1
|
Fareez IM, Liew FF, Widera D, Mayeen NF, Mawya J, Abu Kasim NH, Haque N. Application of Platelet-Rich Plasma as a Stem Cell Treatment - an Attempt to Clarify a Common Public Misconception. Curr Mol Med 2024; 24:689-701. [PMID: 37171013 DOI: 10.2174/1566524023666230511152646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
In recent years, there has been a significant increase in the practice of regenerative medicine by health practitioners and direct-to-consumer businesses globally. Among different tools of regenerative medicine, platelet-rich plasma (PRP) and stem cell-based therapies have received considerable attention. The use of PRP, in particular, has gained popularity due to its easy access, simple processing techniques, and regenerative potential. However, it is important to address a common misconception amongst the general public equating to PRP and stem cells due to the demonstrated efficacy of PRP in treating musculoskeletal and dermatological disorders. Notably, PRP promotes regeneration by providing growth factors or other paracrine factors only. Therefore, it cannot replenish or replace the lost cells in conditions where a large number of cells are required to regenerate tissues and/or organs. In such cases, cellbased therapies are the preferred option. Additionally, other tools of regenerative medicine, such as bioprinting, organoids, and mechanobiology also rely on stem cells for their success. Hence, healthcare and commercial entities offering direct-to-customer regenerative therapies should not mislead the public by claiming that the application of PRP is a stem cell-based therapy. Furthermore, it is important for regulatory bodies to strictly monitor these profit-driven entities to prevent them from providing unregulated regenerative treatments and services that claim a broad variety of benefits with little proof of efficacy, safety concerns, and obscure scientific justification.
Collapse
Affiliation(s)
- Ismail M Fareez
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| | - Fong Fong Liew
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, 42610, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, UK
| | - Naiyareen Fareeza Mayeen
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Planegg- Martinsried, 82152, Germany
- TotiCell Limited, Dhaka, 1209, Bangladesh
| | | | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Faculty of Dentistry, University Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | | |
Collapse
|
2
|
López-Canosa A, Perez-Amodio S, Yanac-Huertas E, Ordoño J, Rodriguez-Trujillo R, Samitier J, Castaño O, Engel E. A microphysiological system combining electrospun fibers and electrical stimulation for the maturation of highly anisotropic cardiac tissue. Biofabrication 2021; 13. [PMID: 33962409 DOI: 10.1088/1758-5090/abff12] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/07/2021] [Indexed: 12/28/2022]
Abstract
The creation of cardiac tissue models for preclinical testing is still a non-solved problem in drug discovery, due to the limitations related to thein vitroreplication of cardiac tissue complexity. Among these limitations, the difficulty of mimicking the functional properties of the myocardium due to the immaturity of the used cells hampers the obtention of reliable results that could be translated into human patients.In vivomodels are the current gold standard to test new treatments, although it is widely acknowledged that the used animals are unable to fully recapitulate human physiology, which often leads to failures during clinical trials. In the present work, we present a microfluidic platform that aims to provide a range of signaling cues to immature cardiac cells to drive them towards an adult phenotype. The device combines topographical electrospun nanofibers with electrical stimulation in a microfabricated system. We validated our platform using a co-culture of neonatal mouse cardiomyocytes and cardiac fibroblasts, showing that it allows us to control the degree of anisotropy of the cardiac tissue inside the microdevice in a cost-effective way. Moreover, a 3D computational model of the electrical field was created and validated to demonstrate that our platform is able to closely match the distribution obtained with the gold standard (planar electrode technology) using inexpensive rod-shaped biocompatible stainless-steel electrodes. The functionality of the electrical stimulation was shown to induce a higher expression of the tight junction protein Cx-43, as well as the upregulation of several key genes involved in conductive and structural cardiac properties. These results validate our platform as a powerful tool for the tissue engineering community due to its low cost, high imaging compatibility, versatility, and high-throughput configuration capabilities.
Collapse
Affiliation(s)
- Adrián López-Canosa
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Soledad Perez-Amodio
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,IMEM-BRT Group, Department Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| | - Eduardo Yanac-Huertas
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jesús Ordoño
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Romen Rodriguez-Trujillo
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain.,Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri i Reixac 15-21, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Josep Samitier
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain.,Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri i Reixac 15-21, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Oscar Castaño
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,IMEM-BRT Group, Department Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| |
Collapse
|
3
|
Vasanthan J, Gurusamy N, Rajasingh S, Sigamani V, Kirankumar S, Thomas EL, Rajasingh J. Role of Human Mesenchymal Stem Cells in Regenerative Therapy. Cells 2020; 10:E54. [PMID: 33396426 PMCID: PMC7823630 DOI: 10.3390/cells10010054] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells which can proliferate and replace dead cells in the body. MSCs also secrete immunomodulatory molecules, creating a regenerative microenvironment that has an excellent potential for tissue regeneration. MSCs can be easily isolated and grown in vitro for various applications. For the past two decades, MSCs have been used in research, and many assays and tests have been developed proving that MSCs are an excellent cell source for therapy. This review focusses on quality control parameters required for applications of MSCs including colony formation, surface markers, differentiation potentials, and telomere length. Further, the specific mechanisms of action of MSCs under various conditions such as trans-differentiation, cell fusion, mitochondrial transfer, and secretion of extracellular vesicles are discussed. This review aims to underline the applications and benefits of MSCs in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Jayavardini Vasanthan
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 600036, India
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
| | - Shivaani Kirankumar
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 600036, India
| | - Edwin L. Thomas
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Gopinath VK, Soumya S, Chakrapani VY, Kumar TSS. Odontogenic differentiation of inflamed dental pulp stem cells (IDPSCs) on polycaprolactone (PCL) nanofiber blended with hydroxyapatite. Dent Mater J 2020; 40:312-321. [PMID: 33055433 DOI: 10.4012/dmj.2020-005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of this study was to develop electrospun polycaprolactone (PCL) membranes blended with hydroxyapatite (HA) and evaluate its potential in differentiating inflamed dental pulp stem/progenitor cells (IDPSCs) into odontoblasts. Electrospun nanofibrous membrane consisting of PCL blended with 10 wt% and 15 wt% of HA were fabricated and the characterization was done by Scanning electron microscopy (SEM), Fourier- transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and contact angle analysis. Cytocompatibility, cell adhesion and odontogenic differentiation ability of the membranes were assessed by MTT, Live/Dead, SEM/DAPI and qPCR studies. The mineral deposition ability of the membranes with IDPSCs was estimated by SEM-EDS. The SEM analysis revealed a nanofibrous texture with an average fiber diameter of 140 nm for PCL, 220 nm for PCL10%HA and 250 nm for PCL15%HA. Among the membranes tested, PCL10%HA favored positive cell attachments, upregulated expression of DSPP and ALP gene and higher Ca/P ratio compared to PCL and PCL15%HA.
Collapse
Affiliation(s)
| | - Sheela Soumya
- Sharjah Institute for Medical Research, University of Sharjah, University City
| | | | | |
Collapse
|
7
|
Sachot N, Castaño O, Oliveira H, Martí-Muñoz J, Roguska A, Amedee J, Lewandowska M, Planell JA, Engel E. A novel hybrid nanofibrous strategy to target progenitor cells for cost-effective in situ angiogenesis. J Mater Chem B 2016; 4:6967-6978. [DOI: 10.1039/c6tb02162j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ti-doped calcium phosphate ormoglasses combined with biodegradable PLA promote an efficient and low-cost angiogenesis by the generation of high Ca2+concentrated interfaces that induce a high yield of tubulogenesis, with the gain in interface–cell interaction and instructivity.
Collapse
Affiliation(s)
- N. Sachot
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - O. Castaño
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - H. Oliveira
- Inserm U1026
- Tissue Bioengineering
- University of Bordeaux
- 33076 Bordeaux
- France
| | - J. Martí-Muñoz
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - A. Roguska
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - J. Amedee
- Inserm U1026
- Tissue Bioengineering
- University of Bordeaux
- 33076 Bordeaux
- France
| | - M. Lewandowska
- Faculty of Materials Science and Engineering
- Warsaw University of Technology
- 02-507 Warsaw
- Poland
| | - J. A. Planell
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - E. Engel
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| |
Collapse
|