1
|
Machado A, Pereira I, Costa F, Brandão A, Pereira JE, Maurício AC, Santos JD, Amaro I, Falacho R, Coelho R, Cruz N, Gama M. Randomized clinical study of injectable dextrin-based hydrogel as a carrier of a synthetic bone substitute. Clin Oral Investig 2023; 27:979-994. [PMID: 36707442 PMCID: PMC9985577 DOI: 10.1007/s00784-023-04868-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/14/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVES This study aimed to improve the performance and mode of administration of a glass-reinforced hydroxyapatite synthetic bone substitute, Bonelike by Biosckin® (BL®), by association with a dextrin-based hydrogel, DEXGEL, to achieve an injectable and moldable device named DEXGEL Bone. METHODS Twelve participants requiring pre-molar tooth extraction and implant placement were enrolled in this study. BL® granules (250-500 µm) were administered to 6 randomized participants whereas the other 6 received DEXGEL Bone. After 6 months, a bone biopsy of the grafted area was collected for histological and histomorphometric evaluation, prior to implant placement. The performance of DEXGEL Bone and BL® treatments on alveolar preservation were further analyzed by computed tomography and Hounsfield density analysis. Primary implant stability was analyzed by implant stability coefficient technique. RESULTS The healing of defects was free of any local or systemic complications. Both treatments showed good osseointegration with no signs of adverse reaction. DEXGEL Bone exhibited increased granule resorption (p = 0.029) accompanied by a tendency for more new bone ingrowth (although not statistically significant) compared to the BL® group. The addition of DEXGEL to BL® granules did not compromise bone volume or density, being even beneficial for implant primary stability (p = 0.017). CONCLUSIONS The hydrogel-reinforced biomaterial exhibited an easier handling, a better defect filling, and benefits in implant stability. CLINICAL RELEVANCE This study validates DEXGEL Bone safety and performance as an injectable carrier of granular bone substitutes for alveolar ridge preservation. TRIAL REGISTRATION European Databank on Medical Devices (EUDAMED) No. CIV-PT-18-01-02,705; Registo Nacional de Estudos Clínicos, RNEC, No. 30122.
Collapse
Affiliation(s)
- Alexandra Machado
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal
| | - Isabel Pereira
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal
| | - Filomena Costa
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana Brandão
- Biosckin, Molecular and Cell Therapies S.A., TecMaia, Rua Engenheiro Frederico Ulrich 2650, 4470-605, Maia, Portugal
| | - José Eduardo Pereira
- CECAV, Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - José Domingos Santos
- REQUIMTE/LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-495, Porto, Portugal
| | - Inês Amaro
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui Falacho
- Institute of Oral Implantology and Prosthodontics, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui Coelho
- RESDEVMED, Unipessoal Lda., Travessa do Navega, 436 C, 3885-183, Ovar, Portugal
| | - Nuno Cruz
- Faculty of Dentistry, Universitat Internacional de Catalunya, 08017, Barcelona, Spain
| | - Miguel Gama
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
2
|
Liu G, Zhou X, Zhang L, Zou Y, Xue J, Xia R, Abuduxiku N, Xuejing Gan, Liu R, Chen Z, Cao Y, Chen Z. Cell-free immunomodulatory biomaterials mediated in situ periodontal multi-tissue regeneration and their immunopathophysiological processes. Mater Today Bio 2022; 16:100432. [PMID: 36204216 PMCID: PMC9530615 DOI: 10.1016/j.mtbio.2022.100432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022]
Abstract
Cell-free biomaterials-inducing endogenous in situ multi-tissue regeneration is very challenging and applying advanced immunomodulatory biomaterials can be an effective strategy to overcome it. In-depth knowledge of the immunopathophysiological mechanisms should be acquired before applying such an immunomodulation strategy. In this study, we implanted different immunoregulatory cell-free biomaterials into periodontal multi-tissue defects and showed that the outcome of multi-tissue regeneration is closely regulated by the immune reaction. The underlying immunopathophysiological processes, including the blood clotting response and fibrinoid necrosis, innate and adaptive immune response, local and systemic immune reaction, growth factors release, and stem cells recruitment, were revealed. The implantation of biomaterials with anti-inflammatory properties could direct the immunopathophysiological process and make it more favorable for in situ multi-tissue regeneration, ultimately enabling the regeneration of the periodontal ligament, the acellular cementum matrix, and the alveolar bone in the periodontium. These findings further confirm the effectiveness of immunomodulatory based strategy and the unveiling of their immunopathophysiological processes could provide some favorable theoretical bases for the development of advanced cell-free immunomodulatory multi-tissue regenerative biomaterials.
Collapse
|
3
|
Pinto PO, Branquinho MV, Caseiro AR, Sousa AC, Brandão A, Pedrosa SS, Alvites RD, Campos JM, Santos FL, Santos JD, Mendonça CM, Amorim I, Atayde LM, Maurício AC. The application of Bonelike® Poro as a synthetic bone substitute for the management of critical-sized bone defects - A comparative approach to the autograft technique - A preliminary study. Bone Rep 2021; 14:101064. [PMID: 33981810 PMCID: PMC8082556 DOI: 10.1016/j.bonr.2021.101064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
The effective treatment of non-unions and critical-sized defects remains a challenge in the orthopedic field. From a tissue engineering perspective, this issue can be addressed through the application bioactive matrixes to support bone regeneration, such as Bonelike®, as opposed to the widespread autologous grafting technique. An improved formulation of Bonelike® Poro, was assessed as a synthetic bone substitute in an ovine model for critical-sized bone defects. Bone regeneration was assessed after 5 months of recovery through macro and microscopic analysis of the healing features of the defect sites. Both the application of natural bone graft or Bonelike® Poro resulted in bridging of the defects margins. Untreated defect remained as fibrous non-unions at the end of the study period. The characteristics of the newly formed bone and its integration with the host tissue were assessed through histomorphometric and histological analysis, which demonstrated Bonelike® Poro to result in improved healing of the defects. The group treated with synthetic biomaterial presented bone bridges of increased thickness and bone features that more closely resembled the native spongeous and cortical bone. The application of Bonelike® Poro enabled the regeneration of critical-sized lesions and performed comparably to the autograph technique, validating its octeoconductive and osteointegrative potential for clinical application as a therapeutic strategy in human and veterinary orthopedics.
Collapse
Affiliation(s)
- P O Pinto
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.,Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - M V Branquinho
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - A R Caseiro
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.,Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - A C Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - A Brandão
- Biosckin, Molecular and Cell Therapies, SA, Parque de Ciência e Tecnologia da Maia, Rua Eng. Frederico Ulrich, 2650, 4470-605 Moreira da Maia, Portugal
| | - S S Pedrosa
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - R D Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - J M Campos
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.,Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - F L Santos
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - J D Santos
- Network of Chemistry and Technology - Associated Laboratory for Green Chemistry (REQUIMTE-LAQV), Department of Metallurgy and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - C M Mendonça
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - I Amorim
- Department of Pathology and Molecular Immunology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Rua Jorge Viterbo Ferreira, n ° 228, 4050-313 Porto, Portugal.,Institute of Research and Innovation in Health (i3S), University of Porto (UP), Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - L M Atayde
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - A C Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
4
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Mendonça C, Atayde LM, Maurício AC. Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. BIOLOGY 2021; 10:biology10030249. [PMID: 33810087 PMCID: PMC8004958 DOI: 10.3390/biology10030249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Small ruminants such as sheep and goats have been increasingly used as animal models due to their dimensions, physiology and anatomy identical to those of humans. Their low costs, ease of accommodation, great longevity and easy handling make them advantageous animals to be used in a wide range of research work. Although there is already a lot of scientific literature describing these species, their use still lacks some standardization. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models for scientific research. Abstract Medical and translational scientific research requires the use of animal models as an initial approach to the study of new therapies and treatments, but when the objective is an exploration of translational potentialities, classical models fail to adequately mimic problems in humans. Among the larger animal models that have been explored more intensely in recent decades, small ruminants, namely sheep and goats, have emerged as excellent options. The main advantages associated to the use of these animals in research works are related to their anatomy and dimensions, larger than conventional laboratory animals, but very similar to those of humans in most physiological systems, in addition to their low maintenance and feeding costs, tendency to be docile, long life expectancies and few ethical complications raised in society. The most obvious disadvantages are the significant differences in some systems such as the gastrointestinal, and the reduced amount of data that limits the comparison between works and the validation of the characterization essays. Despite everything, recently these species have been increasingly used as animal models for diseases in different systems, and the results obtained open doors for their more frequent and advantageous use in the future. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models, with a focus on regenerative medicine, to group the most relevant works and results published recently and to highlight the potentials for the near future in medical research.
Collapse
Affiliation(s)
- Rui Damásio Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-919-071-286 or +351-220-428-000
| |
Collapse
|
5
|
Pereira I, Pereira JE, Maltez L, Rodrigues A, Rodrigues C, Oliveira M, Silva DM, Caseiro AR, Prada J, Maurício AC, Santos JD, Gama M. Regeneration of critical-sized defects, in a goat model, using a dextrin-based hydrogel associated with granular synthetic bone substitute. Regen Biomater 2020; 8:rbaa036. [PMID: 33732486 PMCID: PMC7947577 DOI: 10.1093/rb/rbaa036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
The development of injectable bone substitutes (IBS) have obtained great importance in the bone regeneration field, as a strategy to reach hardly accessible defects using minimally invasive techniques and able to fit to irregular topographies. In this scenario, the association of injectable hydrogels and bone graft granules is emerging as a well-established trend. Particularly, in situ forming hydrogels have arisen as a new IBS generation. An in situ forming and injectable dextrin-based hydrogel (HG) was developed, aiming to act as a carrier of granular bone substitutes and bioactive agents. In this work, the HG was associated to a granular bone substitute (Bonelike®) and implanted in goat critical-sized calvarial defects (14 mm) for 3, 6 and 12 weeks. The results showed that HG improved the handling properties of the Bonelike® granules and did not affect its osteoconductive features, neither impairing the bone regeneration process. Human multipotent mesenchymal stromal cells from the umbilical cord, extracellular matrix hydrolysates and the pro-angiogenic peptide LLKKK18 were also combined with the IBS. These bioactive agents did not enhance the new bone formation significantly under the conditions tested, according to micro-computed tomography and histological analysis.
Collapse
Affiliation(s)
- Isabel Pereira
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
- Correspondence address. CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. Tel: +351-253-604-418; E-mail:
| | - José Eduardo Pereira
- CECAV, Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Luís Maltez
- CECAV, Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Alexandra Rodrigues
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Catarina Rodrigues
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Manuela Oliveira
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Dina M Silva
- Biosckin, Molecular and Cell Therapies S.A., Laboratório Criovida, TecMaia, Rua Engenheiro Frederico Ulrich 2650, Moreira da Maia 4470-605, Portugal
| | - Ana Rita Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto 4051-401 Portugal
- Centro de Investigação Vasco da Gama (CIVG)/Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, n.° 197 Lordemão, Coimbra 3020-210, Portugal
| | - Justina Prada
- CECAV, Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto 4051-401 Portugal
| | - José Domingos Santos
- REQUIMTE/LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr Roberto Frias, Porto 4200-495, Portugal
| | - Miguel Gama
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
6
|
Pereira I, Fraga S, Maltez L, Requicha J, Guardão L, Oliveira J, Prada J, Alves H, Santos JD, Teixeira JP, Pereira JE, Soares R, Gama FM. In vivo systemic toxicity assessment of an oxidized dextrin-based hydrogel and its effectiveness as a carrier and stabilizer of granular synthetic bone substitutes. J Biomed Mater Res A 2019; 107:1678-1689. [PMID: 30920095 DOI: 10.1002/jbm.a.36683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 11/11/2022]
Abstract
The worldwide incidence of bone disorders is raising, mainly due to aging population. The lack of effective treatments is pushing the development of synthetic bone substitutes (SBSs). Most ceramic-based SBSs commercially available display limited handling properties. Attempting to solve these issues and achieve wider acceptance by the clinicians, granular ceramics have been associated with hydrogels (HGs) to produce injectable/moldable SBSs. Dextrin, a low-molecular-weight carbohydrate, was used to develop a fully resorbable and injectable HG. It was first oxidized with sodium periodate and then cross-linked with adipic acid dihydrazide. The in vivo biocompatibility and safety of the dextrin-based HG was assessed by subacute systemic toxicity and skin sensitization tests, using rodent models. The results showed that the HG did not induce any systemic toxic effect, skin reaction, or genotoxicity, neither impaired the bone repair/regeneration process. Then, the HG was successfully combined with granular bone substitute, registered as Bonelike (250-500 μm) to obtain a moldable/injectable SBS, which was implanted in tibial fractures in goats for 3 and 6 weeks. The obtained results showed that HG allowed the stabilization of the granules into the defect, ensuring effective handling, and molding properties of the formulation, as well as an efficient cohesion of the granules. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1678-1689, 2019.
Collapse
Affiliation(s)
- Isabel Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Dr. Ricardo Jorge, 4000-053, Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, 4050-600, Porto, Portugal
| | - Luís Maltez
- CECAV - Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - João Requicha
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Luísa Guardão
- Animal House Unit, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Joana Oliveira
- Animal House Unit, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Justina Prada
- CECAV - Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Helena Alves
- Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Dr. Ricardo Jorge, 4000-053, Porto, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Dr. Ricardo Jorge, 4000-053, Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, 4050-600, Porto, Portugal
| | - José Eduardo Pereira
- CECAV - Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Raquel Soares
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-319, Portugal
| | - Francisco Miguel Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
7
|
Campos JM, Sousa AC, Pinto PO, Ribeiro J, França ML, Caseiro AR, Branquinho MV, Pedrosa SS, Mendonça C, Brandão A, Santos JD, Afonso A, Atayde LM, Luís AL, Maurício AC. Application of Bonelike® as synthetic bone graft in orthopaedic and oral surgery in veterinary clinical cases. Biomater Res 2018; 22:38. [PMID: 30619619 PMCID: PMC6310926 DOI: 10.1186/s40824-018-0150-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023] Open
Abstract
Autologous bone remains the gold standard grafting substrate for bone fusions used for small gaps and critical defects. However, significant morbidity is associated with the harvesting of autologous bone grafts and, for that reason, alternative bone graft substitutes have been developed. In the present case series, a glass-reinforced hydroxyapatite synthetic bone substitute, with osteoinductive and osteoconductive proprieties, was applied. This synthetic bone substitute comprises the incorporation of P2O5-CaO glass-based system within a hydroxyapatite matrix, moulded into spherical pellets with 250-500 μm of diameter. A total of 14 veterinary clinical cases of appendicular bone defects and maxillary / mandibular bone defects are described. In all clinical cases, the synthetic bone substitute was used to fill bone defects, enhancing bone regeneration and complementing the recommended surgical techniques. Results demonstrated that it is an appropriate synthetic bone graft available to be used in veterinary patients. It functioned as a space filler in association with standard orthopaedic and odontological procedures of stabilization, promoting a faster bone fusion without any local or systemic adverse reactions. This procedure improves the animals' quality of life, decreasing pain and post-operative recovery period, as well as increasing bone stability improving positive clinical outcomes.
Collapse
Affiliation(s)
- José Miguel Campos
- Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra, Coimbra, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Ana Catarina Sousa
- REQUIMTE/LAQV – U. Porto – Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Pedro Olivério Pinto
- Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra, Coimbra, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Jorge Ribeiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Miguel Lacueva França
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Ana Rita Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- REQUIMTE/LAQV – U. Porto – Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Mariana Vieira Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Sílvia Santos Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Carla Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Ana Brandão
- Biosckin, Molecular and Cell Therapies S.A., Laboratório Criovida, TecMaia, Rua Engenheiro Frederico Ulrich 2650, 4470-605 Moreira da Maia, Portugal
| | - José Domingos Santos
- REQUIMTE/LAQV – U. Porto – Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Américo Afonso
- Faculdade de Medicina Dentária da Universidade do Porto (FMDUP), 4200-393 Porto, Portugal
| | - Luís Miguel Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Ana Lúcia Luís
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| |
Collapse
|
8
|
Campos JM, Sousa AC, Caseiro AR, Pedrosa SS, Pinto PO, Branquinho MV, Amorim I, Santos JD, Pereira T, Mendonça CM, Afonso A, Atayde LM, Maurício AC. Dental pulp stem cells and Bonelike ® for bone regeneration in ovine model. Regen Biomater 2018; 6:49-59. [PMID: 30740242 PMCID: PMC6362823 DOI: 10.1093/rb/rby025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Development of synthetic bone substitutes has arisen as a major research interest in the need to find an alternative to autologous bone grafts. Using an ovine model, the present pre-clinical study presents a synthetic bone graft (Bonelike®) in combination with a cellular system as an alternative for the regeneration of non-critical defects. The association of biomaterials and cell-based therapies is a promising strategy for bone tissue engineering. Mesenchymal stem cells (MSCs) from human dental pulp have demonstrated both in vitro and in vivo to interact with diverse biomaterial systems and promote mineral deposition, aiming at the reconstruction of osseous defects. Moreover, these cells can be found and isolated from many species. Non-critical bone defects were treated with Bonelike® with or without MSCs obtained from the human dental pulp. Results showed that Bonelike® and MSCs treated defects showed improved bone regeneration compared with the defects treated with Bonelike® alone. Also, it was observed that the biomaterial matrix was reabsorbed and gradually replaced by new bone during the healing process. We therefore propose this combination as an efficient binomial strategy that promotes bone growth and vascularization in non-critical bone defects.
Collapse
Affiliation(s)
- J M Campos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra (HVUC), Campo Universitário - Bloco B, Lordemão, Coimbra, Portugal
| | - A C Sousa
- REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - A R Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal
| | - S S Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - P O Pinto
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra (HVUC), Campo Universitário - Bloco B, Lordemão, Coimbra, Portugal
| | - M V Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - I Amorim
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - J D Santos
- REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - T Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - C M Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - A Afonso
- Faculdade de Medicina Dentária da Universidade do Porto (FMDUP), Porto, Portugal
| | - L M Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - A C Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| |
Collapse
|
9
|
Pan Z, Jiang P, Xue S, Wang T, Li H, Wang J. Repair of a critical-size segmental rabbit femur defect using bioglass-β-TCP monoblock, a vascularized periosteal flap and BMP-2. J Biomed Mater Res B Appl Biomater 2017; 106:2148-2156. [PMID: 29024418 DOI: 10.1002/jbm.b.34018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/12/2017] [Accepted: 09/24/2017] [Indexed: 01/13/2023]
Abstract
Various synthetic bone substitutes are not suitable for reconstructing critical-size bone defects. This study tested whether a bioglass-β-tricalcium phosphate (β-TCP) monoblock is effective for repairing critical-size segmental bone defects if combined with a vascularized periosteal flap and bone morphogenetic protein (BMP)-2. A femoral osteotomy with a gap size of 20 mm was created and stabilized using a plate in 40 rabbits.The defect was left untreated (group A) or repaired using a monoblock (group B), a monoblock with a vascularized periosteal flap (group C), or a monoblock with a vascularized periosteal flap and BMP-2 (group D). Bone regeneration, vascularization and monoblock degradation were analyzed after four and eight weeks using x-ray, hematoxylin-eosin, CD34 immunohistochemical and Masson's trichrome staining observation and histometric evaluation. The radiographic grading score showed a time-dependent increase from weeks 4 to 8. At 8-week postoperative, the total new regenerated bone in groups C and D was 20.0 ± 0.3 and 55.5 ± 8.0 mm2 , respectively, which was significantly greater than in group B. Conversely, group D showed less residual monoblock than did group C. An increase in microvessel density was also observed in groups C and D compared with group B at 4 and 8 weeks postoperative, respectively. This study suggests that bioglass-β-TCP monoblock alone exhibits poor potential to repair a 20-mm femoral defect. However, supplementation with a vascularized periosteal flap and BMP-2 led to effective vascularization and reliable bone regeneration throughout the monoblock, with concordant material degradation in a timely manner. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2148-2156, 2018.
Collapse
Affiliation(s)
- Zhaohui Pan
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| | - Pingping Jiang
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| | - Shan Xue
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| | - Tao Wang
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| | - Hongfei Li
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| | - Jianli Wang
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| |
Collapse
|
10
|
Sun YX, Zhang JF, Li DJ, Wu XM, Xu LL, Pan XH, Li G. Comparing the osteoconductive potential between tubular and cylindrical beta-tricalcium phosphate scaffolds: An experimental study in rats. J Biomed Mater Res B Appl Biomater 2017; 106:1934-1940. [DOI: 10.1002/jbm.b.34011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Yu-Xin Sun
- Department of Orthopaedics and Traumatology; Bao-An District People's Hospital; Shenzhen People's Republic of China
- Department of Orthopaedics and Traumatology; Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital; Shatin Hong Kong SAR People's Republic of China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute; Shenzhen People's Republic of China
| | - Jin-Fang Zhang
- Key Laboratory of Orthopaedics and Traumatology; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine; Guangzhou China
| | - Dong-Ji Li
- Department of Orthopaedics and Traumatology; Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital; Shatin Hong Kong SAR People's Republic of China
| | - Xiao-Min Wu
- Department of Orthopaedics and Traumatology; Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital; Shatin Hong Kong SAR People's Republic of China
| | - Liang-Liang Xu
- Department of Orthopaedics and Traumatology; Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital; Shatin Hong Kong SAR People's Republic of China
| | - Xiao-Hua Pan
- Department of Orthopaedics and Traumatology; Bao-An District People's Hospital; Shenzhen People's Republic of China
| | - Gang Li
- Department of Orthopaedics and Traumatology; Bao-An District People's Hospital; Shenzhen People's Republic of China
- Department of Orthopaedics and Traumatology; Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital; Shatin Hong Kong SAR People's Republic of China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute; Shenzhen People's Republic of China
- Key Laboratory for Regenerative Medicine; Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; Hong Kong SAR People' Republic of China
| |
Collapse
|
11
|
Silva DM, Caseiro AR, Amorim I, Pereira I, Faria F, Pereira T, Santos JD, Gama FM, Maurício AC. Inflammatory response to dextrin-based hydrogel associated with human mesenchymal stem cells, urinary bladder matrix and Bonelike ® granules in rat subcutaneous implants. ACTA ACUST UNITED AC 2016; 11:065004. [PMID: 27786165 DOI: 10.1088/1748-6041/11/6/065004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing relevance has been attributed to hydrogels due to their ability to provide an extracellular matrix (ECM)-like environment for cellular adhesion and proliferation, acting as mechanical scaffolds for tissue remodeling or as delivery matrices. In vivo biocompatibility of a hybrid dextrin hydrogel produced from oxidized dextrin and adipic acid dihydrazide and its combinations with human mesenchymal stem cells (hMSCs), ECM from a porcine bladder (urinary bladder matrix) and ceramic granules (Bonelike®), was evaluated following ISO 10993 after subcutaneous implantation in a rat model. Histological analysis after 3 and 15 d showed typical acute and chronic inflammatory responses, respectively, with a more severe reaction exhibited whenever the ceramic granules were present. However, the dextrin hydrogel was able to stabilize granules in the implant site. Dextrin hydrogel was scored as slight irritant after 3 d, similar to its combination with UBM, and as non-irritant after 15 d. The presence of viable hMSCs in the subcutaneous tissue could be confirmed by the presence of anti-human nuclei antibody (HuNu+) cells. The production of growth factors and inflammatory and immunomodulatory cytokines by these cells was also quantified in peripheral blood confirming the successful encapsulation of hMSCs into the hydrogel matrix for cell survival promotion. The presence of hMSCs seemed to modulate the inflammatory response by accelerating its progression when compared to the acellular experimental groups. Dextrin hydrogel has proven to be a biocompatible multifunctional matrix for minimally invasive biomedical procedures, including orthopedic surgeries when associated with bone substitutes and also as a possible encapsulation matrix for cell-based therapies.
Collapse
Affiliation(s)
- Dina M Silva
- CEB-Centre of Biological Engineering, Universidade do Minho (UM), Campus de Gualtar, 4710-057 Braga, Portugal. Author to whom all correspondence should be addressed
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bellucci D, Sola A, Cannillo V. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. J Biomed Mater Res A 2015; 104:1030-56. [DOI: 10.1002/jbm.a.35619] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Devis Bellucci
- Department of Engineering “E. Ferrari,”; University of Modena and Reggio Emilia; via P. Vivarelli 10 Modena 41125 Italy
| | - Antonella Sola
- Department of Engineering “E. Ferrari,”; University of Modena and Reggio Emilia; via P. Vivarelli 10 Modena 41125 Italy
| | - Valeria Cannillo
- Department of Engineering “E. Ferrari,”; University of Modena and Reggio Emilia; via P. Vivarelli 10 Modena 41125 Italy
| |
Collapse
|
13
|
Xia CQ, Peng R, Chernatynskaya AV, Yuan L, Carter C, Valentine J, Sobel E, Atkinson MA, Clare-Salzler MJ. Increased IFN-α-producing plasmacytoid dendritic cells (pDCs) in human Th1-mediated type 1 diabetes: pDCs augment Th1 responses through IFN-α production. THE JOURNAL OF IMMUNOLOGY 2014; 193:1024-34. [PMID: 24973447 DOI: 10.4049/jimmunol.1303230] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Increasing evidence suggests that type 1 IFN (IFN-αβ) is associated with pathogenesis of Th1-mediated type 1 diabetes (T1D). A major source of IFN-αβ is plasmacytoid dendritic cells (pDCs). In this study, we analyzed peripheral blood pDC numbers and functions in at-risk, new-onset, and established T1D patients and controls. We found that subjects at risk for T1D and new-onset and established T1D subjects possessed significantly increased pDCs but similar number of myeloid DCs when compared with controls. pDC numbers were not affected by age in T1D subjects but declined with increasing age in control subjects. It was demonstrated that IFN-α production by PBMCs stimulated with influenza viruses was significantly higher in T1D subjects than in controls, and IFN-α production was correlated with pDC numbers in PBMCs. Of interest, only T1D-associated Coxsackievirus serotype B4 but not B3 induced majority of T1D PBMCs to produce IFN-α, which was confirmed to be secreted by pDCs. Finally, in vitro studies demonstrated IFN-α produced by pDCs augmented Th1 responses, with significantly greater IFN-γ-producing CD4(+) T cells from T1D subjects. These findings indicate that increased pDCs and their IFN-αβ production may be associated with this Th1-mediated autoimmune disease, especially under certain viral infections linked to T1D pathogenesis.
Collapse
Affiliation(s)
- Chang-Qing Xia
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Ruihua Peng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Anna V Chernatynskaya
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Lihui Yuan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Carolyn Carter
- Department of Pediatrics, University of Florida, Gainesville, FL 32610; and
| | - John Valentine
- Department of Medicine, University of Florida, Gainesville, FL 32610
| | - Eric Sobel
- Department of Medicine, University of Florida, Gainesville, FL 32610
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610;
| |
Collapse
|