregon Health and Science University , Portland, Oregon , USA
| | | | | |
Collapse
|