1
|
Silva ECA, Pradelli JA, da Silva GF, Cerri PS, Tanomaru-Filho M, Guerreiro-Tanomaru JM. Biocompatibility and bioactive potential of NeoPUTTY calcium silicate-based cement: An in vivo study in rats. Int Endod J 2024; 57:713-726. [PMID: 38467586 DOI: 10.1111/iej.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
AIM To evaluate the inflammatory reaction and the ability to induce mineralization activity of a new repair material, NeoPUTTY (NPutty; NuSmile, USA), in comparison with Bio-C Repair (BC; Angelus, Brazil) and MTA Repair HP (MTA HP; Angelus, Brazil). METHODOLOGY Polyethylene tubes were filled with materials or kept empty (control group, CG) and implanted in subcutaneous tissue of rats for 7, 15, 30, and 60 days (n = 6/group). Capsule thickness, number of inflammatory cells (ICs), fibroblasts, collagen content, and von Kossa analysis were performed. Unstained sections were evaluated under polarized light and by immunohistochemistry for osteocalcin (OCN). Data were submitted to two-way anova followed by Tukey's test (p ≤ .05), except for OCN. OCN data were submitted to Kruskal-Wallis and Dunn and Friedman post hoc tests followed by the Nemenyi test at a significance level of 5%. RESULTS At 7, 15, and 30 days, thick capsules containing numerous ICs were seen around the materials. At 60 days, a moderate inflammatory reaction was observed for NPutty, BC while MTA HP presented thin capsules with moderate inflammatory cells. In all periods, NPutty specimens contained the highest values of ICs (p < .05). From 7 to 60 days, the number of ICs reduced significantly while an increase in the number of fibroblasts and birefringent collagen content was observed. At 7 and 15 days, no significant difference was observed in the immunoexpression of OCN (p > .05). At 30 and 60 days, NPutty showed the lowest values of OCN (p < .05). At 60 days, a similar immunoexpression was observed for BC and MTA HP (p > .05). In all time intervals, capsules around NPutty, BC, and MTA HP showed von Kossa-positive and birefringent structures. CONCLUSIONS Despite the greater inflammatory reaction promoted by NeoPutty than BC and MTA HP, the reduction in the thickness of capsules, the increase in the number of fibroblasts, and the reduction in the number of ICs indicate that this bioceramic material is biocompatible Furthermore, NeoPutty presents the ability to induce mineralization activity.
Collapse
Affiliation(s)
- Evelin Carine Alves Silva
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Jéssica Arielli Pradelli
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | | | - Paulo Sérgio Cerri
- Department of Morphology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Mario Tanomaru-Filho
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | | |
Collapse
|
2
|
Oliveira Pinho F, Pinto Joazeiro P, Santos AR. Evaluation of the Growth and Differentiation of Human Fetal Osteoblasts (hFOB) Cells on Demineralized Bone Matrix (DBM). Organogenesis 2021; 17:136-149. [PMID: 34845978 DOI: 10.1080/15476278.2021.2003134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cells with osteogenic potential are believed to be an ideal source for bone tissue bioengineering. Large bone defects require temporary substitution of the damaged parts. In this respect, the transplantation of bone cells cultured on osteogenic substrates has been investigated. To use the natural bone matrix, one approach is the so-called demineralized bone matrix (DBM). In this study, we evaluated the interaction of human fetal osteoblasts (hFOB 1.19 cells, a human fetal osteoblastic cell line) with DBM fragments. No additional bone differentiation inducer was used other than the DBM itself. The samples were processed, had adhesion pattern evaluated and analyzed by light microscopy (cytochemical and immunocytochemical analysis) and electron microscopy (scanning and transmission). The adhesion pattern of hFOB cells on DBM was similar to what was observed on the cell culture plate. Morphological analysis showed that the hFOB cells had emitted filopodia and cellular projections on both controls and DBM. On DBM, the adhered cells emitted prolongations and migrated into the matrix. The monolayer growth pattern was observed as well as the accumulation of filamentous and reticulate extracellular materials when hFOB cells were cultured on the DBM surface. EDS analysis revealed the deposition of calcium on DBM. Immunocytochemical data showed that the hFOB cells were able to secrete extracellular matrix molecules such as fibronectin and laminin on DBM. Our data indicate that DBM successfully stimulates the osteoblastic phenotype of osteoblast-like cells and corroborate with the fact that DBM is a considerable natural matrix that promotes fractured-bone healing.
Collapse
Affiliation(s)
- Flavia Oliveira Pinho
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAM, Campinas, SP Brazil
| | - Paulo Pinto Joazeiro
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAM, Campinas, SP Brazil
| | - Arnaldo R Santos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
3
|
Obregon-Miano F, Fathi A, Rathsam C, Sandoval I, Deheghani F, Spahr A. Injectable porcine bone demineralized and digested extracellular matrix-PEGDA hydrogel blend for bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:21. [PMID: 31989310 DOI: 10.1007/s10856-019-6354-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Extracellular matrix (ECM) has a major role in the structural support and cellular processes of organs and tissues. Proteins extracted from the ECM have been used to fabricate different scaffolds for tissue engineering applications. The aims of the present study were to extract, characterize and fabricate a new class of hydrogel with proteins isolated from pig bone ECM and combine them with a synthetic polymer so it could be used to promote bone regeneration. Porcine bone demineralized and digested extracellular matrix (pddECM) containing collagen type I was produced, optimized and sterilized with high pressurized CO2 method. The pddECM was further blended with 20% w/v polyethylene glycol diacrylate (PEGDA) to create an injectable semi interpenetrating polymer network (SIPN) scaffold with enhanced physicochemical properties. The blend tackled the shortfall of natural polymers, such as lack of structural stability and fast degradation, preserving its structure in more than 90% after 30 days of incubation; thus, increasing the material endurance in a simulated physiological environment. The manufactured injectable hydrogel showed high cytocompatibility with hOb and SaOs-2 cells, promoting osteogenic proliferation within 21 days of culture. The hydrogel had a high compression modulus of 520 kPa, low swelling (5.3 mg/mg) and millimetric volume expansion (19.5%), all of which are favorable characteristics for bone regeneration applications.
Collapse
Affiliation(s)
- Fabian Obregon-Miano
- Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2010, Australia.
- Dental School, Faculty of Medicine and Health, Bioengineering Unit, Westmead Hospital, Centre for Oral Health, Westmead, The University of Sydney, Sydney, NSW, 2145, Australia.
| | - Ali Fathi
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Catherine Rathsam
- Institute for Dental Research IDR, Westmead Hospital, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Isbel Sandoval
- Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2010, Australia
| | - Fariba Deheghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Axel Spahr
- Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2010, Australia
| |
Collapse
|
4
|
Dos Santos DA, de Guzzi Plepis AM, da Conceição Amaro Martins V, Cardoso GBC, Santos AR, Iatecola A, Andrade TN, Monteiro FM, Calegari ARA, Chacon EL, Cunha MR. Effects of the combination of low-level laser therapy and anionic polymer membranes on bone repair. Lasers Med Sci 2019; 35:813-821. [PMID: 31463820 DOI: 10.1007/s10103-019-02864-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022]
Abstract
In view of the limitations of bone reconstruction surgeries using autologous grafts as a gold standard, tissue engineering is emerging as an alternative, which permits the fabrication and improvement of scaffolds to stimulate osteogenesis and angiogenesis, processes that are essential for bone repair. Polymers are used to mimic the extracellular bone matrix and support cell growth. In addition, bone neoformation can be induced by external factors such as laser irradiation, which stimulates bone metabolism. The objective of this study was to evaluate the regeneration of bone defects using collagen and elastin membranes derived from intestinal serosa and bovine auricular cartilage combined with low-level laser application. Thirty-six Wistar rats were operated to create a 3-mm defect in the distal metaphysis of the left femur and divided into six groups: G1 (control, no treatment); G2 (laser); G3 (elastin graft), G4 (elastin+laser); G5 (collagen graft); G6 (collagen+laser). The animals were sacrificed 6 weeks after surgery and the femurs were removed for analysis of bone repair. Macroscopic and radiological results showed the absence of an infectious process in the surgical area. This was confirmed by histological analysis, which revealed no inflammatory infiltrate. Histomorphometry showed that the formation of new bone started from the margins of the bone defect and its volume was greater in elastin+laser and collagen+laser. We conclude that newly formed bone in the graft area was higher in the groups that received the biomaterials and laser. The collagen and elastin matrices showed biocompatibility.
Collapse
Affiliation(s)
- Daniel Alves Dos Santos
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering, University of São Paulo, USP, Trabalhador São Carlense av., 400, São Carlos, São Paulo, Brazil
| | | | - Guinea Brasil Camargo Cardoso
- Materials Engineering Department, Faculty of Mechanical Engineering, State University of Campinas, Campinas, São Paulo, Brazil
| | - Arnaldo Rodrigues Santos
- Center of Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Amilton Iatecola
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Tiago Neves Andrade
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Fabrício Moreira Monteiro
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Amanda Regina Alves Calegari
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Erivelto Luis Chacon
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Marcelo Rodrigues Cunha
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil. .,Interunit Postgraduate Program in Bioengineering, University of São Paulo, USP, Trabalhador São Carlense av., 400, São Carlos, São Paulo, Brazil.
| |
Collapse
|
5
|
GALEMBECK FERNANDO, BURGO THIAGOA, SILVA DOUGLASSDA, SANTOS LEANDRAP. Materials from renewable resources: new properties and functions. AN ACAD BRAS CIENC 2019; 91:e20181160. [DOI: 10.1590/0001-3765201920181160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/05/2019] [Indexed: 11/22/2022] Open
|
6
|
Pettian MS, Plepis AMDG, Martins VDCA, dos Santos GR, Pinto CAL, Galdeano EA, Calegari ARA, de Moraes CA, da Cunha MR. Use of an anionic collagen matrix made from bovine intestinal serosa for in vivo repair of cranial defects. PLoS One 2018; 13:e0197806. [PMID: 30001321 PMCID: PMC6042682 DOI: 10.1371/journal.pone.0197806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022] Open
Abstract
Polymeric biomaterials composed of extracellular matrix components possess osteoconductive capacity that is essential for bone healing. The presence of collagen and the ability to undergo physicochemical modifications render these materials a suitable alternative in bone regenerative therapies. The objective of this study was to evaluate the osteogenic capacity of collagen-based matrices (native and anionic after alkaline hydrolysis) made from bovine intestinal serosa (MBIS). Twenty-five animals underwent surgery to create a cranial defect to be filled with native and anionic collagen matrixes, mmineralized and non mineralized. The animals were killed painlessly 6 weeks after surgery and samples of the wound area were submitted to routine histology and morphometric analysis. In the surgical area there was new bone formation projecting from the margins to the center of the defect. More marked bone neoformation occurred in the anionic matrices groups in such a way that permitted union of the opposite margins of the bone defect. The newly formed bone matrix exhibited good optical density of type I collagen fibers. Immunoexpression of osteocalcin by osteocytes was observed in the newly formed bone. Morphometric analysis showed a greater bone volume in the groups receiving the anionic matrices compared to the native membranes. Mineralization of the biomaterial did not increase its osteoregenerative capacity. In conclusion, the anionic matrix exhibits osteoregenerative capacity and is suitable for bone reconstruction therapies.
Collapse
Affiliation(s)
- Mariane Silva Pettian
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, São Paulo, Brazil, Jundiaí –SP, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering, University of São Paulo, USP, São Carlos-SP, Brazil
- Institute of Chemistry of São Carlos, University of São Paulo, USP, São Carlos-SP, Brazil
| | | | - Geovane Ribeiro dos Santos
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, São Paulo, Brazil, Jundiaí –SP, Brazil
| | - Clovis Antônio Lopes Pinto
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, São Paulo, Brazil, Jundiaí –SP, Brazil
- Department of Anatomical Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Ewerton Alexandre Galdeano
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, São Paulo, Brazil, Jundiaí –SP, Brazil
| | | | - Carlos Alberto de Moraes
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, São Paulo, Brazil, Jundiaí –SP, Brazil
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, São Paulo, Brazil, Jundiaí –SP, Brazil
- Interunit Postgraduate Program in Bioengineering, University of São Paulo, USP, São Carlos-SP, Brazil
- * E-mail:
| |
Collapse
|
7
|
Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage. Int J Mol Sci 2015; 16:26813-31. [PMID: 26569221 PMCID: PMC4661848 DOI: 10.3390/ijms161125989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023] Open
Abstract
Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model.
Collapse
|
8
|
Hirata HH, Munhoz MAS, Plepis AMG, Martins VCA, Santos GR, Galdeano EA, Cunha MR. Feasibility study of collagen membranes derived from bovine pericardium and intestinal serosa for the repair of cranial defects in ovariectomised rats. Injury 2015; 46:1215-22. [PMID: 25920373 DOI: 10.1016/j.injury.2015.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/26/2015] [Accepted: 03/30/2015] [Indexed: 02/02/2023]
Abstract
The indication of biomaterials has increased substantially in the regenerative therapy of bone defects. However, in addition to evaluating the physicochemical properties of biomaterials, the quality of the recipient tissue is also essential for the osseointegration of implants, as abnormalities in bone metabolism, such as gonadal hormone deficiency, can influence bone healing. This study evaluated the osteoregenerative capacity of collagen membranes derived from bovine pericardium and intestinal serosa in the repair of cranial defects in ovariectomised rats. Thirty female Wistar rats were submitted to surgical creation of a 5-mm cranial bone defect. The rats were divided into a control group (not ovariectomised) and an ovariectomised group. The non-ovariectomised group was divided into three subgroups: control (G1) in which the defect was not filled with the biomaterial, and two subgroups (G2 and G3) that received the bovine pericardium- and serosa-derived collagen membranes, respectively. The ovariectomised group was divided into the same subgroups (G4, G5, and G6). The animals were sacrificed 8 weeks after surgery. The calvaria were removed for macroscopic and radiographic photodocumentation and processed for histomorphometric analysis of bone healing at the surgical site. Macroscopic, radiological, and microscopic analyses demonstrated the biocompatibility of the implanted collagen membranes, as indicated by the absence of infiltration and signs of inflammation at the surgical site. Histologically, discrete immature bone neoformation projecting from the margins of the defect was observed at the surgical site in ovariectomised groups when compared to the non-ovariectomised groups. The volume of newly formed bone was significantly higher in the non-ovariectomised groups (G1: 7.83%±1.32; G2: 21.33%±1.96; and G3: 22.83%±0.98) compared to the respective ovariectomised subgroups (G4: 3.16%±0.75; G5: 16.83%±0.98; and G6: 16.16%±0.75), thus demonstrating the deleterious effects of ovariectomy on bone homeostasis. Higher volumes of newly formed bone were observed in the groups receiving the membrane grafts (G2, G3, G5, and G6) compared to the control groups (G1 and G4). In conclusion, the bilateral ovariectomy compromises the ability to repair bone lesions grafted with osteoconductive biomaterials as in the case of collagen membranes derived from both bovine pericardium and intestinal serosa.
Collapse
Affiliation(s)
- H H Hirata
- Programa de Pós Graduação Interunidades Bioengenharia, Universidade de São Paulo, USP, Av. Trabalhador São Carlense, 400, São Carlos CEP: 13566-590, SP, Brazil; Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Rua Francisco Telles, 250, Vila Arens, Cx. Postal 1295, Jundiaí CEP. 13202-550, SP, Brazil.
| | - M A S Munhoz
- Programa de Pós Graduação Interunidades Bioengenharia, Universidade de São Paulo, USP, Av. Trabalhador São Carlense, 400, São Carlos CEP: 13566-590, SP, Brazil; Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Rua Francisco Telles, 250, Vila Arens, Cx. Postal 1295, Jundiaí CEP. 13202-550, SP, Brazil.
| | - A M G Plepis
- Programa de Pós Graduação Interunidades Bioengenharia, Universidade de São Paulo, USP, Av. Trabalhador São Carlense, 400, São Carlos CEP: 13566-590, SP, Brazil; Instituto de Química de São Carlos, Universidade de São Paulo, USP, Av. Trabalhador São Carlense, 400, São Carlos CEP: 13566-590, SP, Brazil.
| | - V C A Martins
- Instituto de Química de São Carlos, Universidade de São Paulo, USP, Av. Trabalhador São Carlense, 400, São Carlos CEP: 13566-590, SP, Brazil.
| | - G R Santos
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Rua Francisco Telles, 250, Vila Arens, Cx. Postal 1295, Jundiaí CEP. 13202-550, SP, Brazil.
| | - E A Galdeano
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Rua Francisco Telles, 250, Vila Arens, Cx. Postal 1295, Jundiaí CEP. 13202-550, SP, Brazil.
| | - M R Cunha
- Programa de Pós Graduação Interunidades Bioengenharia, Universidade de São Paulo, USP, Av. Trabalhador São Carlense, 400, São Carlos CEP: 13566-590, SP, Brazil; Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Rua Francisco Telles, 250, Vila Arens, Cx. Postal 1295, Jundiaí CEP. 13202-550, SP, Brazil.
| |
Collapse
|
9
|
Martelli A, Santos AR. Cellular and morphological aspects of fibrodysplasia ossificans progressiva. Lessons of formation, repair, and bone bioengineering. Organogenesis 2014; 10:303-11. [PMID: 25482313 DOI: 10.4161/org.29206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disease that causes bone formation within the muscles, tendons, ligaments and connective tissues. There is no cure for this disorder and only treatment of the symptoms is available. The purpose of this study was to review the literature and describe the clinical, cellular and molecular aspects of FOP. The material used for the study was obtained by reviewing scientific articles published in various literature-indexed databases. In view of its rarity and of the lack of insightful information and the unpredictability of its course, FOP is a challenging disorder for professionals who are confronted by it. However, this rare disease raises a great deal of interest because understanding the mechanism of mature bone formation can encourage research lines related to bone regeneration and the prevention of heterotopic ossification.
Collapse
Affiliation(s)
- Anderson Martelli
- a Faculdade Mogiana do Estado de São Paulo (FMG) ; Mogi Guaçu , Brazil
| | | |
Collapse
|