1
|
Chen IH, Lee TM, Huang CL. Biopolymers Hybrid Particles Used in Dentistry. Gels 2021; 7:gels7010031. [PMID: 33809903 PMCID: PMC8005972 DOI: 10.3390/gels7010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
This literature review provides an overview of the fabrication and application of biopolymer hybrid particles in dentistry. A total of 95 articles have been included in this review. In the review paper, the common inorganic particles and biopolymers used in dentistry are discussed in general, and detailed examples of inorganic particles (i.e., hydroxyapatite, calcium phosphate, and bioactive glass) and biopolymers such as collagen, gelatin, and chitosan have been drawn from the scientific literature and practical work. Among the included studies, calcium phosphate including hydroxyapatite is the most widely applied for inorganic particles used in dentistry, but bioactive glass is more applicable and multifunctional than hydroxyapatite and is currently used in clinical practice. Today, biopolymer hybrid particles are receiving more attention as novel materials for several applications in dentistry, such as drug delivery systems, bone repair, and periodontal regeneration surgery. The literature published on the biopolymer gel-assisted synthesis of inorganic particles for dentistry is somewhat limited, and therefore, this article focuses on reviewing and discussing the biopolymer hybrid particles used in dentistry.
Collapse
Affiliation(s)
- I-Hao Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tzer-Min Lee
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- School of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (T.-M.L.); (C.-L.H.); Tel.: +886-6-275-7575 (ext. 5972) (T.-M.L.); +886-7-312-1101 (ext. 2245#12) (C.-L.H.)
| | - Chih-Ling Huang
- Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (T.-M.L.); (C.-L.H.); Tel.: +886-6-275-7575 (ext. 5972) (T.-M.L.); +886-7-312-1101 (ext. 2245#12) (C.-L.H.)
| |
Collapse
|
2
|
Maleki Dana P, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Chitosan applications in studying and managing osteosarcoma. Int J Biol Macromol 2020; 169:321-329. [PMID: 33310094 DOI: 10.1016/j.ijbiomac.2020.12.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma has a high prevalence among children and adolescents. Common treatments of this disease are not promising enough. Molecular processes involved in the pathogenesis of osteosarcoma are not fully understood. Besides, the remnants of tumor cells after surgery can cause bone destruction and recurrence of the disease. Thus, there is a need to develop novel drugs or enhancing the currently-used drugs as well as identifying bone-repairing methods. Chitosan is a natural compound produced by the deacetylation of chitin. Research has shown that chitosan can be used in various fields due to its beneficial effects, such as biodegradability and biocompatibility. Regarding cancer, chitosan exerts several anti-tumor activities. Moreover, it can be used in diagnostic techniques, drug delivery systems, and cell culture methods. Herein, we aim to discuss the potential roles of chitosan in studying and treating osteosarcoma. We review the literature on chitosan's applications as a drug delivery system and how it can be combined with other substances to improve its ability of local drug delivery. We take a look into the studies concerning the possible benefits of chitosan in the field of bone tissue engineering and 3D culturing. Furthermore, anti-cancer activities of different compounds of chitosan are reviewed.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Antibacterial Bio-Based Polymers for Cranio-Maxillofacial Regeneration Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cranio-maxillofacial structure is a region of particular interest in the field of regenerative medicine due to both its anatomical complexity and the numerous abnormalities affecting this area. However, this anatomical complexity is what makes possible the coexistence of different microbial ecosystems in the oral cavity and the maxillofacial region, contributing to the increased risk of bacterial infections. In this regard, different materials have been used for their application in this field. These materials can be obtained from natural and renewable feedstocks, or by synthetic routes with desired mechanical properties, biocompatibility and antimicrobial activity. Hence, in this review, we have focused on bio-based polymers which, by their own nature, by chemical modifications of their structure, or by their combination with other elements, provide a useful antibacterial activity as well as the suitable conditions for cranio-maxillofacial tissue regeneration. This approach has not been reviewed previously, and we have specifically arranged the content of this article according to the resulting material and its corresponding application; we review guided bone regeneration membranes, bone cements and devices and scaffolds for both soft and hard maxillofacial tissue regeneration, including hybrid scaffolds, dental implants, hydrogels and composites.
Collapse
|
4
|
Li B, Chen Y, He J, Zhang J, Wang S, Xiao W, Liu Z, Liao X. Biomimetic Membranes of Methacrylated Gelatin/Nanohydroxyapatite/Poly(l-Lactic Acid) for Enhanced Bone Regeneration. ACS Biomater Sci Eng 2020; 6:6737-6747. [PMID: 33320641 DOI: 10.1021/acsbiomaterials.0c00972] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanofibrous poly(l-lactic acid) (PLLA) membrane-simulated extracellular matrices (ECMs) can be used in the biomedical field. However, the hydrophobic nature and poor osteoinductive property of PLLA limit its application in guided bone regeneration (GBR). In this work, a methacrylated gelatin/nano-HA (GelMA/nHA) complex was first synthesized in situ and then introduced into PLLA to fabricate biomimetic GelMA/nHA/PLLA membranes, mimicking the nanofibrous architecture and composition of ECMs by electrospinning and photocrosslinking. Compared to PLLA and GelMA/PLLA membranes, the novel GelMA/nHA/PLLA membranes demonstrated better tensile, hydrophilic, water sorption, and degradation properties. An in vitro biological evaluation indicated that the membranes promoted human bone marrow-derived mesenchymal stem cell (hBMSC) proliferation, adhesion, and osteogenic differentiation. Critical-sized defects in rat models were used to evaluate the bone regeneration performances of the three kinds of membranes in vivo, and the GelMA/nHA/PLLA membranes demonstrated excellent osteogenic regeneration potential. Therefore, GelMA/nHA/PLLA membranes have wide application prospects in bioengineering applications such as GBR treatment.
Collapse
Affiliation(s)
- Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ying Chen
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jisu He
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jing Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Song Wang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Zhongning Liu
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
5
|
Wang J, Qu Y, Chen C, Sun J, Pan H, Shao C, Tang R, Gu X. Fabrication of collagen membranes with different intrafibrillar mineralization degree as a potential use for GBR. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109959. [DOI: 10.1016/j.msec.2019.109959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/02/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022]
|
6
|
Lu Y, Li L, Li M, Lin Z, Wang L, Zhang Y, Yin Q, Xia H, Han G. Zero-Dimensional Carbon Dots Enhance Bone Regeneration, Osteosarcoma Ablation, and Clinical Bacterial Eradication. Bioconjug Chem 2018; 29:2982-2993. [PMID: 29986578 PMCID: PMC6380686 DOI: 10.1021/acs.bioconjchem.8b00400] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Zero-dimensional carbon dots (CD) and their effects on osteogenesis have been rarely studied in bone repair scaffolds. Here, we fabricate a novel CD doped chitosan/nanohydroxyapatite (CS/nHA/CD) scaffold with full potential to promote bone regeneration by a facile freeze-drying method. The CS/nHA/CD scaffolds enhanced cell adhesion and osteoinductivity in rat bone mesenchymal stem cells by up-regulating genes involved in focal adhesion and osteogenesis in vitro, which significantly improved the formation of vascularized new bone tissue at 4 weeks compared to pure CS/nHA scaffolds in vivo. Inspired by the excellent photothermal effect of CD, the scaffolds were applied in tumor photothermal therapy (PTT) under near-infrared (NIR) irradiation (808 nm, 1 W/cm2). The scaffolds significantly inhibited osteosarcoma cell proliferation in vitro and effectively suppressed tumor growth in vivo. Moreover, the CS/nHA/CD scaffolds possessed distinct antibacterial properties toward clinically collected S. aureus and E. coli, and their antibacterial activity was further enhanced under NIR irradiation. This work demonstrates that zero-dimensional CD can enhance the osteogenesis-inducing property of bone repair scaffolds and that CD doped scaffolds have potential for use in PTT for tumors and infections.
Collapse
Affiliation(s)
- Yao Lu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong 510282, China
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, 111 Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Lihua Li
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, 111 Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
- China-Germany Research Center for Photonic Materials and Device the State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, China
| | - Mei Li
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, 111 Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Zefeng Lin
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, 111 Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Liping Wang
- China-Germany Research Center for Photonic Materials and Device the State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, China
| | - Yu Zhang
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, 111 Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Qingshui Yin
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, 111 Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Hong Xia
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, 111 Liuhua Road, Yuexiu District, Guangzhou, Guangdong 510010, China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
7
|
Sun TW, Zhu YJ, Chen F. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair. RSC Adv 2018; 8:26218-26229. [PMID: 35541968 PMCID: PMC9082774 DOI: 10.1039/c8ra03972k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/11/2018] [Indexed: 11/21/2022] Open
Abstract
The synthetic bone grafts that mimic the composition and structure of human natural bone exhibit great potential for application in bone defect repair. In this study, a biomimetic porous nanocomposite consisting of ultralong hydroxyapatite nanowires (UHANWs) and collagen (Col) with 66.7 wt% UHANWs has been prepared by the freeze drying process and subsequent chemical crosslinking. Compared with the pure collagen as a control sample, the biomimetic UHANWs/Col porous nanocomposite exhibits significantly improved mechanical properties. More significantly, the rehydrated UHANWs/Col nanocomposite exhibits an excellent elastic behavior. Moreover, the biomimetic UHANWs/Col porous nanocomposite has a good degradable performance with a sustained release of Ca and P elements, and can promote the adhesion and spreading of mesenchymal stem cells. The in vivo evaluation reveals that the biomimetic UHANWs/Col porous nanocomposite can significantly enhance bone regeneration compared with the pure collagen sample. After 12 weeks implantation, the woven bone and lamellar bone are formed throughout the entire UHANWs/Col porous nanocomposite, and connect directly with the host bone to construct a relatively normal bone marrow cavity, leading to successful osteointegration and bone reconstruction. The as-prepared biomimetic UHANWs/Col porous nanocomposite is promising for applications in various fields such as bone defect repair.
Collapse
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China +86-21-52413122 +86-21-52412616
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China +86-21-52413122 +86-21-52412616
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China +86-21-52413122 +86-21-52412616
| |
Collapse
|
8
|
Does Adding Silver Nanoparticles to Leukocyte- and Platelet-Rich Fibrin Improve Its Properties? BIOMED RESEARCH INTERNATIONAL 2018; 2018:8515829. [PMID: 29977918 PMCID: PMC5994260 DOI: 10.1155/2018/8515829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/26/2018] [Indexed: 11/18/2022]
Abstract
Objectives Leucocyte- and platelet-rich fibrin (L-PRF) membrane can be used in various regenerative treatments. In the case of classical heterologous membrane exposure, microorganisms can be colonized on it and jeopardize the success of treatment. The aim of this study was to compare the antibacterial, mechanical, and histologic characteristics of the L-PRF membrane before and after the addition of silver nanoparticles (SNP). Materials and Method This study was performed on 10 volunteer men aged 25-35 years. 20 ml whole bloods were collected from each person and L-PRFs were made by routine and SNP modified method. Mechanical, antibacterial, and histological properties were evaluated. Results The antibacterial efficacy of L-PRF and nanosilver-modified L-PRF was presented as Klebsiella pneumonia had growth on the L-PRF membrane after 12 hours. After 24 hours, Klebsiella pneumonia and Streptococcus viridans had growth on L-PRF and only Klebsiella pneumonia had growth on SNP-L-PRF. The tensile strength and stiffness were significantly higher in the SNP-L-PRF. Precipitation of the SNPs was patchy in the outer layers and quite homogeneous in the inner core. Conclusion Modification of L-PRF with SNP improves the mechanical properties and antibacterial activity of the L-PRF. It can play an important role in regenerative procedures.
Collapse
|
9
|
Caballé-Serrano J, Munar-Frau A, Ortiz-Puigpelat O, Soto-Penaloza D, Peñarrocha M, Hernández-Alfaro F. On the search of the ideal barrier membrane for guided bone regeneration. J Clin Exp Dent 2018; 10:e477-e483. [PMID: 29849973 PMCID: PMC5971071 DOI: 10.4317/jced.54767] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/11/2018] [Indexed: 11/24/2022] Open
Abstract
Background GBRs are essential procedures in implant dentistry and periodontology where barrier membranes play an important role by isolating soft tissue and allowing bone to grow. Not all membranes function the same way, as they differ from their origin and structure, it is important to understand how membranes behave and differ one from others in order to achieve a predictable treatment. Material and Methods A systematic search on Medline by two independent reviewers was performed for articles published until July 2017 reporting the characteristics or properties of barrier membranes. The question that preceded the search was designed according to PICO rules. Results A total of 124 articles were initially identified from electronic searching. After abstract/full-text review, 21 were included for a systematic review. According to the extracted data and article analysis, barrier membranes should fulfill the following criteria in order to success: biocompatibility, space maintaining, occlusive function, easy - handling and a bioactivation friendly property. With the development of new biomaterials and surfaces, a great advance in this area is expected. Conclusions It has been clearly described that biocompatibility is the most important requirement to take into account when choosing a membrane, but other factors such as space maintaining capacity, cell oclusiveness, easy handling and bioactivation friendly materials are the ones that will fulfill our necessities. Key words:Barrier membrane, guided bone regeneration, dental implantology, oral surgery, collagen membrane, biomaterial.
Collapse
Affiliation(s)
- Jordi Caballé-Serrano
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Antonio Munar-Frau
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Octavi Ortiz-Puigpelat
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - David Soto-Penaloza
- Department of Oral Surgery, School of Medicine and Dentistry, University of Valencia, Spain
| | - Miguel Peñarrocha
- Department of Oral Surgery, School of Medicine and Dentistry, University of Valencia, Spain
| | - Federico Hernández-Alfaro
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
10
|
Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci 2017; 125:315-337. [PMID: 28833567 PMCID: PMC5601292 DOI: 10.1111/eos.12364] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Guided bone regeneration (GBR) is commonly used in combination with the installment of titanium implants. The application of a membrane to exclude non‐osteogenic tissues from interfering with bone regeneration is a key principle of GBR. Membrane materials possess a number of properties which are amenable to modification. A large number of membranes have been introduced for experimental and clinical verification. This prompts the need for an update on membrane properties and the biological outcomes, as well as a critical assessment of the biological mechanisms governing bone regeneration in defects covered by membranes. The relevant literature for this narrative review was assessed after a MEDLINE/PubMed database search. Experimental data suggest that different modifications of the physicochemical and mechanical properties of membranes may promote bone regeneration. Nevertheless, the precise role of membrane porosities for the barrier function of GBR membranes still awaits elucidation. Novel experimental findings also suggest an active role of the membrane compartment per se in promoting the regenerative processes in the underlying defect during GBR, instead of being purely a passive barrier. The optimization of membrane materials by systematically addressing both the barrier and the bioactive properties is an important strategy in this field of research.
Collapse
Affiliation(s)
- Ibrahim Elgali
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Maxillofacial Surgery/ENT, NU-Hospital organisation, Trollhättan, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Marques MS, Zepon KM, Petronilho FC, Soldi V, Kanis LA. Characterization of membranes based on cellulose acetate butyrate/poly(caprolactone)triol/doxycycline and their potential for guided bone regeneration application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:365-373. [DOI: 10.1016/j.msec.2017.03.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/20/2016] [Accepted: 03/12/2017] [Indexed: 01/22/2023]
|
12
|
Sun TW, Yu WL, Zhu YJ, Yang RL, Shen YQ, Chen DY, He YH, Chen F. Hydroxyapatite Nanowire@Magnesium Silicate Core-Shell Hierarchical Nanocomposite: Synthesis and Application in Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16435-16447. [PMID: 28481082 DOI: 10.1021/acsami.7b03532] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multifunctional biomaterials that simultaneously combine high biocompatibility, biodegradability, and bioactivity are promising for applications in various biomedical fields such as bone defect repair and drug delivery. Herein, the synthesis of hydroxyapatite nanowire@magnesium silicate nanosheets (HANW@MS) core-shell porous hierarchical nanocomposites (nanobrushes) is reported. The morphology of the magnesium silicate (MS) shell can be controlled by simply varying the solvothermal temperature and the amount of Mg2+ ions. Compared with hydroxyapatite nanowires (HANWs), the HANW@MS core-shell porous hierarchical nanobrushes exhibit remarkably increased specific surface area and pore volume, endowing the HANW@MS core-shell porous hierarchical nanobrushes with high-performance drug loading and sustained release. Moreover, the porous scaffold of HANW@MS/chitosan (HANW@MS/CS) is prepared by incorporating the HANW@MS core-shell porous hierarchical nanobrushes into the chitosan (CS) matrix. The HANW@MS/CS porous scaffold not only promotes the attachment and growth of rat bone marrow derived mesenchymal stem cells (rBMSCs), but also induces the expression of osteogenic differentiation related genes and the vascular endothelial growth factor (VEGF) gene of rBMSCs. Furthermore, the HANW@MS/CS porous scaffold can obviously stimulate in vivo bone regeneration, owing to its high bioactive performance on the osteogenic differentiation of rBMSCs and in vivo angiogenesis. Since Ca, Mg, Si, and P elements are essential in human bone tissue, HANW@MS core-shell porous hierarchical nanobrushes with multifunctional properties are expected to be promising for various biomedical applications such as bone defect repair and drug delivery.
Collapse
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | | | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Ri-Long Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yue-Qin Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | | | | | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
13
|
Sun TW, Zhu YJ, Chen F, Zhang YG. Ultralong Hydroxyapatite Nanowire/Collagen Biopaper with High Flexibility, Improved Mechanical Properties and Excellent Cellular Attachment. Chem Asian J 2017; 12:655-664. [DOI: 10.1002/asia.201601592] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P.R. China
| | - Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| |
Collapse
|
14
|
Comparison of the Mechanical Properties of Early Leukocyte- and Platelet-Rich Fibrin versus PRGF/Endoret Membranes. Int J Dent 2016; 2016:1849207. [PMID: 26880919 PMCID: PMC4736579 DOI: 10.1155/2016/1849207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023] Open
Abstract
Objectives. The mechanical properties of membranes are important factors in the success of treatment and clinical handling. The goal of this study was to compare the mechanical properties of early leukocyte- and platelet-rich fibrin (L-PRF) versus PRGF/Endoret membrane. Materials and Methods. In this experimental study, membranes were obtained from 10 healthy male volunteers. After obtaining 20 cc venous blood from each volunteer, 10 cc was used to prepare early L-PRF (group 1) and the rest was used to get a membrane by PRGF-Endoret system (group 2). Tensile loads were applied to specimens using universal testing machine. Tensile strength, stiffness, and toughness of the two groups of membranes were calculated and compared by paired t-test. Results. The mean tensile strength and toughness were higher in group 1 with a significant difference (P < 0.05). The mean stiffness in group 1 was also higher but not statistically significant (P > 0.05). Conclusions. The results showed that early L-PRF membranes had stronger mechanical properties than membranes produced by PRGF-Endoret system. Early L-PRF membranes might have easier clinical handling and could be a more proper scaffold in periodontal regenerative procedures. The real results of the current L-PRF should be in fact much higher than what is reported here.
Collapse
|
15
|
Nagarajan S, Pochat-Bohatier C, Teyssier C, Balme S, Miele P, Kalkura N, Cavaillès V, Bechelany M. Design of graphene oxide/gelatin electrospun nanocomposite fibers for tissue engineering applications. RSC Adv 2016. [DOI: 10.1039/c6ra23986b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
2D graphene oxide (GO) is used to enhance the mechanical properties of gelatin electrospun fibers. The GO does not show any significant influence on cell viability and cell attachment even though the expression of osteoblast gene is affected.
Collapse
Affiliation(s)
- Sakthivel Nagarajan
- Institut Européen des Membranes
- UMR 5635 Université Montpellier
- CNRS
- ENSCM
- F-34095 Montpellier cedex 5
| | - Céline Pochat-Bohatier
- Institut Européen des Membranes
- UMR 5635 Université Montpellier
- CNRS
- ENSCM
- F-34095 Montpellier cedex 5
| | - Catherine Teyssier
- IRCM
- Institut de Recherche en Cancérologie de Montpellier
- INSERM U1194
- Université Montpellier
- Montpellier F-34298
| | - Sébastien Balme
- Institut Européen des Membranes
- UMR 5635 Université Montpellier
- CNRS
- ENSCM
- F-34095 Montpellier cedex 5
| | - Philippe Miele
- Institut Européen des Membranes
- UMR 5635 Université Montpellier
- CNRS
- ENSCM
- F-34095 Montpellier cedex 5
| | | | - Vincent Cavaillès
- IRCM
- Institut de Recherche en Cancérologie de Montpellier
- INSERM U1194
- Université Montpellier
- Montpellier F-34298
| | - Mikhael Bechelany
- Institut Européen des Membranes
- UMR 5635 Université Montpellier
- CNRS
- ENSCM
- F-34095 Montpellier cedex 5
| |
Collapse
|
16
|
Li W, Guo R, Lan Y, Zhang Y, Xue W, Zhang Y. Preparation and properties of cellulose nanocrystals reinforced collagen composite films. J Biomed Mater Res A 2013; 102:1131-9. [DOI: 10.1002/jbm.a.34792] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/07/2013] [Accepted: 05/02/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Weichang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
- Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
| | - Yong Lan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
- Department of Materials Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
- Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
- Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
| | - Yuanming Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering; Jinan University; Guangzhou 510632 China
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| |
Collapse
|