1
|
Kumar MS, Varma P, Kandasubramanian B. From lab to life: advances in in-situbioprinting and bioink technology. Biomed Mater 2024; 20:012004. [PMID: 39704234 DOI: 10.1088/1748-605x/ad9dd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Bioprinting has the potential to revolutionize tissue engineering and regenerative medicine, offering innovative solutions for complex medical challenges and addressing unmet clinical needs. However, traditionalin vitrobioprinting techniques face significant limitations, including difficulties in fabricating and implanting scaffolds with irregular shapes, as well as limited accessibility for rapid clinical application. To overcome these challenges,in-situbioprinting has emerged as a groundbreaking approach that enables the direct deposition of cells, biomaterials, and bioactive factors onto damaged organs or tissues, eliminating the need for pre-fabricated 3D constructs. This method promises a personalized, patient-specific approach to treatment, aligning well with the principles of precision medicine. The success ofin-situbioprinting largely depends on the advancement of bioinks, which are essential for maintaining cell viability and supporting tissue development. Recent innovations in hand-held bioprinting devices and robotic arms have further enhanced the flexibility ofin-situbioprinting, making it applicable to various tissue types, such as skin, hair, muscle, bone, cartilage, and composite tissues. This review examinesin-situbioprinting techniques, the development of smart, multifunctional bioinks, and their essential properties for promoting cell viability and tissue growth. It highlights the versatility and recent advancements inin-situbioprinting methods and their applications in regenerating a wide range of tissues and organs. Furthermore, it addresses the key challenges that must be overcome for broader clinical adoption and propose strategies to advance these technologies toward mainstream medical practice.
Collapse
Affiliation(s)
- Manav Sree Kumar
- Dr D. Y. Patil Biotechnology and Bioinformatics Institute, Tathawade Pune-411033 Maharashtra, India
| | - Payal Varma
- Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar Pune-411025 Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar Pune-411025 Maharashtra, India
| |
Collapse
|
2
|
Jain P, Kathuria H, Ramakrishna S, Parab S, Pandey MM, Dubey N. In Situ Bioprinting: Process, Bioinks, and Applications. ACS APPLIED BIO MATERIALS 2024; 7:7987-8007. [PMID: 38598256 DOI: 10.1021/acsabm.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Traditional tissue engineering methods face challenges, such as fabrication, implantation of irregularly shaped scaffolds, and limited accessibility for immediate healthcare providers. In situ bioprinting, an alternate strategy, involves direct deposition of biomaterials, cells, and bioactive factors at the site, facilitating on-site fabrication of intricate tissue, which can offer a patient-specific personalized approach and align with the principles of precision medicine. It can be applied using a handled device and robotic arms to various tissues, including skin, bone, cartilage, muscle, and composite tissues. Bioinks, the critical components of bioprinting that support cell viability and tissue development, play a crucial role in the success of in situ bioprinting. This review discusses in situ bioprinting techniques, the materials used for bioinks, and their critical properties for successful applications. Finally, we discuss the challenges and future trends in accelerating in situ printing to translate this technology in a clinical settings for personalized regenerative medicine.
Collapse
Affiliation(s)
- Pooja Jain
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, E-Centre@Redhill, 3791 Jalan Bukit Merah, Singapore 159471, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| | - Shraddha Parab
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Murali M Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119805, Singapore
| |
Collapse
|
3
|
Quílez C, Bebiano LB, Jones E, Maver U, Meesters L, Parzymies P, Petiot E, Rikken G, Risueño I, Zaidi H, Zidarič T, Bekeschus S, H van den Bogaard E, Caley M, Colley H, López NG, Letsiou S, Marquette C, Maver T, Pereira RF, Tobin DJ, Velasco D. Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments. J Invest Dermatol 2024; 144:2650-2670. [PMID: 39127929 DOI: 10.1016/j.jid.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 08/12/2024]
Abstract
Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.
Collapse
Affiliation(s)
- Cristina Quílez
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Luís B Bebiano
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Eleri Jones
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Luca Meesters
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Piotr Parzymies
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ignacio Risueño
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Hamza Zaidi
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sander Bekeschus
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | | | - Matthew Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Nuria Gago López
- Melanoma group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece; Department of Food Science and Technology, University of West Attica, Athens, Greece
| | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Diego Velasco
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
4
|
Al-Musawi MH, Turki S, Al-Naymi HAS, Sameer Al-salman S, Boroujeni VV, Alizadeh M, Sattar M, Sharifianjazi F, Bazli L, Pajooh AMD, Shahriari-Khalaji M, Najafinezhad A, Moghadam FM, Mirhaj M, Tavakoli M. Localized delivery of healing stimulator medicines for enhanced wound treatment. J Drug Deliv Sci Technol 2024; 101:106212. [DOI: 10.1016/j.jddst.2024.106212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
7
|
Yaron JR, Gosangi M, Pallod S, Rege K. In situ light-activated materials for skin wound healing and repair: A narrative review. Bioeng Transl Med 2024; 9:e10637. [PMID: 38818119 PMCID: PMC11135152 DOI: 10.1002/btm2.10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 06/01/2024] Open
Abstract
Dermal wounds are a major global health burden made worse by common comorbidities such as diabetes and infection. Appropriate wound closure relies on a highly coordinated series of cellular events, ultimately bridging tissue gaps and regenerating normal physiological structures. Wound dressings are an important component of wound care management, providing a barrier against external insults while preserving the active reparative processes underway within the wound bed. The development of wound dressings with biomaterial constituents has become an attractive design strategy due to the varied functions intrinsic in biological polymers, such as cell instructiveness, growth factor binding, antimicrobial properties, and tissue integration. Using photosensitive agents to generate crosslinked or photopolymerized dressings in situ provides an opportunity to develop dressings rapidly within the wound bed, facilitating robust adhesion to the wound bed for greater barrier protection and adaptation to irregular wound shapes. Despite the popularity of this fabrication approach, relatively few experimental wound dressings have undergone preclinical translation into animal models, limiting the overall integrity of assessing their potential as effective wound dressings. Here, we provide an up-to-date narrative review of reported photoinitiator- and wavelength-guided design strategies for in situ light activation of biomaterial dressings that have been evaluated in preclinical wound healing models.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
- School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State UniversityTempeArizonaUSA
| | - Mallikarjun Gosangi
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
| | - Shubham Pallod
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
- School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State UniversityTempeArizonaUSA
- Chemical Engineering, Arizona State UniversityTempeArizonaUSA
| |
Collapse
|
8
|
Bebiano LB, Presa R, Vieira F, Lourenço BN, Pereira RF. Bioinspired and Photo-Clickable Thiol-Ene Bioinks for the Extrusion Bioprinting of Mechanically Tunable 3D Skin Models. Biomimetics (Basel) 2024; 9:228. [PMID: 38667239 PMCID: PMC11048463 DOI: 10.3390/biomimetics9040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Bioinks play a fundamental role in skin bioprinting, dictating the printing fidelity, cell response, and function of bioprinted 3D constructs. However, the range of bioinks that support skin cells' function and aid in the bioprinting of 3D skin equivalents with tailorable properties and customized shapes is still limited. In this study, we describe a bioinspired design strategy for bioengineering double crosslinked pectin-based bioinks that recapitulate the mechanical properties and the presentation of cell-adhesive ligands and protease-sensitive domains of the dermal extracellular matrix, supporting the bioprinting of bilayer 3D skin models. Methacrylate-modified pectin was used as a base biomaterial enabling hydrogel formation via either chain-growth or step-growth photopolymerization and providing independent control over bioink rheology, as well as the mechanical and biochemical cues of cell environment. By tuning the concentrations of crosslinker and polymer in bioink formulation, dermal constructs were bioprinted with a physiologically relevant range of stiffnesses that resulted in strikingly site-specific differences in the morphology and spreading of dermal fibroblasts. We also demonstrated that the developed thiol-ene photo-clickable bioinks allow for the bioprinting of skin models of varying shapes that support dermis and epidermis reconstruction. Overall, the engineered bioinks expand the range of printable biomaterials for the extrusion bioprinting of 3D cell-laden hydrogels and provide a versatile platform to study the impact of material cues on cell fate, offering potential for in vitro skin modeling.
Collapse
Affiliation(s)
- Luís B. Bebiano
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rafaela Presa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Francisca Vieira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bianca N. Lourenço
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Zhao W, Hu C, Xu T. In vivo bioprinting: Broadening the therapeutic horizon for tissue injuries. Bioact Mater 2023; 25:201-222. [PMID: 36817820 PMCID: PMC9932583 DOI: 10.1016/j.bioactmat.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Tissue injury is a collective term for various disorders associated with organs and tissues induced by extrinsic or intrinsic factors, which significantly concerns human health. In vivo bioprinting, an emerging tissue engineering approach, allows for the direct deposition of bioink into the defect sites inside the patient's body, effectively addressing the challenges associated with the fabrication and implantation of irregularly shaped scaffolds and enabling the rapid on-site management of tissue injuries. This strategy complements operative therapy as well as pharmacotherapy, and broadens the therapeutic horizon for tissue injuries. The implementation of in vivo bioprinting requires targeted investigations in printing modalities, bioinks, and devices to accommodate the unique intracorporal microenvironment, as well as effective integrations with intraoperative procedures to facilitate its clinical application. In this review, we summarize the developments of in vivo bioprinting from three perspectives: modalities and bioinks, devices, and clinical integrations, and further discuss the current challenges and potential improvements in the future.
Collapse
Affiliation(s)
- Wenxiang Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Chuxiong Hu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Tao Xu
- Center for Bio-intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, 518057, China
| |
Collapse
|
10
|
Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, Trujillo de Santiago G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater 2023; 24:197-235. [PMID: 36606250 PMCID: PMC9803907 DOI: 10.1016/j.bioactmat.2022.11.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds have become one of the most important issues for healthcare systems and are a leading cause of death worldwide. Wound dressings are necessary to facilitate wound treatment. Engineering wound dressings may substantially reduce healing time, reduce the risk of recurrent infections, and reduce the disability and costs associated. In the path of engineering of an ideal wound dressing, hydrogels have played a leading role. Hydrogels are 3D hydrophilic polymeric structures that can provide a protective barrier, mimic the native extracellular matrix (ECM), and provide a humid environment. Due to their advantages, hydrogels (with different architectural, physical, mechanical, and biological properties) have been extensively explored as wound dressing platforms. Here we describe recent studies on hydrogels for wound healing applications with a strong focus on the interplay between the fabrication method used and the architectural, mechanical, and biological performance achieved. Moreover, we review different categories of additives which can enhance wound regeneration using 3D hydrogel dressings. Hydrogel engineering for wound healing applications promises the generation of smart solutions to solve this pressing problem, enabling key functionalities such as bacterial growth inhibition, enhanced re-epithelialization, vascularization, improved recovery of the tissue functionality, and overall, accelerated and effective wound healing.
Collapse
Affiliation(s)
- Mohammad Hadi Norahan
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Sara Cristina Pedroza-González
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mónica Gabriela Sánchez-Salazar
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Grissel Trujillo de Santiago
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| |
Collapse
|
11
|
Lagneau N, Tournier P, Nativel F, Maugars Y, Guicheux J, Le Visage C, Delplace V. Harnessing cell-material interactions to control stem cell secretion for osteoarthritis treatment. Biomaterials 2023; 296:122091. [PMID: 36947892 DOI: 10.1016/j.biomaterials.2023.122091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Osteoarthritis (OA) is the most common debilitating joint disease, yet there is no curative treatment for OA to date. Delivering mesenchymal stromal cells (MSCs) as therapeutic cells to mitigate the inflammatory symptoms associated with OA is attracting increasing attention. In principle, MSCs could respond to the pro-inflammatory microenvironment of an OA joint by the secretion of anti-inflammatory, anti-apoptotic, immunomodulatory and pro-regenerative factors, therefore limiting pain, as well as the disease development. However, the microenvironment of MSCs is known to greatly affect their survival and bioactivity, and using tailored biomaterial scaffolds could be key to the success of intra-articular MSC-based therapies. The aim of this review is to identify and discuss essential characteristics of biomaterial scaffolds to best promote MSC secretory functions in the context of OA. First, a brief introduction to the OA physiopathology is provided, followed by an overview of the MSC secretory functions, as well as the current limitations of MSC-based therapy. Then, we review the current knowledge on the effects of cell-material interactions on MSC secretion. These considerations allow us to define rational guidelines for next-generation biomaterial design to improve the MSC-based therapy of OA.
Collapse
Affiliation(s)
- Nathan Lagneau
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Pierre Tournier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Fabien Nativel
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France; Nantes Université, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Yves Maugars
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France.
| | - Catherine Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Vianney Delplace
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| |
Collapse
|
12
|
Jorgensen AM, Mahajan N, Atala A, Murphy SV. Advances in Skin Tissue Engineering and Regenerative Medicine. J Burn Care Res 2023; 44:S33-S41. [PMID: 36567474 PMCID: PMC9790899 DOI: 10.1093/jbcr/irac126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There are an estimated 500,000 patients treated with full-thickness wounds in the United States every year. Fire-related burn injuries are among the most common and devastating types of wounds that require advanced clinical treatment. Autologous split-thickness skin grafting is the clinical gold standard for the treatment of large burn wounds. However, skin grafting has several limitations, particularly in large burn wounds, where there may be a limited area of non-wounded skin to use for grafting. Non-cellular dermal substitutes have been developed but have their own challenges; they are expensive to produce, may require immunosuppression depending on design and allogenic cell inclusion. There is a need for more advanced treatments for devastating burns and wounds. This manuscript provides a brief overview of some recent advances in wound care, including the use of advanced biomaterials, cell-based therapies for wound healing, biological skin substitutes, biological scaffolds, spray on skin and skin bioprinting. Finally, we provide insight into the future of wound care and technological areas that need to be addressed to support the development and incorporation of these technologies.
Collapse
Affiliation(s)
- Adam M Jorgensen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Naresh Mahajan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
13
|
Zhang M, Zhang C, Li Z, Fu X, Huang S. Advances in 3D skin bioprinting for wound healing and disease modeling. Regen Biomater 2022; 10:rbac105. [PMID: 36683757 PMCID: PMC9845530 DOI: 10.1093/rb/rbac105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Even with many advances in design strategies over the past three decades, an enormous gap remains between existing tissue engineering skin and natural skin. Currently available in vitro skin models still cannot replicate the three-dimensionality and heterogeneity of the dermal microenvironment sufficiently to recapitulate many of the known characteristics of skin disorder or disease in vivo. Three-dimensional (3D) bioprinting enables precise control over multiple compositions, spatial distributions and architectural complexity, therefore offering hope for filling the gap of structure and function between natural and artificial skin. Our understanding of wound healing process and skin disease would thus be boosted by the development of in vitro models that could more completely capture the heterogeneous features of skin biology. Here, we provide an overview of recent advances in 3D skin bioprinting, as well as design concepts of cells and bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering physiological or pathological skin model, focusing more specifically on the function of skin appendages and vasculature. We conclude with current challenges and the technical perspective for further development of 3D skin bioprinting.
Collapse
Affiliation(s)
| | | | | | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, China,School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin 300071, China
| | - Sha Huang
- Correspondence address. Tel: +86-10-66867384, E-mail:
| |
Collapse
|
14
|
Ueda N, Sawada S, Yuasa F, Kato K, Nagahama K. Covalent Stem Cell-Combining Injectable Materials with Enhanced Stemness and Controlled Differentiation In Vivo. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52618-52633. [PMID: 36398375 DOI: 10.1021/acsami.2c12918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biohybrid materials, which are defined as engineered functional materials combining living components with nonliving synthetic materials, are considered promising bioactive materials for applications in in vivo tissue engineering. However, the rational design of biohybrid materials applicable to in vivo tissue engineering faces major challenges associated with techniques for combining living cells with nonliving synthetic materials and cell sources. Here, we report injectable covalent stem cell-combing biohybrid materials prepared via a bio-orthogonal click cross-linking reaction of azide-modified adipose-derived stem cells (N3[+]ADSCs), one of the most promising cell sources utilized clinically, with alkyne-modified biocompatible alginate polymers. The mechanical properties of the covalent stem cell-combining biohybrid materials can be adapted to the mechanical properties of the surrounding environment in which they are transplanted by alternating the number of N3[+]ADSCs, the concentration of alkyne-modified alginate, and the number of alkyne groups. Importantly, ADSCs in the covalent biohybrid materials expressed a high level of CD-105, a marker for undifferentiated mesenchymal stem cells, in the body in the absence of differentiation signals, whereas very little CD-105 was expressed in the control physical cell-loading materials, demonstrating that this covalent stem cell-combining approach results in enhanced retention of the material's "stemness" and controlled differentiation in the body. We assessed the potential utility of the covalent stem cell-combining biohybrid materials for in vivo tissue engineering using a murine severe skeletal muscle defect-healing model. Importantly, all of the tissues regenerated by the covalent biohybrid material treatment expressed MYH3, a myogenic marker protein, whereas no expression of MYH3 was detected in the tissues reconstructed by treatment with control physical stem cell-loading materials and Matrigel, indicating that this covalent stem cell-combining approach results in controlled differentiation in the body. Our data demonstrate the potential utility of covalent stem cell-combining biohybrid materials with host tissue-integrative and controlled differentiation capabilities available for in vivo tissue engineering.
Collapse
Affiliation(s)
- Natsumi Ueda
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shiho Sawada
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Fumiya Yuasa
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Karen Kato
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Koji Nagahama
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
15
|
Platelet-rich plasma: a comparative and economical therapy for wound healing and tissue regeneration. Cell Tissue Bank 2022; 24:285-306. [PMID: 36222966 PMCID: PMC9555256 DOI: 10.1007/s10561-022-10039-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Rise in the incidences of chronic degenerative diseases with aging makes wound care a socio-economic burden and unceasingly necessitates a novel, economical, and efficient wound healing treatment. Platelets have a crucial role in hemostasis and thrombosis by modulating distinct mechanistic phases of wound healing, such as promoting and stabilizing the clot. Platelet-rich plasma (PRP) contains a high concentration of platelets than naïve plasma and has an autologous origin with no immunogenic adverse reactions. As a consequence, PRP has gained significant attention as a therapeutic to augment the healing process. Since the past few decades, a robust volume of research and clinical trials have been performed to exploit extensive role of PRP in wound healing/tissue regeneration. Despite these rigorous studies and their application in diversified medical fields, efficacy of PRP-based therapies is continuously questioned owing to the paucity of large samplesizes, controlled clinical trials, and standard protocols. This review systematically delineates the process of wound healing and involvement of platelets in tissue repair mechanisms. Additionally, emphasis is laid on PRP, its preparation methods, handling, classification,application in wound healing, and PRP as regenerative therapeutics combined with biomaterials and mesenchymal stem cells (MSCs).
Collapse
|
16
|
Luo H, Wang Z, Qi F, Wang D. Applications of human amniotic fluid stem cells in wound healing. Chin Med J (Engl) 2022; 135:2272-2281. [PMID: 36535008 PMCID: PMC9771343 DOI: 10.1097/cm9.0000000000002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Complete wound regeneration preserves skin structure and physiological functions, including sensation and perception of stimuli, whereas incomplete wound regeneration results in fibrosis and scarring. Amniotic fluid stem cells (AFSCs) would be a kind of cell population with self-renewing and non-immunogenic ability that have a considerable role in wound generation. They are easy to harvest, culture, and store; moreover, they are non-tumorigenic and not subject to ethical restrictions. They can differentiate into different kinds of cells that replenish the skin, subcutaneous tissues, and accessory organs. Additionally, AFSCs independently produce paracrine effectors and secrete them in exosomes, thereby modulating local immune cell activity. They demonstrate anti-inflammatory and immunomodulatory properties, regulate the physicochemical microenvironment of the wound, and promote full wound regeneration. Thus, AFSCs are potential resources in stem cell therapy, especially in scar-free wound healing. This review describes the biological characteristics and clinical applications of AFSCs in treating wounds and provide new ideas for the treatment of wound healing.
Collapse
Affiliation(s)
- Han Luo
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
- Department of Plastic Surgery and Burns, Fuling Central Hospital, Chongqing 408000, China
| | - Zhen Wang
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| |
Collapse
|
17
|
Samandari M, Mostafavi A, Quint J, Memić A, Tamayol A. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol 2022; 40:1229-1247. [PMID: 35483990 PMCID: PMC9481658 DOI: 10.1016/j.tibtech.2022.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022]
Abstract
Bioprinting has emerged as a strong tool for devising regenerative therapies to address unmet medical needs. However, the translation of conventional in vitro bioprinting approaches is partially hindered due to challenges associated with the fabrication and implantation of irregularly shaped scaffolds and their limited accessibility for immediate treatment by healthcare providers. An alternative strategy that has recently drawn significant attention is to directly print the bioink into the patient's body, so-called 'in situ bioprinting'. The bioprinting strategy and the associated bioink need to be specifically designed for in situ bioprinting to meet the particular requirements of direct deposition in vivo. In this review, we discuss the developed in situ bioprinting strategies, their advantages, challenges, and possible future improvements.
Collapse
Affiliation(s)
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA; Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, USA.
| |
Collapse
|
18
|
Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022; 287:121639. [PMID: 35779481 DOI: 10.1016/j.biomaterials.2022.121639] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Tissue/organ shortage is a major medical challenge due to donor scarcity and patient immune rejections. Furthermore, it is difficult to predict or mimic the human disease condition in animal models during preclinical studies because disease phenotype differs between humans and animals. Three-dimensional bioprinting (3DBP) is evolving into an unparalleled multidisciplinary technology for engineering three-dimensional (3D) biological tissue with complex architecture and composition. The technology has emerged as a key driver by precise deposition and assembly of biomaterials with patient's/donor cells. This advancement has aided in the successful fabrication of in vitro models, preclinical implants, and tissue/organs-like structures. Here, we critically reviewed the current state of 3D-bioprinting strategies for regenerative therapy in eight organ systems, including nervous, cardiovascular, skeletal, integumentary, endocrine and exocrine, gastrointestinal, respiratory, and urinary systems. We also focus on the application of 3D bioprinting to fabricated in vitro models to study cancer, infection, drug testing, and safety assessment. The concept of in situ 3D bioprinting is discussed, which is the direct printing of tissues at the injury or defect site for reparative and regenerative therapy. Finally, issues such as scalability, immune response, and regulatory approval are discussed, as well as recently developed tools and technologies such as four-dimensional and convergence bioprinting. In addition, information about clinical trials using 3D printing has been included.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; Faculty of Dentistry, National University of Singapore, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 117543, Singapore; Nusmetic Pte Ltd, Makerspace, I4 Building, 3 Research Link Singapore, 117602, Singapore.
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
19
|
Fernandes S, Vyas C, Lim P, Pereira RF, Virós A, Bártolo P. 3D Bioprinting: An Enabling Technology to Understand Melanoma. Cancers (Basel) 2022; 14:cancers14143535. [PMID: 35884596 PMCID: PMC9318274 DOI: 10.3390/cancers14143535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a potentially fatal cancer with rising incidence over the last 50 years, associated with enhanced sun exposure and ultraviolet radiation. Its incidence is highest in people of European descent and the ageing population. There are multiple clinical and epidemiological variables affecting melanoma incidence and mortality, such as sex, ethnicity, UV exposure, anatomic site, and age. Although survival has improved in recent years due to advances in targeted and immunotherapies, new understanding of melanoma biology and disease progression is vital to improving clinical outcomes. Efforts to develop three-dimensional human skin equivalent models using biofabrication techniques, such as bioprinting, promise to deliver a better understanding of the complexity of melanoma and associated risk factors. These 3D skin models can be used as a platform for patient specific models and testing therapeutics.
Collapse
Affiliation(s)
- Samantha Fernandes
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Peggy Lim
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
| | - Rúben F. Pereira
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Amaya Virós
- Skin Cancer and Ageing Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Paulo Bártolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence: or
| |
Collapse
|
20
|
Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci 2022; 17:353-384. [PMID: 35782328 PMCID: PMC9237601 DOI: 10.1016/j.ajps.2022.01.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health. And bacterial contamination could significantly menace the wound healing process. Considering the sophisticated wound healing process, novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients, antibacterial agents included, into biomaterials with different morphologies to improve cell behaviors and promote wound healing. However, a comprehensive review on anti-bacterial wound dressing to enhance wound healing has not been reported. In this review, various antibacterial biomaterials as wound dressings will be discussed. Different kinds of antibacterial agents, including antibiotics, nanoparticles (metal and metallic oxides, light-induced antibacterial agents), cationic organic agents, and others, and their recent advances are summarized. Biomaterial selection and fabrication of biomaterials with different structures and forms, including films, hydrogel, electrospun nanofibers, sponge, foam and three-dimension (3D) printed scaffold for skin regeneration, are elaborated discussed. Current challenges and the future perspectives are presented in this multidisciplinary field. We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.
Collapse
Affiliation(s)
- Yuqing Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hualei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
21
|
Nugud A, Alghfeli L, Elmasry M, El-Serafi I, El-Serafi AT. Biomaterials as a Vital Frontier for Stem Cell-Based Tissue Regeneration. Front Cell Dev Biol 2022; 10:713934. [PMID: 35399531 PMCID: PMC8987776 DOI: 10.3389/fcell.2022.713934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023] Open
Abstract
Biomaterials and tissue regeneration represent two fields of intense research and rapid advancement. Their combination allowed the utilization of the different characteristics of biomaterials to enhance the expansion of stem cells or their differentiation into various lineages. Furthermore, the use of biomaterials in tissue regeneration would help in the creation of larger tissue constructs that can allow for significant clinical application. Several studies investigated the role of one or more biomaterial on stem cell characteristics or their differentiation potential into a certain target. In order to achieve real advancement in the field of stem cell-based tissue regeneration, a careful analysis of the currently published information is critically needed. This review describes the fundamental description of biomaterials as well as their classification according to their source, bioactivity and different biological effects. The effect of different biomaterials on stem cell expansion and differentiation into the primarily studied lineages was further discussed. In conclusion, biomaterials should be considered as an essential component of stem cell differentiation strategies. An intense investigation is still required. Establishing a consortium of stem cell biologists and biomaterial developers would help in a systematic development of this field.
Collapse
Affiliation(s)
- Ahmed Nugud
- Pediatric Department, Aljalila Children Hospital, Dubai, United Arab Emirates
| | - Latifa Alghfeli
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Moustafa Elmasry
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Ibrahim El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Ahmed T. El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
- *Correspondence: Ahmed T. El-Serafi,
| |
Collapse
|
22
|
Advances in spray products for skin regeneration. Bioact Mater 2022; 16:187-203. [PMID: 35386328 PMCID: PMC8965724 DOI: 10.1016/j.bioactmat.2022.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
To date, skin wounds are still an issue for healthcare professionals. Although numerous approaches have been developed over the years for skin regeneration, recent advances in regenerative medicine offer very promising strategies for the fabrication of artificial skin substitutes, including 3D bioprinting, electrospinning or spraying, among others. In particular, skin sprays are an innovative technique still under clinical evaluation that show great potential for the delivery of cells and hydrogels to treat acute and chronic wounds. Skin sprays present significant advantages compared to conventional treatments for wound healing, such as the facility of application, the possibility to treat large wound areas, or the homogeneous distribution of the sprayed material. In this article, we review the latest advances in this technology, giving a detailed description of investigational and currently commercially available acellular and cellular skin spray products, used for a variety of diseases and applying different experimental materials. Moreover, as skin sprays products are subjected to different classifications, we also explain the regulatory pathways for their commercialization and include the main clinical trials for different skin diseases and their treatment conditions. Finally, we argue and suggest possible future trends for the biotechnology of skin sprays for a better use in clinical dermatology. Skin sprays represent a promising technique for wound healing applications. Skin sprays can deliver cells and hydrogels with great facility over large wounds. Many skin spray products have been studied, only a few have been commercialized. Numerous clinical trials study spray products for skin diseases like psoriasis. Improved spraying devices should be developed for different materials and cells.
Collapse
|
23
|
Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A, Rybka JD, Gornowicz-Porowska J. 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synth Biol 2022; 11:26-38. [PMID: 34967598 PMCID: PMC8787816 DOI: 10.1021/acssynbio.1c00547] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
In recent years,
significant progress has been observed in the
field of skin bioprinting, which has a huge potential to revolutionize
the way of treatment in injury and surgery. Furthermore, it may be
considered as an appropriate platform to perform the assessment and
screening of cosmetic and pharmaceutical formulations. Therefore,
the objective of this paper was to review the latest advances in 3D
bioprinting dedicated to skin applications. In order to explain the
boundaries of this technology, the architecture and functions of the
native skin were briefly described. The principles of bioprinting
methods were outlined along with a detailed description of key elements
that are required to fabricate the skin equivalents. Next, the overview
of recent progress in 3D bioprinting studies was presented. The article
also highlighted the potential applications of bioengineered skin
substituents in various fields including regenerative medicine, modeling
of diseases, and cosmetics/drugs testing. The advantages, limitations,
and future directions of this technology were also discussed.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Julia Anna Semba
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Adam Kulpa
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznań, Poland
| |
Collapse
|
24
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
25
|
Kesharwani P, Bisht A, Alexander A, Dave V, Sharma S. Biomedical applications of hydrogels in drug delivery system: An update. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
|
27
|
Wang J, Zhang Y, Pi J, Xing D, Wang C. Localized delivery of immunotherapeutics: A rising trend in the field. J Control Release 2021; 340:149-167. [PMID: 34699871 DOI: 10.1016/j.jconrel.2021.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
Immunotherapy is becoming a new standard of care for multiple cancers, while several limitations are impending its further clinical success. Immunotherapeutic agents often have inappropriate pharmacokinetics on their own and/or exhibit limited specificity to tumor cells, leading to severe immuno-related adverse effects and limited efficacy. Suitable formulating strategies that confer prolonged contact with or efficient proliferation in tumors while reducing exposure to normal tissues are highly worthy to explore. With the assistance of biomaterial carriers, targeted therapy can be achieved artificially by implanting or injecting drug depots into desired sites, about which the wisdoms in literature have been rich. The relevant results have suggested a "local but systemic" effect, that is, local replenishment of immune modulators achieves a high treatment efficacy that also governs distant metastases, thereby building another rationale for localized delivery. Particularly, implantable scaffolds have been further engineered to recruit disseminated tumor cells with an efficiency high enough to reduce tumor burdens at typical metastatic organs, and simultaneously provide diagnostic signals. This review introduces recent advances in this emerging area along with a perspective on the opportunities and challenges in the way to clinical application.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China.
| | - Yukun Zhang
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jiuchan Pi
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
28
|
Vriend L, Sinkunas V, Camargo CP, van der Lei B, Harmsen MC, van Dongen JA. Extracellular matrix-derived hydrogels to augment dermal wound healing: a systematic review. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1093-1108. [PMID: 34693732 DOI: 10.1089/ten.teb.2021.0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic, non-healing, dermal wounds form a worldwide medical problem with limited and inadequate treatment options and high societal burden and costs. With the advent of regenerative therapies exploiting extracellular matrix (ECM) components, its efficacy to augment wound healing is to be explored. This systematic review was performed to assess and compare the current therapeutic efficacy of ECM hydrogels on dermal wound healing. METHODS The electronic databases of (Embase, Medline Ovid, Cochrane Central) were searched for in vivo and clinical studies on the therapeutic effect of ECM-composed hydrogels on dermal wound healing (13th of April 2021). Two reviewers selected studies independently. Studies were assessed based on ECM content, ECM hydrogel composition, additives and wound healing outcomes such as wound size, angiogenesis and complications. RESULTS Of the 2102 publications, nine rodent-based studies were included while clinical studies were not published at the time of the search. Procedures to decellularize tissue or cultured cells and subsequently generate hydrogels were highly variable and in demand of standardization. ECM hydrogels with or without additives reduced wound size and also seem to enhance angiogenesis. Serious complications were not reported. CONCLUSION To date, preclinical studies preclude to draw firm conclusions on the efficacy and working mechanism of ECM-derived hydrogels on dermal wound healing. The use of ECM hydrogels can be considered safe. Standardization of decellularization protocols and implementation of quality and cytotoxicity controls will enable obtaining a generic and comparable ECM product.
Collapse
Affiliation(s)
- Linda Vriend
- University Medical Centre Groningen, 10173, Plastic Surgery, Groningen, Groningen, Netherlands.,University of Groningen, 3647, Pathology & Medical Biology, Groningen, Groningen, Netherlands;
| | - Viktor Sinkunas
- University of São Paulo, São Paulo, Brazil, Department of Cardiovascular Surgery, Sao Paulo, Brazil;
| | - Cristina P Camargo
- University of Sao Paulo Hospital of Clinics, 117265, Plastic Surgery and Microsurgery and the Plastic Surgery Laboratory, Sao Paulo, São Paulo, Brazil;
| | - Berend van der Lei
- University Medical Centre Groningen, 10173, Plastic Surgery , Groningen, Groningen, Netherlands.,Bergman Clinics Heerenveen , Plastic Surgery , Heerenveen , Netherlands;
| | - Martin C Harmsen
- University Medical Centre Groningen, 10173, Pathology & Medical Biology, Groningen, Groningen, Netherlands.,University of Groningen, 3647, Pathology & Medical Biology, Groningen, Groningen, Netherlands;
| | - Joris A van Dongen
- Utrecht University, 8125, Plastic Surgery, Utrecht, Utrecht, Netherlands.,University of Groningen, 3647, Department of Pathology & Medical Biology, Groningen, Groningen, Netherlands;
| |
Collapse
|
29
|
Fan F, Saha S, Hanjaya-Putra D. Biomimetic Hydrogels to Promote Wound Healing. Front Bioeng Biotechnol 2021; 9:718377. [PMID: 34616718 PMCID: PMC8488380 DOI: 10.3389/fbioe.2021.718377] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a common physiological process which consists of a sequence of molecular and cellular events that occur following the onset of a tissue lesion in order to reconstitute barrier between body and external environment. The inherent properties of hydrogels allow the damaged tissue to heal by supporting a hydrated environment which has long been explored in wound management to aid in autolytic debridement. However, chronic non-healing wounds require added therapeutic features that can be achieved by incorporation of biomolecules and supporting cells to promote faster and better healing outcomes. In recent decades, numerous hydrogels have been developed and modified to match the time scale for distinct stages of wound healing. This review will discuss the effects of various types of hydrogels on wound pathophysiology, as well as the ideal characteristics of hydrogels for wound healing, crosslinking mechanism, fabrication techniques and design considerations of hydrogel engineering. Finally, several challenges related to adopting hydrogels to promote wound healing and future perspectives are discussed.
Collapse
Affiliation(s)
- Fei Fan
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sanjoy Saha
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
30
|
Biofabrication of advanced in vitro and ex vivo cancer models for disease modeling and drug screening. FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2020-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioengineered in vitro models have advanced from 2D cultures and simple 3D cell aggregates to more complex organoids and organ-on-a-chip platforms. This shift has been substantial in cancer research; while simple systems remain in use, multi-tissue type tumor and tissue chips and patient-derived tumor organoids have grown rapidly. These more advanced models offer new tools to cancer researchers based on human tumor physiology and the potential for interactions with nontumor tissue physiology while avoiding critical differences between human and animal biology. In this focused review, the authors discuss the importance of organoid and organ-on-a-chip platforms, with a particular focus on modeling cancer, to highlight oncology-focused in vitro model platform technologies that improve upon the simple 2D cultures and 3D spheroid models of the past.
Collapse
|
31
|
Wang C, Zhang H, Zhang T, Zou X, Wang H, Rosenberger J, Vannam R, Trout WS, Grimm JB, Lavis LD, Thorpe C, Jia X, Li Z, Fox JM. Enabling In Vivo Photocatalytic Activation of Rapid Bioorthogonal Chemistry by Repurposing Silicon-Rhodamine Fluorophores as Cytocompatible Far-Red Photocatalysts. J Am Chem Soc 2021; 143:10793-10803. [PMID: 34250803 PMCID: PMC8765119 DOI: 10.1021/jacs.1c05547] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromophores that absorb in the tissue-penetrant far-red/near-infrared window have long served as photocatalysts to generate singlet oxygen for photodynamic therapy. However, the cytotoxicity and side reactions associated with singlet oxygen sensitization have posed a problem for using long-wavelength photocatalysis to initiate other types of chemical reactions in biological environments. Herein, silicon-Rhodamine compounds (SiRs) are described as photocatalysts for inducing rapid bioorthogonal chemistry using 660 nm light through the oxidation of a dihydrotetrazine to a tetrazine in the presence of trans-cyclooctene dienophiles. SiRs have been commonly used as fluorophores for bioimaging but have not been applied to catalyze chemical reactions. A series of SiR derivatives were evaluated, and the Janelia Fluor-SiR dyes were found to be especially effective in catalyzing photooxidation (typically 3%). A dihydrotetrazine/tetrazine pair is described that displays high stability in both oxidation states. A protein that was site-selectively modified by trans-cyclooctene was quantitatively conjugated upon exposure to 660 nm light and a dihydrotetrazine. By contrast, a previously described methylene blue catalyst was found to rapidly degrade the protein. SiR-red light photocatalysis was used to cross-link hyaluronic acid derivatives functionalized by dihydrotetrazine and trans-cyclooctenes, enabling 3D culture of human prostate cancer cells. Photoinducible hydrogel formation could also be carried out in live mice through subcutaneous injection of a Cy7-labeled hydrogel precursor solution, followed by brief irradiation to produce a stable hydrogel. This cytocompatible method for using red light photocatalysis to activate bioorthogonal chemistry is anticipated to find broad applications where spatiotemporal control is needed in biological environments.
Collapse
Affiliation(s)
- Chuanqi Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Tao Zhang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Julia Rosenberger
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Raghu Vannam
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - William S. Trout
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn Virginia, 20147, USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn Virginia, 20147, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
- Delaware Biotechnology Institute, Newark, Delaware 19711, USA
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
32
|
Drzeniek NM, Mazzocchi A, Schlickeiser S, Forsythe SD, Moll G, Geißler S, Reinke P, Gossen M, Gorantla VS, Volk HD, Soker S. Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells. Biofabrication 2021; 13:10.1088/1758-5090/ac0a32. [PMID: 34111862 PMCID: PMC10024818 DOI: 10.1088/1758-5090/ac0a32] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
The therapeutic efficacy of clinically applied mesenchymal stromal cells (MSCs) is limited due to their injection into harshin vivoenvironments, resulting in the significant loss of their secretory function upon transplantation. A potential strategy for preserving their full therapeutic potential is encapsulation of MSCs in a specialized protective microenvironment, for example hydrogels. However, commonly used injectable hydrogels for cell delivery fail to provide the bio-instructive cues needed to sustain and stimulate cellular therapeutic functions. Here we introduce a customizable collagen I-hyaluronic acid (COL-HA)-based hydrogel platform for the encapsulation of MSCs. Cells encapsulated within COL-HA showed a significant expansion of their secretory profile compared to MSCs cultured in standard (2D) cell culture dishes or encapsulated in other hydrogels. Functionalization of the COL-HA backbone with thiol-modified glycoproteins such as laminin led to further changes in the paracrine profile of MSCs. In depth profiling of more than 250 proteins revealed an expanded secretion profile of proangiogenic, neuroprotective and immunomodulatory paracrine factors in COL-HA-encapsulated MSCs with a predicted augmented pro-angiogenic potential. This was confirmed by increased capillary network formation of endothelial cells stimulated by conditioned media from COL-HA-encapsulated MSCs. Our findings suggest that encapsulation of therapeutic cells in a protective COL-HA hydrogel layer provides the necessary bio-instructive cues to maintain and direct their therapeutic potential. Our customizable hydrogel combines bioactivity and clinically applicable properties such as injectability, on-demand polymerization and tissue-specific elasticity, all features that will support and improve the ability to successfully deliver functional MSCs into patients.
Collapse
Affiliation(s)
- Norman M Drzeniek
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andrea Mazzocchi
- Known Medicine Inc., 675 Arapeen Dr, Suite 103A-1, Salt Lake City, UT 84108, United States of America.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Stephan Schlickeiser
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Steven D Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Guido Moll
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Geißler
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin 13353, Germany.,Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, Teltow 14513, Germany
| | - Vijay S Gorantla
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Hans-Dieter Volk
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| |
Collapse
|
33
|
|
34
|
Salerno A, Netti PA. Review on Computer-Aided Design and Manufacturing of Drug Delivery Scaffolds for Cell Guidance and Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:682133. [PMID: 34249885 PMCID: PMC8264554 DOI: 10.3389/fbioe.2021.682133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
In the last decade, additive manufacturing (AM) processes have updated the fields of biomaterials science and drug delivery as they promise to realize bioengineered multifunctional devices and implantable tissue engineering (TE) scaffolds virtually designed by using computer-aided design (CAD) models. However, the current technological gap between virtual scaffold design and practical AM processes makes it still challenging to realize scaffolds capable of encoding all structural and cell regulatory functions of the native extracellular matrix (ECM) of health and diseased tissues. Indeed, engineering porous scaffolds capable of sequestering and presenting even a complex array of biochemical and biophysical signals in a time- and space-regulated manner, require advanced automated platforms suitable of processing simultaneously biomaterials, cells, and biomolecules at nanometric-size scale. The aim of this work was to review the recent scientific literature about AM fabrication of drug delivery scaffolds for TE. This review focused on bioactive molecule loading into three-dimensional (3D) porous scaffolds, and their release effects on cell fate and tissue growth. We reviewed CAD-based strategies, such as bioprinting, to achieve passive and stimuli-responsive drug delivery scaffolds for TE and cancer precision medicine. Finally, we describe the authors' perspective regarding the next generation of CAD techniques and the advantages of AM, microfluidic, and soft lithography integration for enhancing 3D porous scaffold bioactivation toward functional bioengineered tissues and organs.
Collapse
Affiliation(s)
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Babu S, Albertino F, Omidinia Anarkoli A, De Laporte L. Controlling Structure with Injectable Biomaterials to Better Mimic Tissue Heterogeneity and Anisotropy. Adv Healthc Mater 2021; 10:e2002221. [PMID: 33951341 PMCID: PMC11469279 DOI: 10.1002/adhm.202002221] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Indexed: 12/15/2022]
Abstract
Tissue regeneration of sensitive tissues calls for injectable scaffolds, which are minimally invasive and offer minimal damage to the native tissues. However, most of these systems are inherently isotropic and do not mimic the complex hierarchically ordered nature of the native extracellular matrices. This review focuses on the different approaches developed in the past decade to bring in some form of anisotropy to the conventional injectable tissue regenerative matrices. These approaches include introduction of macroporosity, in vivo pattering to present biomolecules in a spatially and temporally controlled manner, availability of aligned domains by means of self-assembly or oriented injectable components, and in vivo bioprinting to obtain structures with features of high resolution that resembles native tissues. Toward the end of the review, different techniques to produce building blocks for the fabrication of heterogeneous injectable scaffolds are discussed. The advantages and shortcomings of each approach are discussed in detail with ideas to improve the functionality and versatility of the building blocks.
Collapse
Affiliation(s)
- Susan Babu
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 2Aachen52074Germany
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Max Planck School‐Matter to Life (MtL)Jahnstrasse 29Heidelberg69120Germany
| | - Filippo Albertino
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
| | | | - Laura De Laporte
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 2Aachen52074Germany
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Max Planck School‐Matter to Life (MtL)Jahnstrasse 29Heidelberg69120Germany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)Center for Biohybrid Medical Systems (CMBS)University Hospital RWTH AachenForckenbeckstrasse 55Aachen52074Germany
| |
Collapse
|
36
|
Pedroza-González SC, Rodriguez-Salvador M, Pérez-Benítez BE, Alvarez MM, Santiago GTD. Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress. Int J Bioprint 2021; 7:333. [PMID: 34007938 PMCID: PMC8126700 DOI: 10.18063/ijb.v7i2.337] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
This scientometric analysis of 393 original papers published from January 2000 to June 2019 describes the development and use of bioinks for 3D bioprinting. The main trends for bioink applications and the primary considerations guiding the selection and design of current bioink components (i.e., cell types, hydrogels, and additives) were reviewed. The cost, availability, practicality, and basic biological considerations (e.g., cytocompatibility and cell attachment) are the most popular parameters guiding bioink use and development. Today, extrusion bioprinting is the most widely used bioprinting technique. The most reported use of bioinks is the generic characterization of bioink formulations or bioprinting technologies (32%), followed by cartilage bioprinting applications (16%). Similarly, the cell-type choice is mostly generic, as cells are typically used as models to assess bioink formulations or new bioprinting methodologies rather than to fabricate specific tissues. The cell-binding motif arginine-glycine-aspartate is the most common bioink additive. Many articles reported the development of advanced functional bioinks for specific biomedical applications; however, most bioinks remain the basic compositions that meet the simple criteria: Manufacturability and essential biological performance. Alginate and gelatin methacryloyl are the most popular hydrogels that meet these criteria. Our analysis suggests that present-day bioinks still represent a stage of emergence of bioprinting technology.
Collapse
Affiliation(s)
- Sara Cristina Pedroza-González
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| | | | | | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, Mexico 64849
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| |
Collapse
|
37
|
Manita PG, Garcia-Orue I, Santos-Vizcaino E, Hernandez RM, Igartua M. 3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals (Basel) 2021; 14:ph14040362. [PMID: 33919848 PMCID: PMC8070826 DOI: 10.3390/ph14040362] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to present 3D bioprinting of skin substitutes as an efficient approach of managing skin injuries. From a clinical point of view, classic treatments only provide physical protection from the environment, and existing engineered scaffolds, albeit acting as a physical support for cells, fail to overcome needs, such as neovascularisation. In the present work, the basic principles of bioprinting, together with the most popular approaches and choices of biomaterials for 3D-printed skin construct production, are explained, as well as the main advantages over other production methods. Moreover, the development of this technology is described in a chronological manner through examples of relevant experimental work in the last two decades: from the pioneers Lee et al. to the latest advances and different innovative strategies carried out lately to overcome the well-known challenges in tissue engineering of skin. In general, this technology has a huge potential to offer, although a multidisciplinary effort is required to optimise designs, biomaterials and production processes.
Collapse
Affiliation(s)
- Paula Gabriela Manita
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| |
Collapse
|
38
|
Mankuzhy PD, Ramesh ST, Thirupathi Y, Mohandas PS, Chandra V, Sharma TG. The preclinical and clinical implications of fetal adnexa derived mesenchymal stromal cells in wound healing therapy. Wound Repair Regen 2021; 29:347-369. [PMID: 33721373 DOI: 10.1111/wrr.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Mesenchymal stromal cells (MSCs) isolated from fetal adnexa namely amniotic membrane/epithelium, amniotic fluid and umbilical cord have hogged the limelight in recent times, as a proposed alternative to MSCs from conventional sources. These cells which are identified as being in a developmentally primitive state have many advantages, the most important being the non-invasive nature of their isolation procedures, absence of ethical concerns, proliferation potential, differentiation abilities and low immunogenicity. In the present review, we are focusing on the potential preclinical and clinical applications of different cell types of fetal adnexa, in wound healing therapy. We also discuss the isolation-culture methods, cell surface marker expression, multi-lineage differentiation abilities, immune-modulatory capabilities and their homing property. Different mechanisms involved in the wound healing process and the role of stromal cells in therapeutic wound healing are highlighted. Further, we summarize the findings of the cell delivery systems in skin lesion models and paracrine functions of their secretome in the wound healing process. Overall, this holistic review outlines the research findings of fetal adnexa derived MSCs, their usefulness in wound healing therapy in human as well as in veterinary medicine.
Collapse
Affiliation(s)
- Pratheesh D Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Sreekumar T Ramesh
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Yasotha Thirupathi
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Ponny S Mohandas
- Consultant Gynecologist, Department of Gynecology and Obstetrics, Meditrina Hospital, Ayathil, Kollam, Kerala, India
| | - Vikash Chandra
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Taru Guttula Sharma
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
39
|
Tan SH, Ngo ZH, Leavesley D, Liang K. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:160-181. [PMID: 33446047 DOI: 10.1089/ten.teb.2020.0339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) printed scaffolds have recently emerged as an innovative treatment option for patients with critical-sized skin wounds. Current approaches to managing life-threatening wounds include skin grafting and application of commercially sourced skin substitutes. However, these approaches are not without several challenges. Limited donor tissue and donor site morbidity remain a concern for tissue grafting, while engineered skin substitutes fail to fully recapitulate the complex native environment required for wound healing. The implementation of 3D printed dermal scaffolds offers a potential solution for these shortcomings. Spatial control over scaffold structure, the ability to incorporate multiple materials and bioactive ingredients, enables the creation of conditions specifically optimized for wound healing. Three-dimensional bioprinting, a subset of 3D printing, allows for the replacement of lost cell populations and secreted active compounds that contribute to tissue repair and recovery. The replacement of damaged and lost cells delivers beneficial effects directly, or synergistically, supporting injured tissue to recover its native state. Despite encouraging results, the promise of 3D printed scaffolds has yet to be realized. Further improvements to current material formulations and scaffold designs are required to achieve the goal of clinical adoption. Herein, we provide an overview of 3D printing techniques and discuss several strategies for healing of full-thickness wounds by using 3D printed acellular scaffolds or bioprinted cellular scaffolds, aimed at translating this technology to the clinical management of skin lesions. We identify the challenges associated with designing and optimizing printed tissue replacements, and discuss the future perspectives of this emerging option for managing patients who present with critical-sized life-threatening cutaneous wounds.
Collapse
Affiliation(s)
- Shi Hua Tan
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zong Heng Ngo
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David Leavesley
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kun Liang
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
40
|
Yoo KM, Murphy SV, Skardal A. A Rapid Crosslinkable Maleimide-Modified Hyaluronic Acid and Gelatin Hydrogel Delivery System for Regenerative Applications. Gels 2021; 7:13. [PMID: 33535669 PMCID: PMC7931058 DOI: 10.3390/gels7010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels have played a significant role in many applications of regenerative medicine and tissue engineering due to their versatile properties in realizing design and functional requirements. However, as bioengineered solutions are translated towards clinical application, new hurdles and subsequent material requirements can arise. For example, in applications such as cell encapsulation, drug delivery, and biofabrication, in a clinical setting, hydrogels benefit from being comprised of natural extracellular matrix-based materials, but with defined, controllable, and modular properties. Advantages for these clinical applications include ultraviolet light-free and rapid polymerization crosslinking kinetics, and a cell-friendly crosslinking environment that supports cell encapsulation or in situ crosslinking in the presence of cells and tissue. Here we describe the synthesis and characterization of maleimide-modified hyaluronic acid (HA) and gelatin, which are crosslinked using a bifunctional thiolated polyethylene glycol (PEG) crosslinker. Synthesized products were evaluated by proton nuclear magnetic resonance (NMR), ultraviolet visibility spectrometry, size exclusion chromatography, and pH sensitivity, which confirmed successful HA and gelatin modification, molecular weights, and readiness for crosslinking. Gelation testing both by visual and NMR confirmed successful and rapid crosslinking, after which the hydrogels were characterized by rheology, swelling assays, protein release, and barrier function against dextran diffusion. Lastly, biocompatibility was assessed in the presence of human dermal fibroblasts and keratinocytes, showing continued proliferation with or without the hydrogel. These initial studies present a defined, and well-characterized extracellular matrix (ECM)-based hydrogel platform with versatile properties suitable for a variety of applications in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Kyung Min Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA;
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA;
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Fontana Labs., 140 W. 19th Ave, Columbus, OH 43210, USA
- Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Myocardial ischemia reperfusion injury is alleviated by curcumin-peptide hydrogel via upregulating autophagy and protecting mitochondrial function. Stem Cell Res Ther 2021; 12:89. [PMID: 33509263 PMCID: PMC7842017 DOI: 10.1186/s13287-020-02101-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background Ischemia-reperfusion injury (IRI) is an important factor limiting the success of cardiac reperfusion therapy. Curcumin has a significant cardioprotective effect against IRI, can inhibit ventricular remodeling induced by pressure load or MI, and improve cardiac function. However, the poor water solubility and low bioavailability of curcumin restrict its clinical application. Methods In this study, we prepared and evaluated a curcumin-hydrogel (cur-hydrogel) to reduce cardiomyocyte apoptosis and reactive oxygen species formation induced by hypoxia-reoxygenation injury, promote autophagy, and reduce mitochondrial damage by maintaining the phosphorylation of Cx43. Results Meanwhile, cur-hydrogel can restore cardiac function, inhibit myocardial collagen deposition and apoptosis, and activate JAK2/STAT3 pathway to alleviate myocardial ischemia-reperfusion injury in rats. Conclusions The purpose of this study is to elucidate the protective effects of cur-hydrogel on myocardial ischemia-reperfusion injury by regulating apoptosis, autophagy, and mitochondrial injury in vitro and in vivo, which lays a new theoretical and experimental foundation for the prevention and reduction of IRI.
Collapse
|
42
|
Lu Z, Priya Rajan SA, Song Q, Zhao Y, Wan M, Aleman J, Skardal A, Bishop C, Atala A, Lu B. 3D scaffold-free microlivers with drug metabolic function generated by lineage-reprogrammed hepatocytes from human fibroblasts. Biomaterials 2021; 269:120668. [PMID: 33461059 DOI: 10.1016/j.biomaterials.2021.120668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023]
Abstract
Generating microliver tissues to recapitulate hepatic function is of increasing importance in tissue engineering and drug screening. But the limited availability of primary hepatocytes and the marked loss of phenotype hinders their application. Human induced hepatocytes (hiHeps) generated by direct reprogramming can address the shortage of primary hepatocytes to make personalized drug prediction possible. Here, we simplify preparation of reprogramming reagents by expressing six transcriptional factors (HNF4A, FOXA2, FOXA3, ATF5, PROX1, and HNF1) from two lentiviral vectors, each expressing three factors. Transducing human fetal and adult fibroblasts with low vector dosage generated human induced hepatocyte-like cells (hiHeps) displaying characteristics of mature hepatocytes and capable of drug metabolism. To mimic the physiologic liver microenvironment and improve hepatocyte function, we prepared 3D scaffold-free microliver spheroids using hiHeps and human liver nonparenchymal cells through self-assembly without exogenous scaffolds. We then introduced the microliver spheroids into a two-organ microfluidic system to examine interactions between hepatocytes and tumor cells. The hiHeps-derived spheroids metabolized the prodrug capecitabine into the active metabolite 5-fluorouracil and induced toxicity in downstream tumor spheroids. Our results demonstrate that hiHeps can be used to make microliver spheroids and combined with a microfluidic system for drug evaluation. Our work could make it possible to use patient-specific hepatocyte-like cells to predict drug efficacy and side effects in various organs from the same patient.
Collapse
Affiliation(s)
- Zuyan Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Shiny Amala Priya Rajan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yu Zhao
- Jiangsu Healthy Life Innovation Medical Technology Co, Ltd., Wuxi, Jiangsu Province, China
| | - Meimei Wan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
43
|
Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 2021; 9:535-573. [DOI: 10.1039/d0bm00973c] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, 3D bioprinting has received immense attention from research communities to bridge the divergence between artificially engineered tissue constructs and native tissues.
Collapse
Affiliation(s)
- Mohsen Askari
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Moqaddaseh Afzali Naniz
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Monireh Kouhi
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | - Azadeh Saberi
- Nanotechnology and Advanced Materials Department
- Materials and Energy Research Center
- Tehran
- Iran
| | | | - Mahdi Bodaghi
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| |
Collapse
|
44
|
Rizzo F, Kehr NS. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv Healthc Mater 2021; 10:e2001341. [PMID: 33073515 DOI: 10.1002/adhm.202001341] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Injectable hydrogels have received considerable interest in the biomedical field due to their potential applications in minimally invasive local drug delivery, more precise implantation, and site-specific drug delivery into poorly reachable tissue sites and into interface tissues, where wound healing takes a long time. Injectable hydrogels, such as in situ forming and/or shear-thinning hydrogels, can be generated using chemically and/or physically crosslinked hydrogels. Yet, for controlled and local drug delivery applications, the ideal injectable hydrogel should be able to provide controlled and sustained release of drug molecules to the target site when needed and should limit nonspecific drug molecule distribution in healthy tissues. Thus, such hydrogels should sense the environmental changes that arise in disease states and be able to release the optimal amount of drug over the necessary time period to the target region. To address this, researchers have designed stimuli-responsive injectable hydrogels. Stimuli-responsive hydrogels change their shape or volume when they sense environmental stimuli, e.g., pH, temperature, light, electrical signals, or enzymatic changes, and deliver an optimal concentration of drugs to the target site without affecting healthy tissues.
Collapse
Affiliation(s)
- Fabio Rizzo
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC) Consiglio Nazionale delle Ricerche (CNR) via Fantoli 16/15 Milan 20138 Italy
- Organic Chemistry Institute Westfälische Wilhelms‐Universität Münster Corrensstr. 36 Münster 48149 Germany
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
| | - Nermin Seda Kehr
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
- Physikalisches Institut Westfälische Wilhelms‐Universität Münster Wilhelm‐Klemm‐Str. 10 Münster 48149 Germany
| |
Collapse
|
45
|
Rothe R, Xu Y, Thomas AK, Meister S, Zhang Y, Pietzsch J, Hauser S. A modular, injectable, non-covalently assembled hydrogel system features widescale tunable degradability for controlled release and tissue integration. Biomaterials 2020; 269:120637. [PMID: 33450583 DOI: 10.1016/j.biomaterials.2020.120637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022]
Abstract
Biomaterials with attenuated adverse host tissue reactions, and meanwhile, combining biocompatibility with mimicry of mechanical and biochemical cues of native extracellular matrices (ECM) to promote integration and regeneration of tissues are important for many biomedical applications. Further, the materials should also be tailorable to feature desired application-related functions, like tunable degradability, injectability, or controlled release of bioactive molecules. Herein, a non-covalently assembled, injectable hydrogel system based on oligopeptides interacting with sulphated polysaccharides is reported, showing high tolerability and biocompatibility in immunocompetent hairless mice. Altering the peptide or polysaccharide component considerably varies the in vivo degradation rate of the hydrogels, ranging from a half-life of three weeks to no detectable degradation after three months. The hydrogel with sulphated low molecular weight hyaluronic acid exhibits sustained degradation-mediated release of heparin-binding molecules in vivo, as shown by small animal magnetic resonance imaging and fluorescence imaging, and enhances the expression of vascular endothelial growth factor in hydrogel surrounding. In vitro investigations indicate that M2-macrophages could be responsible for the moderate difference in pro-angiogenic effects. The ECM-mimetic and injectable hydrogels represent tunable bioactive scaffolds for tissue engineering, also enabling controlled release of heparin-binding signalling molecules including many growth factors.
Collapse
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstraße 400, 01328, Dresden, Germany; Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Mommsenstraße 66, 01062, Dresden, Germany
| | - Yong Xu
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Alvin Kuriakose Thomas
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany.
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstraße 400, 01328, Dresden, Germany; Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Mommsenstraße 66, 01062, Dresden, Germany.
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstraße 400, 01328, Dresden, Germany.
| |
Collapse
|
46
|
Tan CT, Liang K, Ngo ZH, Dube CT, Lim CY. Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines 2020; 8:E441. [PMID: 33096771 PMCID: PMC7589916 DOI: 10.3390/biomedicines8100441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease with increasing prevalence worldwide. Diabetic foot ulcers (DFUs) are a serious complication of DM. It is estimated that 15-25% of DM patients develop DFU at least once in their lifetime. The lack of effective wound dressings and targeted therapy for DFUs often results in prolonged hospitalization and amputations. As the incidence of DM is projected to rise, the demand for specialized DFU wound management will continue to increase. Hence, it is of great interest to improve and develop effective DFU-specific wound dressings and therapies. In the last decade, 3D bioprinting technology has made a great contribution to the healthcare sector, with the development of personalized prosthetics, implants, and bioengineered tissues. In this review, we discuss the challenges faced in DFU wound management and how 3D bioprinting technology can be applied to advance current treatment methods, such as biomanufacturing of composite 3D human skin substitutes for skin grafting and the development of DFU-appropriate wound dressings. Future co-development of 3D bioprinting technologies with novel treatment approaches to mitigate DFU-specific pathophysiological challenges will be key to limiting the healthcare burden associated with the increasing prevalence of DM.
Collapse
Affiliation(s)
- Chew Teng Tan
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (C.T.T.); (K.L.); (Z.H.N.); (C.T.D.)
| | - Kun Liang
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (C.T.T.); (K.L.); (Z.H.N.); (C.T.D.)
| | - Zong Heng Ngo
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (C.T.T.); (K.L.); (Z.H.N.); (C.T.D.)
| | - Christabel Thembela Dube
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (C.T.T.); (K.L.); (Z.H.N.); (C.T.D.)
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Chin Yan Lim
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (C.T.T.); (K.L.); (Z.H.N.); (C.T.D.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
47
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
48
|
Koçak E, Yıldız A, Acartürk F. Three dimensional bioprinting technology: Applications in pharmaceutical and biomedical area. Colloids Surf B Biointerfaces 2020; 197:111396. [PMID: 33075661 DOI: 10.1016/j.colsurfb.2020.111396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
3D bioprinting is a technology based on the principle of three-dimensional printing of designed biological materials, which has been widely used recently. The production of biological materials, such as tissues, organs, cells and blood vessels with this technology is alternative and promising approach for organ and tissue transplantation. Apart from tissue and organ printing, it has a wide range of usage, such as in vitro/in vivo modeling, production of drug delivery systems and, drug screening. However, there are various restrictions on the use of this technology. In this review, the process steps, classification, advantages, limitations, usage and application areas of 3D bioprinting technology, materials and auxiliary materials used in this technology are discussed.
Collapse
Affiliation(s)
- Esen Koçak
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Ankara, Turkey
| | - Ayşegül Yıldız
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Ankara, Turkey
| | - Füsun Acartürk
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Ankara, Turkey.
| |
Collapse
|
49
|
Da Silva K, Kumar P, Choonara YE, du Toit LC, Pillay V. Three-dimensional printing of extracellular matrix (ECM)-mimicking scaffolds: A critical review of the current ECM materials. J Biomed Mater Res A 2020; 108:2324-2350. [PMID: 32363804 DOI: 10.1002/jbm.a.36981] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
The loss of tissues and organs through injury and disease has stimulated the development of therapeutics that have the potential to regenerate and replace the affected tissue. Such therapeutics have the benefit of reducing the reliance and demand for life-saving organ transplants. Of the several regenerative strategies, 3D printing has emerged as the forerunner in regenerative attempts due to the fact that biologically and anatomically correct 3D structures can be fabricated according to the specified need. Despite the progress in this field, improvement is still limited by the difficulty in fabricating scaffolds that adequately mimic the native cellular microenvironment. In response, despite the complexities of the native extracellular matrix (ECM), the inclusion of ECM components into bioinks has emerged as a cutting-edge research area in terms of providing possible ECM-mimicking abilities of the 3D printed constructs. Furthermore, the development of ECM-mimicking scaffolds can potentially assist in improving personalized patient treatments. This review provides a critical analysis of selected naturally occurring ECM components as well as synthetic self-assembling peptides in their ability to provide the required ECM microenvironment for tissue regeneration. The success and possible short comings of each material, as well as the specific characteristics of each bioink, are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
50
|
Alavi M, Rai M. Topical delivery of growth factors and metal/metal oxide nanoparticles to infected wounds by polymeric nanoparticles: an overview. Expert Rev Anti Infect Ther 2020; 18:1021-1032. [PMID: 32536223 DOI: 10.1080/14787210.2020.1782740] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Infected chronic wounds particularly diabetic foot ulcers (DFUs) can result from stable colonization of antibiotic-resistant bacteria and fungi at the wound sites. In this context, the rapid healing of infected wounds has been the main goal in recent investigations. This issue can be solved by improving wound-healing phases including hemostasis, inflammatory, proliferative, and remodeling/maturation, and removal of bacteria and fungi. The applications of growth factors (GFs) and metal/metal oxide nanoparticles (MNPs/MONPs) are two choices for these targets. However, the lack of sustainable release of these agents is an important problem for appropriate wound healing. AREA COVERED The present review is focused on recent advances in delivery systems composed of growth factor and MNPs/MONPs for rapid wound healing. EXPERT OPINION Synthetic and natural polymeric micro- and nanocarriers including polyvinylpyrrolidone (PVP) and chitosan play a vital role in the healing of infected chronic wounds. Using various derivatives of chitosan as pH-responsive polymer with basic and acidic groups can be the best option to prepare controllable and sequential GF release. However, it warrants further extensive research to solve wound-healing problems.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Department of Biology, Faculty of Science, Razi University , Kermanshah, Iran
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University , Amravati, India.,Department of Chemistry, Federal University of Piaui , Teresina, Brazil
| |
Collapse
|