1
|
Wang X, Ding T. A Review on the Current State of Microcapsule-Based Self-Healing Dental Composites. J Funct Biomater 2024; 15:165. [PMID: 38921538 PMCID: PMC11204524 DOI: 10.3390/jfb15060165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Resin-based dental composites, commonly used in dentistry, offer several advantages including minimally invasive application, esthetically pleasing appearance, and good physical and mechanical properties. However, these dental composites can be susceptible to microcracks due to various factors in the complex oral environment. These microcracks can potentially lead to clinical restoration failure. Conventional materials and methods are inadequate for detecting and repairing these microcracks in situ. Consequently, incorporating self-healing properties into dental composites has become a necessity. Recent years have witnessed rapid advancements in self-healing polymer materials, drawing inspiration from biological bionics. Microcapsule-based self-healing dental composites (SHDCs) represent some of the most prevalent types of self-healing materials utilized in this domain. In this article, we undertake a comprehensive review of the most recent literature, highlighting key insights and findings related to microcapsule-based SHDCs. Our discussion centers particularly on the preparation techniques, application methods, and the promising future of self-healing microcapsules in the field of dentistry.
Collapse
Affiliation(s)
| | - Tian Ding
- School of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China;
| |
Collapse
|
2
|
Schommer JV, Chong ACM, Erickson TD. Influence of the Advanced One-Step Mixing System Under Non-Vacuum on the Mechanical Properties of Acrylic Bone Cement. THE IOWA ORTHOPAEDIC JOURNAL 2024; 44:63-68. [PMID: 38919359 PMCID: PMC11195905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Background The specific aim of this study was to evaluate the mechanical properties of cement prepared with the advanced one-step mixing system and whether the addition of vacuum conditions yielded an appreciable improvement in the biomechanical strength or overall quality of bone cement. Methods The advanced one-step mixing system was used. Twelve specimens were prepared by mixing under vacuum conditions and 12 specimens were prepared by mixing without a vacuum. Radiographs of cement specimens were analyzed to determine the porosity of the test region. Tensile testing of the specimens was performed with a loading rate of 2.54mm/min at room temperature. The ultimate tensile strength (UTS) and the tensile elastic modulus (E) were determined for each sample. Results The UTS of the bone cement samples mixed under vacuum conditions were not significantly different than those mixed without vacuum (vacuum: 39±6MPa; non-vacuum: 35±6MPa; p=0.637). The E of samples mixed under vacuum conditions was significantly higher than the bone cement mixed without vacuum (vacuum: 2.78±0.06GPa; non-vacuum: 2.63±0.15GPa; p=0.019). Radiographic images showed samples mixed under vacuum conditions contained fewer defects than the samples mixed without vacuum (vacuum: 3.5%±3.3% (range: 0.0%-9.0%); non-vacuum: 6.9%±1.0% (range: 4.6%-8.2%)). Conclusion Mixing bone cement with the advanced one-step mixing system under vacuum conditions does not produce an appreciable difference in the UTS of the bone cement in a bench biomechanical testing model compared to the bone cement mixed without vacuum. It does, however, create a less porous cement mixture with a higher E compared to cement mixed without vacuum. Level of Evidence: V.
Collapse
Affiliation(s)
- Jillian V. Schommer
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Alexander CM. Chong
- Department of Graduate Medical Education, Sanford Health, Fargo,North Dakota, USA
| | - Troy D. Erickson
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
3
|
Seonwoo H, Choung HW, Park S, Choi KS, Jang KJ, Kim J, Lim KT, Kim Y, Garg P, Pandey S, Lee J, Park JC, Choung YH, Choung PH, Kim SY, Chung JH. Reduced graphene oxide-incorporated calcium phosphate cements with pulsed electromagnetic fields for bone regeneration. RSC Adv 2022; 12:5557-5570. [PMID: 35425568 PMCID: PMC8981265 DOI: 10.1039/d1ra05717k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Natural calcium phosphate cements (CPCs) derived from sintered animal bone have been investigated to treat bone defects, but their low mechanical strength remains a critical limitation. Graphene improves the mechanical properties of scaffolds and promotes higher osteoinduction. To this end, reduced graphene oxide-incorporated natural calcium phosphate cements (RGO-CPCs) are fabricated for reinforcement of CPCs' characteristics. Pulsed electromagnetic fields (PEMFs) were additionally applied to RGO-CPCs to promote osteogenic differentiation ability. The fabricated RGO-CPCs show distinct surface properties and chemical properties according to the RGO concentration. The RGO-CPCs’ mechanical properties are significantly increased compared to CPCs owing to chemical bonding between RGO and CPCs. In in vitro studies using a mouse osteoblast cell line and rat-derived adipose stem cells, RGO-CPCs are not severely toxic to either cell type. Cell migration study, western blotting, immunocytochemistry, and alizarin red staining assay reveal that osteoinductivity as well as osteoconductivity of RGO-CPCs was highly increased. In in vivo study, RGO-CPCs not only promoted bone ingrowth but also enhanced osteogenic differentiation of stem cells. Application of PEMFs enhanced the osteogenic differentiation of stem cells. RGO-CPCs with PEMFs can overcome the flaws of previously developed natural CPCs and are anticipated to open the gate to clinical application for bone repair and regeneration. Natural calcium phosphate cements (CPCs) derived from sintered animal bone have been investigated to treat bone defects, but their low mechanical strength remains a critical limitation.![]()
Collapse
Affiliation(s)
- Hoon Seonwoo
- Department of Covergent Biosystems Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Han-Wool Choung
- Department of Oral Histology-Developmental Biology, Dental Research Institute and School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Sangbae Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Soon Choi
- Advanced Nano-Surface Research Group, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Kyoung-Je Jang
- Division of Agro-System Engineering, College of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yeonju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Pankaj Garg
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Shambhavi Pandey
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Juo Lee
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon, 57922, Republic of Korea
- Department of Animal Science & Technology, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, Dental Research Institute and School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Soo Young Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong Hoon Chung
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea
- BK21 Global Smart Farm Educational Research Center, Seoul National University, Seoul 08826, Korea
- Convergence Major in Global Smart Farm, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Wang XX, Yao S, Zhou CJ, Wu JL. [Application and potential future directions of self-healing polymers in dentistry]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:75-79. [PMID: 32037770 DOI: 10.7518/hxkq.2020.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-healing materials have rapidly developed in recent years to overcome the micro-cracks occurring in the polymer matrix. Self-healing ability offers autonomous crack repairs to prolong the service lives of polymers or polymer composites. As a main approach, extrinsic self-healing materials based on microcapsules have been applied in dentistry recently. This paper comprehensively presented and reviewed the definition and classification of self-healing materials, the synthesis of microcapsules, the calculation of self-healing efficiency, and the application of self-healing materials in dentistry. The future directions of self-healing polymers are also discussed.
Collapse
Affiliation(s)
- Xiao-Xi Wang
- Dept. of Prosthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Shuo Yao
- Dept. of Prosthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Chuan-Jian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jun-Ling Wu
- Dept. of Prosthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
5
|
Haryadi BM, Hafner D, Amin I, Schubel R, Jordan R, Winter G, Engert J. Nonspherical Nanoparticle Shape Stability Is Affected by Complex Manufacturing Aspects: Its Implications for Drug Delivery and Targeting. Adv Healthc Mater 2019; 8:e1900352. [PMID: 31410996 DOI: 10.1002/adhm.201900352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Indexed: 02/04/2023]
Abstract
The shape of nanoparticles is known recently as an important design parameter influencing considerably the fate of nanoparticles with and in biological systems. Several manufacturing techniques to generate nonspherical nanoparticles as well as studies on in vitro and in vivo effects thereof have been described. However, nonspherical nanoparticle shape stability in physiological-related conditions and the impact of formulation parameters on nonspherical nanoparticle resistance still need to be investigated. To address these issues, different nanoparticle fabrication methods using biodegradable polymers are explored to produce nonspherical nanoparticles via the prevailing film-stretching method. In addition, systematic comparisons to other nanoparticle systems prepared by different manufacturing techniques and less biodegradable materials (but still commonly utilized for drug delivery and targeting) are conducted. The study evinces that the strong interplay from multiple nanoparticle properties (i.e., internal structure, Young's modulus, surface roughness, liquefaction temperature [glass transition (Tg ) or melting (Tm )], porosity, and surface hydrophobicity) is present. It is not possible to predict the nonsphericity longevity by merely one or two factor(s). The most influential features in preserving the nonsphericity of nanoparticles are existence of internal structure and low surface hydrophobicity (i.e., surface-free energy (SFE) > ≈55 mN m-1 , material-water interfacial tension <6 mN m-1 ), especially if the nanoparticles are soft (<1 GPa), rough (Rrms > 10 nm), porous (>1 m2 g-1 ), and in possession of low bulk liquefaction temperature (<100 °C). Interestingly, low surface hydrophobicity of nanoparticles can be obtained indirectly by the significant presence of residual stabilizers. Therefore, it is strongly suggested that nonsphericity of particle systems is highly dependent on surface chemistry but cannot be appraised separately from other factors. These results and reviews allot valuable guidelines for the design and manufacturing of nonspherical nanoparticles having adequate shape stability, thereby appropriate with their usage purposes. Furthermore, they can assist in understanding and explaining the possible mechanisms of nonspherical nanoparticles effectivity loss and distinctive material behavior at the nanoscale.
Collapse
Affiliation(s)
- Bernard Manuel Haryadi
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universität München Butenandtstraße 5 81377 Munich Germany
| | - Daniel Hafner
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Ihsan Amin
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Rene Schubel
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Rainer Jordan
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Gerhard Winter
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universität München Butenandtstraße 5 81377 Munich Germany
| | - Julia Engert
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universität München Butenandtstraße 5 81377 Munich Germany
| |
Collapse
|
6
|
Andreotti Damante C, Cardoso MV, Hage Karam PSB, Haiter AC, Sant'ana ACP, Greghi SLA, Zangrando MSR, De Rezende MLR, Oliveira RC. Evaluation of Regular Market Ethyl Cyanoacrylate Cytotoxicity for Human Gingival Fibroblasts and Osteoblasts. Surg Infect (Larchmt) 2019; 21:29-34. [PMID: 31397637 DOI: 10.1089/sur.2019.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: The aim of this study was to evaluate the cytotoxicity of cyanoacrylate adhesives in an indirect contact assay in human gingival fibroblast (FGH) and oral osteoblasts (GO) lineages. Methods: Cover glasses were glued with adhesives following the ISO 10993-2012 protocol. The groups were: C (control with cells and regular Dulbecco Modified Eagle Medium; LC (liquid ethyl-cyanoacrylate); GC (ethyl-cyanoacrylate gel); EGC (easy gel [ethyl-cyanoacrylate]); and D (Dermabond [octyl-cyanoacrylate]). Each cell linage was plated in the sixth passage using 104 cells. Cell viability was measured by the MTT test at 24, 48, 72, and 96 hours. Data were analyzed by two-way analysis of variance complemented by the Tukey test, with p < 0.05 being significant. Results: Dermabond stimulated osteoblast viability at 72 h (p < 0.05). All other groups were similar to the control cells (p > 0.05). For the fibroblasts, there was no difference in the groups, including the control except that EGC was cytotoxic for these cells (p < 0.05). Conclusions: Ethyl-cyanoacrylate gel and liquid forms available on the general chemical market were not cytotoxic for oral osteoblasts and fibroblasts in most cases. However, the easy gel form was cytotoxic for fibroblasts.
Collapse
Affiliation(s)
- Carla Andreotti Damante
- Department of Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Matheus Völz Cardoso
- Department of Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Ana Carolina Haiter
- Department of Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Wu J, Xie X, Zhou H, Tay FR, Weir MD, Melo MAS, Oates TW, Zhang N, Zhang Q, Xu HH. Development of a new class of self-healing and therapeutic dental resins. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Zhu W, Chuah YJ, Wang DA. Bioadhesives for internal medical applications: A review. Acta Biomater 2018; 74:1-16. [PMID: 29684627 DOI: 10.1016/j.actbio.2018.04.034] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
Abstract
Bioadhesives such as tissue adhesives, hemostatic agents, and tissue sealants have gained increasing popularity in different areas of clinical operations during the last three decades. Bioadhesives can be categorized into internal and external ones according to their application conditions. External bioadhesives are generally applied in topical medications such as wound closure and epidermal grafting. Internal bioadhesives are mainly used in intracorporal conditions with direct contact to internal environment including tissues, organs and body fluids, such as chronic organ leak repair and bleeding complication reduction. This review focuses on internal bioadhesives that, in contrast with external bioadhesives, emphasize much more on biocompatibility and adhesive ability to wet surfaces rather than on gluing time and intensity. The crosslinking mechanisms of present internal bioadhesives can be generally classified as follows: 1) chemical conjugation between reactive groups; 2) free radical polymerization by light or redox initiation; 3) biological or biochemical coupling with specificity; and 4) biomimetic adhesion inspired from natural phenomena. In this review, bioadhesive products of each class are summarized and discussed by comparing their designs, features, and applications as well as their prospects for future development. STATEMENT OF SIGNIFICANCE Despite the emergence of numerous novel bioadhesive formulations in recent years, thus far, the classification of internal and external bioadhesives has not been well defined and universally acknowledged. Many of the formulations have been proposed for treatment of several diseases even though they are not applicable for such conditions. This is because of the lack of a systematic standard or evaluation protocol during the development of a new adhesive product. In this review, the definition of internal and external bioadhesives is given for the first time, and with a focus on internal bioadhesives, the criteria of an ideal internal bioadhesive are adequately discussed; this is followed by the review of recently developed internal bioadhesives based on different gluing mechanisms.
Collapse
Affiliation(s)
- Wenzhen Zhu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yon Jin Chuah
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637335, Singapore
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore.
| |
Collapse
|
9
|
Polymers with autonomous life-cycle control. Nature 2017; 540:363-370. [PMID: 27974778 DOI: 10.1038/nature21002] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
Abstract
The lifetime of man-made materials is controlled largely by the wear and tear of everyday use, environmental stress and unexpected damage, which ultimately lead to failure and disposal. Smart materials that mimic the ability of living systems to autonomously protect, report, heal and even regenerate in response to damage could increase the lifetime, safety and sustainability of many manufactured items. There are several approaches to achieving these functions using polymer-based materials, but making them work in highly variable, real-world situations is proving challenging.
Collapse
|
10
|
|
11
|
Brochu ABW, Matthys OB, Craig SL, Reichert WM. Extended fatigue life of a catalyst free self-healing acrylic bone cement using microencapsulated 2-octyl cyanoacrylate. J Biomed Mater Res B Appl Biomater 2014; 103:305-12. [PMID: 24825796 DOI: 10.1002/jbm.b.33199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/30/2014] [Accepted: 04/12/2014] [Indexed: 11/12/2022]
Abstract
The tissue adhesive 2-octyl cyanoacrylate (OCA) was encapsulated in polyurethane microshells and incorporated into bone cement to form a catalyst free, self-healing bone cement comprised of all clinically approved components. The bending strength, modulus, and fatigue lifetime were investigated in accordance with ASTM and ISO standards for the testing of PMMA bone cement. The bending strength of bone cement specimens decreased with increasing wt % capsules content for capsules without or with OCA, with specimens of <5 wt % capsule content showing minimal effect. In contrast, bone cement bending modulus was insensitive to capsule content. Load controlled fatigue testing was performed in air at room temperature on capsule free bone cement (0 wt %), bone cement with 5 wt % OCA-free capsules (5 wt % No OCA), and 5 wt % OCA-containing capsules (5 wt % OCA). Specimens were tested at a frequency of 5 Hz at maximum stresses of 90%, 80%, 70%, and 50% of each specimen's bending strength until failure. The 5 wt % OCA exhibited significant self-healing at 70% and 50% of its reference strength (p < 0.05). Fatigue testing of all three specimen types in air at 22 MPa (50% of reference strength of the 5 wt % OCA specimens) showed that the cycles to failure of OCA-containing specimens was increased by two-fold compared with the OCA-free and capsule-free specimens. This study represents the first demonstration of dynamic, catalyst free self-healing in a biomaterial formulation.
Collapse
Affiliation(s)
- Alice B W Brochu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708
| | | | | | | |
Collapse
|