1
|
Hua Y, Wang C, Ge X, Lin Y. Enhancing Osteogenic Potential: Controlled Release of Dopamine D1 Receptor Agonist SKF38393 Compared to Free Administration. Biomedicines 2024; 12:1046. [PMID: 38791008 PMCID: PMC11117781 DOI: 10.3390/biomedicines12051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Osteoporosis is the most common metabolic bone disorder and is characterized by decreased bone density, which has a relationship with the quality of life among the aging population. Previous research has found that activation of the dopamine D1 receptor can improve bone mass formation. SKF38393 is an agonist of dopamine D1 receptors. However, as a small-molecule drug, SKF38393 is unstable and releases quickly. The aim of this study was to prototype polylactic-co-glycolic acid (PLGA)/SKF38393 microspheres and assess their potential osteogenic effects compared to those under the free administration of SKF38393. The cytocompatibility of PLGA/SKF38393 was determined via CCK-8 and live/dead cell staining; the osteogenic effects in vitro were determined with ALP and alizarin red staining, qRT-PCR, and Western blotting; and the in vivo effects were assessed using 25 Balb/c mice. We also used a PCR array to explore the possible signaling pathway changes after employing PLGA/SKF38393. Our experiments demonstrated that the osteogenic effect of D1Rs activated by the PLGA/SKF38393 microsphere was better than that under free administration, both in vitro and in vivo. According to the PCR array, this result might be associated with six signaling pathways (graphical abstract). Ultimately, in this study, we prototyped PLGA/SKF38393, demonstrated its effectiveness, and preliminarily analyzed its mechanism of action.
Collapse
Affiliation(s)
| | | | - Xiyuan Ge
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China; (Y.H.); (C.W.)
| | - Ye Lin
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China; (Y.H.); (C.W.)
| |
Collapse
|
2
|
Deng J, Cohen DJ, Berger MB, Sabalewski EL, McClure MJ, Boyan BD, Schwartz Z. Osseointegration of Titanium Implants in a Botox-Induced Muscle Paralysis Rat Model Is Sensitive to Surface Topography and Semaphorin 3A Treatment. Biomimetics (Basel) 2023; 8:biomimetics8010093. [PMID: 36975323 PMCID: PMC10046785 DOI: 10.3390/biomimetics8010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Reduced skeletal loading associated with many conditions, such as neuromuscular injuries, can lead to bone fragility and may threaten the success of implant therapy. Our group has developed a botulinum toxin A (botox) injection model to imitate disease-reduced skeletal loading and reported that botox dramatically impaired the bone formation and osseointegration of titanium implants. Semaphorin 3A (sema3A) is an osteoprotective factor that increases bone formation and inhibits bone resorption, indicating its potential therapeutic role in improving osseointegration in vivo. We first evaluated the sema3A effect on whole bone morphology following botox injections by delivering sema3A via injection. We then evaluated the sema3A effect on the osseointegration of titanium implants with two different surface topographies by delivering sema3A to cortical bone defect sites prepared for implant insertion and above the implants after insertion using a copper-free click hydrogel that polymerizes rapidly in situ. Implants had hydrophobic smooth surfaces (PT) or multiscale biomimetic micro/nano topography (SLAnano). Sema3A rescued the botox-impaired bone formation. Furthermore, biomimetic Ti implants improved the bone-to-implant contact (BIC) and mechanical properties of the integrated bone in the botox-treated rats, which sema3A enhanced. This study demonstrated the value of biomimetic approaches combining multiscale topography and biologics in improving the clinical outcomes of implant therapy.
Collapse
Affiliation(s)
- Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- VCU DaVinci Center for Innovation, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - D. Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Michael B. Berger
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Eleanor L. Sabalewski
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Michael J. McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Barbara D. Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: ; Fax: +1-804-828-9866
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Kemuriyama S, Aita H, Maida T, Kawamura N, Nezu T, Iijima M, Endo K, Koshino H. Effect of photofunctionalization on titanium bone-implant integration in ovariectomized rats. Dent Mater J 2023; 42:11-18. [PMID: 36123044 DOI: 10.4012/dmj.2022-081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteoporosis is considered a risk factor for osseointegration during implant treatment. Photofunctionalization of titanium has been shown to improve bone-based cell adhesion, proliferation, and functional expression, increasing the bone-implant contact rate and bone-implant integration strength. This study aimed to test the hypothesis that photofunctionalization is effective for implant fixation using an osteoporosis rat model. In the biomechanical push-in test, the bone-implant integration strength of the photofunctionalization treatment group was 1.53 times that of the control group (p<0.05). These values implied that photofunctionalization restored the ovariectomy-induced low bone-implant integration strength to normal states. In the micro-CT analysis, the BV/TV of the photofunctionalization treatment group was 1.32 times that of the control group (p<0.05). These values implied that photofunctionalization restored the ovariectomy-induced low peri-implant bone formation to normal states. These results indicate that photofunctionalization treatment increased peri-implant bone formation and bone-implant integration strength in ovariectomized rats.
Collapse
Affiliation(s)
- Shuhei Kemuriyama
- Division of Geriatric Dentistry, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido
| | - Hideki Aita
- Division of Geriatric Dentistry, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido
| | - Takeo Maida
- Division of Advanced Prosthodontics, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido
| | | | - Takashi Nezu
- Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido
| | - Kazuhiko Endo
- Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido
| | - Hisashi Koshino
- Division of Occlusion and Removable Prosthodontics, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido
| |
Collapse
|
4
|
Hou PW, Liu SC, Tsay GJ, Tang CH, Chang HH. The Traditional Chinese Medicine "Hu-Qian-Wan" Attenuates Osteoarthritis-Induced Signs and Symptoms in an Experimental Rat Model of Knee Osteoarthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5367494. [PMID: 35186100 PMCID: PMC8849814 DOI: 10.1155/2022/5367494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a chronic, low-grade inflammatory disease that affects knee joints and causes functional disability in the elderly. KOA is typically treated with oral NSAIDs, which are commonly associated with gastrointestinal side effects or cardiovascular complications. Traditional Chinese medicine (TCM) is widely used by patients with KOA in Taiwan; the Hu-Qian-Wan (HQW) formula is typically prescribed. We investigated the therapeutic role of a modified version of the HQW decoction in Sprague-Dawley rats with KOA induced by anterior cruciate ligament transection (ACLT) of the right knee. MATERIALS AND METHODS Thirty rats were randomly assigned to five groups (six animals each): arthrotomy alone (sham surgery, controls), ACLT only, ACLT + low-dose (1,000 mg/kg) HQW, ACLT + high-dose (3,000 mg/kg) HQW, and ACLT + celecoxib (30 mg/kg). All study groups underwent weight-bearing behavioral testing, micro-computed tomography (CT), and histological examinations of the knee joint cartilage, as well as immunohistochemical analyses of levels of interleukin (IL) 1β and tumor necrosis factor (TNF) α expression in articular cartilage. RESULTS At 6 weeks, compared with ACLT group only, ACLT rats administered high-dose HQW or celecoxib exhibited the fewest weight-bearing deficits, the greatest improvements from baseline in articular cartilage architecture, and the lowest amounts of TNF-α and IL-1β staining in cartilage and synovial sections (all values were significant compared with the ACLT-only group). The only values that were significantly increased by ACLT + low-dose HQW compared with ACLT alone were bone mineral density and trabecular numbers. CONCLUSION Our findings suggest that high-dose HQW improves weight-bearing asymmetry, decreases bone loss, and reduces levels of TNF-α and IL-1β in the affected joint in ACLT-induced KOA rats. More evidence is needed to support our findings.
Collapse
Affiliation(s)
- Pu-Wei Hou
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin County 65152, Douliu, Taiwan
| | - Gregory J. Tsay
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
| | - Hen-Hong Chang
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
5
|
Radzki RP, Bienko M, Wolski D, Oniszczuk T, Radzka-Pogoda A, Polak P, Borzecki A, Stasiak M. Lipoic acid (LA) dose-dependently protects bone losses in the mandible of rats during the development of osteopenia by inhibiting oxidative stress and promoting bone formation. Biomed Pharmacother 2022; 146:112467. [PMID: 34891114 DOI: 10.1016/j.biopha.2021.112467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Our study was carried out to evaluate the effect of lipoic acid (LA) on the densitometric properties, structure and mechanical strength of the mandible of Wistar rats with developing osteopenia. The study used 42 sham-operated (SHO) and ovariectomized (OVX) rats. The OVX rats were randomly divided (n = 6) onto two controls treated subcutaneously with physiological saline (OVX-PhS) and 17β-estradiol (OVX-E2), respectively, and onto four experimental OVX groups that received LA in the doses of 12.5, 25, 50 and 100 mg/kg/day for 28 days. The results demonstrated that the lack of estrogen brought about osteopenic bone changes, especially in the trabecular compartment. In addition, while the usage of LA in the doses of 12.5 and 25 LA had no effect in OVX rats, the dose of 100 effectively inhibited osteopenic changes of the mandible. This dose maintained structural, densitometric and mechanical parameters at levels like that in the SHO and OVX-E2 groups by inhibiting the destructive influence of oxidative stress. Dose 50, however, was revealed to be the most effective. It not only inhibited atrophic changes and the influence of oxidative stress, but also stimulated the formation of mandibular bone tissue. Our results suggest that the administration of LA is effective in preventing atrophic changes in the mandibular bone tissue in conditions of ovarian hormone deficiency and suggest its potential in the therapy of osteoporosis.
Collapse
Affiliation(s)
- Radoslaw Piotr Radzki
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 Street, 20-033 Lublin, Poland
| | - Marek Bienko
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 Street, 20-033 Lublin, Poland.
| | - Dariusz Wolski
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 Street, 20-033 Lublin, Poland
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Gleboka 31 Street, 20-612 Lublin, Poland
| | - Agnieszka Radzka-Pogoda
- Chair and Department of Hygiene, Medical University of Lublin, Radziwillowska 11 Street, 20-080 Lublin, Poland
| | - Pawel Polak
- St Johns' Oncology Center in Lublin (COZL) Trauma and Orthopaedic Surgery Department, Jaczewskiego 7 Street, 20-090 Lublin, Poland
| | - Andrzej Borzecki
- Chair and Department of Hygiene, Medical University of Lublin, Radziwillowska 11 Street, 20-080 Lublin, Poland
| | - Mateusz Stasiak
- Department of Physical Properties of Plant Materials, Laboratory of Mechanics of Granular Materials, Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4 Street, 20-290 Lublin, Poland
| |
Collapse
|
6
|
Influence of osteoporosis and mechanical loading on bone around osseointegrated dental implants: A rodent study. J Mech Behav Biomed Mater 2021; 123:104771. [PMID: 34438251 DOI: 10.1016/j.jmbbm.2021.104771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022]
Abstract
This study aimed to evaluate the influence of estrogen deficiency and mechanical loading on bone around osseointegrated dental implants in a rat jaw model. The maxillary right first molars of 36 rats were extracted. One week later, the rats were divided into an unloaded group and a loaded group; short head implants and long head implants were inserted respectively. Nine weeks after implantation, the rats were further subjected to ovariectomy (OVX) or sham surgery. All animals were euthanized 21 weeks after OVX. Micro-computed tomography, histological and histomorphometrical evaluation were undertaken. Systemic bone mineral density and bone volume fraction decreased in OVX groups compared with the sham controls. Histomorphometrical observation indicated that unloaded OVX group showed significantly damaged osseointegration and bone loss versus the loaded OVX group. Both the bone density (BD) inside the peri-implant grooves and the percentage of bone-to-implant contact (BIC) were lower in the OVX groups than in the sham-surgery groups, although mechanical loading increased the BIC and BD in the loaded OVX group compared with the unloaded OVX group. An increased number of positive cells for tartrate-resistant acid phosphatase was observed in the OVX groups versus the sham controls. The percentage of sclerostin-positive osteocytes was lower under loaded compared with unloaded conditions in both the OVX groups and the sham controls. In conclusion, estrogen deficiency could be a risk factor for the long-term stability of osseointegrated implants, while mechanical loading could attenuate the negative influence of estrogen deficiency on bone formation and osseointegration.
Collapse
|
7
|
Koth VS, Salum FG, de Figueiredo MAZ, Cherubini K. Repercussions of osteoporosis on the maxillofacial complex: a critical overview. J Bone Miner Metab 2021; 39:117-125. [PMID: 33048242 DOI: 10.1007/s00774-020-01156-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION We present here a literature review focusing on the repercussions of osteoporosis on the oral and maxillofacial complex. Osteoporosis is a silent metabolic disorder characterized by reduced bone mineral density (BMD), which can lead to bone fractures, particularly affecting elderly women. The prevalence of this disease has increased significantly worldwide, and since it accelerates bone resorption also in the jaw bones, some attention has been paid to possible oral and maxillofacial manifestations. MATERIALS AND METHODS The databases PubMed and Google Scholar were searched for reports of oral and maxillofacial changes related to osteoporosis. RESULTS Several parameters evaluating bone changes in panoramic radiography have been proposed to estimate osteoporosis-related BMD loss, but they tend to warn about the possibility of osteoporosis, rather than being diagnostic criteria. Meanwhile, it seems that osteoporosis-related BMD loss could delay alveolar bone healing and potentiate bone loss in periodontal disease. CONCLUSION Even though orofacial bones are not compromised by osteoporosis as much as the axial/appendicular skeleton, a regular dental follow-up of osteoporotic patients is advised, especially in the case of periodontal disease and maxillofacial surgery. Further controlled longitudinal studies considering the site-specificity of osteogenesis would be helpful regarding this issue.
Collapse
Affiliation(s)
- Valesca Sander Koth
- School of Health and Life Sciences, Serviço de Estomatologia - Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6690 Sala 231, Porto Alegre, RS, 90610-001, Brazil.
| | - Fernanda Gonçalves Salum
- School of Health and Life Sciences, Serviço de Estomatologia - Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6690 Sala 231, Porto Alegre, RS, 90610-001, Brazil
| | - Maria Antonia Zancanaro de Figueiredo
- School of Health and Life Sciences, Serviço de Estomatologia - Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6690 Sala 231, Porto Alegre, RS, 90610-001, Brazil
| | - Karen Cherubini
- School of Health and Life Sciences, Serviço de Estomatologia - Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6690 Sala 231, Porto Alegre, RS, 90610-001, Brazil
| |
Collapse
|
8
|
Tabrizi R, Mousavi F, Ghasemi S, Ozkan BT. Does osteoporosis increase marginal bone loss around dental implants in the posterior of the maxilla? Int J Oral Maxillofac Surg 2020; 50:964-968. [PMID: 33376042 DOI: 10.1016/j.ijom.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 01/09/2023]
Abstract
Osteoporosis is caused by an imbalance in bone remodelling. The aim of this study was to compare the marginal bone loss (MBL) around dental implants placed in the posterior maxilla between osteoporotic and non-osteoporotic female patients. This was a prospective cohort study. Female patients needing a dental implant restoration in the posterior maxilla were included. Dual-energy X-ray absorptiometry was performed and the T-score recorded. MBL was measured at 12 months after loading. The patients were assigned to one of two groups: group 1, osteoporotic (T-score ≥2.5); group 2, non-osteoporotic (T-score <2.5). In this study, osteoporosis was the primary predictor variable and MBL was the outcome variable. The mean MBL was compared between the two groups using an independent t-test. Pearson's correlation test was applied to identify any correlation between the T-score and MBL. Ninety female patients were studied, 44 in group 1 and 46 in group 2. The mean MBL was 1.20±0.29mm in group 1 and 0.87±0.15 in group 2; this difference in mean MBL was statistically significant (P=0.001). There was a correlation between T-score and MBL (P=0.001). Despite the correlation between T-score and MBL, this study did not provide enough evidence to prove any causal relationship between MBL and osteoporosis.
Collapse
Affiliation(s)
- R Tabrizi
- Oral and Maxillofacial Surgery Department, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - F Mousavi
- Oral and Maxillofacial Surgery Department, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Ghasemi
- Universitat Internacional de Catalunya, Barcelona, Spain
| | - B T Ozkan
- Institute of Health Science, Toros University, Mersin, Turkey
| |
Collapse
|
9
|
Grzeskowiak RM, Schumacher J, Dhar MS, Harper DP, Mulon PY, Anderson DE. Bone and Cartilage Interfaces With Orthopedic Implants: A Literature Review. Front Surg 2020; 7:601244. [PMID: 33409291 PMCID: PMC7779634 DOI: 10.3389/fsurg.2020.601244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
The interface between a surgical implant and tissue consists of a complex and dynamic environment characterized by mechanical and biological interactions between the implant and surrounding tissue. The implantation process leads to injury which needs to heal over time and the rapidity of this process as well as the property of restored tissue impact directly the strength of the interface. Bleeding is the first and most relevant step of the healing process because blood provides growth factors and cellular material necessary for tissue repair. Integration of the implants placed in poorly vascularized tissue such as articular cartilage is, therefore, more challenging than compared with the implants placed in well-vascularized tissues such as bone. Bleeding is followed by the establishment of a provisional matrix that is gradually transformed into the native tissue. The ultimate goal of implantation is to obtain a complete integration between the implant and tissue resulting in long-term stability. The stability of the implant has been defined as primary (mechanical) and secondary (biological integration) stability. Successful integration of an implant within the tissue depends on both stabilities and is vital for short- and long-term surgical outcomes. Advances in research aim to improve implant integration resulting in enhanced implant and tissue interface. Numerous methods have been employed to improve the process of modifying both stability types. This review provides a comprehensive discussion of current knowledge regarding implant-tissue interfaces within bone and cartilage as well as novel approaches to strengthen the implant-tissue interface. Furthermore, it gives an insight into the current state-of-art biomechanical testing of the stability of the implants. Current knowledge reveals that the design of the implants closely mimicking the native structure is more likely to become well integrated. The literature provides however several other techniques such as coating with a bioactive compound that will stimulate the integration and successful outcome for the patient.
Collapse
Affiliation(s)
- Remigiusz M. Grzeskowiak
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - Jim Schumacher
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - Madhu S. Dhar
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - David P. Harper
- The Center for Renewable Carbon, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
| | - Pierre-Yves Mulon
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - David E. Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to critically evaluate the current literature regarding implant fixation in osteoporotic bone. RECENT FINDINGS Clinical studies have not only demonstrated the growing prevalence of osteoporosis in patients undergoing total joint replacement (TJR) but may also indicate a significant gap in screening and treatment of this comorbidity. Osteoporosis negatively impacts bone in multiple ways beyond the mere loss of bone mass, including compromising skeletal regenerative capacity, architectural deterioration, and bone matrix quality, all of which could diminish implant fixation. Recent findings both in preclinical animal models and in clinical studies indicate encouraging results for the use of osteoporosis drugs to promote implant fixation. Implant fixation in osteoporotic bone presents an increasing clinical challenge that may be benefitted by increased screening and usage of osteoporosis drugs.
Collapse
Affiliation(s)
- Kyle D Anderson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Amarjit S Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Evaluation of the bone morphology around four types of porous metal implants placed in distal femur of ovariectomized rats. J Orthop Surg Res 2020; 15:296. [PMID: 32746931 PMCID: PMC7398357 DOI: 10.1186/s13018-020-01822-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background To compare structural features of the femoral bone of ovariectomized and non-ovariectomized rats after implantation of porous materials (TANTALUM, CONCELOC, TTM, ATLANT). Methods Experiments were carried out on 56 white laboratory female rats aged 6 months. Rats were randomly assigned into groups: sham-operated control group (SH) or ovariectomy group (OVX). Four different commercial implant materials (TTM, CONCELOC, TANTALUM, ATLANT) were placed into the defects (diameter 2.5 mm, depth 3.0 mm) in the distal metaphysis of femurs. Rats were sacrificed 45 days after surgery. Histological study was performed and the percentage of the bone area (BA%) around the implant at a distance of 500 μm in the cancellous area was measured. Results Formation of mature bone tissue of varying degrees around all of the implants was detected. In OVX rats cancellous bone defect zone was characterized by a high density of osteocytes on the surface. In the SH group, no differences in BA% among implant materials were found. In OVX rats, the BA% around ATLANT implants was 1.5-time less (p = 0.002) than around TANTALUM. The BA% around the rest of the materials was not statistically different. Conclusions Bone formation around the studied porous titanium and tantalum materials in the osteoporosis model was lower than in normal bone. There were differences in bone formation around the different materials in the osteoporosis model, while in the normal bone model, these differences were absent.
Collapse
|
12
|
Ren H, Huo F, Wang Z, Liu F, Dong X, Wang F, Fan X, Yuan M, Jiang X, Lan J. Sdccag3 Promotes Implant Osseointegration during Experimental Hyperlipidemia. J Dent Res 2020; 99:938-948. [PMID: 32339468 DOI: 10.1177/0022034520916400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyperlipidemia adversely affects bone metabolism, often resulting in compromised osseointegration and implant loss. In addition, genetic networks associated with osseointegration have been proposed. Serologically defined colon cancer antigen 3 (Sdccag3) is a novel endosomal protein that functions in actin cytoskeleton remodeling, protein trafficking and secretion, cytokinesis, and apoptosis, but its roles in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in implant osseointegration under hyperlipidemic conditions have not been uncovered. Here, we performed microarray and RNA sequencing analysis to determine the differential expression of the Sdccag3 gene and related noncoding RNAs (ncRNAs) and to assess the long noncoding RNA (lncRNA) MSTRG.97162.4-miR-193a-3p-Sdccag3 coexpression network in bone tissues within the region 0.5 mm around implants in hyperlipidemic rats. In this experiment, we found that Sdccag3 and the previously uncharacterized lncRNA-MSTRG.97162.4 were downregulated during hyperlipidemia, while miR-193a-3p was upregulated. Sdccag3 overexpression increased new trabecular formation, the bone volume/total volume (BV/TV) (1.24-fold), and bone-implant combination ratio (BIC%) (1.26-fold). An RNA pulldown experiment revealed that Sdccag3 protein targeted lncRNA-MSTRG.97162.4 nucleotides 361 to 389. In addition, lncRNA-MSTRG.97162.4 overexpression significantly enhanced Sdccag3 (2.78-fold) expression and increased BV/TV (1.45-fold) and BIC% (1.07-fold) at the bone-implant interface. Taken together, these findings indicate that Sdccag3 overexpression enhances implant osseointegration under hyperlipidemic conditions by binding to lncRNA-MSTRG.97162.4. Furthermore, miR-193a-3p overexpression inhibited lncRNA-MSTRG.97162.4 (0.63-fold) and Sdccag3 (0.88-fold) expression and induced poor implant osseointegration (BV/TV, 0.86-fold; BIC%, 0.82-fold), while miR-193a-3p downregulation produced the opposite results (lncRNA-MSTRG.97162.4, 10.69-fold; Sdccag3, 6.96-fold; BV/TV, 1.20-fold; BIC%, 1.26-fold). Therefore, our findings show that Sdccag3 promotes implant osseointegration, and its related lncRNA-MSTRG.97162.4 and miR-193a-3p play an important role in osseointegration during hyperlipidemia, which might be a promising therapeutic target for improving dental implantation success rates.
Collapse
Affiliation(s)
- H Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - F Huo
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Z Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - F Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - X Dong
- State Key Laboratory Breeding Base of Basic Science of Stomotology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomotology, Wuhan University, Wuhan, Hubei, China
| | - F Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - X Fan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - M Yuan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - X Jiang
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - J Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
13
|
Evaluation of the effects of topically applied simvastatin on titanium implant osseointegration. J Oral Biol Craniofac Res 2020; 10:149-152. [DOI: 10.1016/j.jobcr.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/04/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
|
14
|
Liu Y, Rath B, Tingart M, Eschweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A 2019; 108:470-484. [DOI: 10.1002/jbm.a.36829] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Liu
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Björn Rath
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| |
Collapse
|
15
|
Lee C, Lee JH, Han SS, Kim YH, Choi YJ, Jeon KJ, Jung HI. Site-specific and time-course changes of postmenopausal osteoporosis in rat mandible: comparative study with femur. Sci Rep 2019; 9:14155. [PMID: 31578360 PMCID: PMC6775083 DOI: 10.1038/s41598-019-50554-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/12/2019] [Indexed: 12/05/2022] Open
Abstract
Although the effects of osteoporosis on the skeleton are well studied, site-specific and long-term studies on the mandible are still lacking. This study investigated the time-course changes of the bone microarchitecture in the mandibular condyle in comparison to the corresponding changes in the alveolar bone, body of the mandible, and femur. Thirty-six 11-week-old female Sprague-Dawley rats were divided into ovariectomized (OVX) (24 rats) and sham (12 rats) groups. The right femur and mandible were obtained from 6 OVX rats and 3 sham rats at 8, 12, 26, and 36 weeks after surgery, respectively. The histomorphometric analysis was performed using micro-computed tomography and histologic assessments from the (1) distal femur; (2) the alveolar bone and (3) the body of the mandible; (4) the subchondral and (5) the central region of the condyle. The Brown-Forsythe test was used to verify the assumptions for statistical analysis, and the Mann-Whitney U test was then performed. The mandibular condyle showed increased trabecular bone in both the OVX and sham groups, while the bone density was reduced in the distal femur and the mandible interradicular septum and body. When comparing the OVX group to the sham group, only the central condyle showed a significant reduction in bone density at 36 weeks. Osteoporosis behaves in different manners in different parts of the skeleton, and clinicians should be aware that patients displaying osteoporotic changes in the mandible are expected to show severely advanced bone mineral density reduction in other bones, such as the femur.
Collapse
Affiliation(s)
- Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jeong-Hee Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| | - Young Hyun Kim
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yoon-Joo Choi
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kug Jin Jeon
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hoi In Jung
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
16
|
Chandran S, John A. Osseointegration of osteoporotic bone implants: Role of stem cells, Silica and Strontium - A concise review. J Clin Orthop Trauma 2019; 10:S32-S36. [PMID: 31695257 PMCID: PMC6823697 DOI: 10.1016/j.jcot.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 08/02/2018] [Indexed: 01/06/2023] Open
Abstract
Osteoporotic fracture treatment has become a skeletal reconstructive challenge due to accelerated bone turnover and impaired bone regeneration potential. Poor osseointegration ability of the osteoporotic bone usually results in implant pull out and failure. Adoption of conventional bone fracture treatment strategies like autografts and allografts have limited applications in such pathological conditions. Hence biomaterials functionalised with therapeutic ions or drugs may be adopted to aid the delivery of therapeutic factors at the defect site to promote bone healing and implant integration, towards functional restoration of the fractured bone. This concise review narrates on improving the osseointegration ability of biomaterials using functional ions like Silica and Strontium. Silica based bone substitutes are known to promote bone healing in non pathological conditions. Further, Strontium based drugs show significant effects in the prevention and treatment of osteoporotic bones. In addition, stem cell therapy has become the focus of orthopaedic research attributed to its ability to restore and accelerate the bone healing process, but the clinical application of stem cells in osteoporotic condition is scarce. Present review suggests a novel strategy of combining the therapeutic potential of functional ions like Silica, Strontium and stem cells within a single implant unit to facilitate osseointegration and osteogenesis, so as to reduce the chances of implant rejection/pull out and encourage osteoporotic bone re-union.
Collapse
|
17
|
Lee JH, Han SS, Lee C, Kim YH, Battulga B. Microarchitectural changes in the mandibles of ovariectomized rats: a systematic review and meta-analysis. BMC Oral Health 2019; 19:128. [PMID: 31242880 PMCID: PMC6595683 DOI: 10.1186/s12903-019-0799-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
Background This study aimed to examine radiologic microarchitectural changes in the mandibles of ovariectomized (OVX) rats through a systematic review and meta-analysis and to identify factors of the OVX rat model that influence on the bone microstructure. Methods Eligible articles were identified by searching electronic databases, including Embase, Medline, Web of Science, and KoreaMed, for articles published from January 1966 to November 2017. Two reviewers independently performed study selection, data extraction, and quality assessment. The pooled standardized mean difference (SMD) with 95% confidence intervals was calculated using a random-effects model. Subgroup analysis and meta-regression were performed to explore the effect of potential sources on the outcomes. The reliability of the results was assessed by sensitivity analysis and publication bias. Results Of 1160 studies, 16 studies (120 OVX and 120 control rats) were included in the meta-analysis. Compared to the control group, the OVX rats’ trabecular bone volume fraction (SMD = − 2.41, P < 0.01, I2 = 81%), trabecular thickness (SMD = − 1.73, P < 0.01, I2 = 73%) and bone mineral density (SMD = − 0.95, P = 0.01, I2 = 71%) displayed the bone loss consistent with osteoporosis. The trabecular separation (SMD = 1.66, P < 0.01, I2 = 51%) has widen in the OVX mandibular bone in comparison to the control group. However, the trabecular number showed no indication to detect the osteoporosis (SMD = − 0.45, P = 0.38, I2 = 76%). The meta-regression indicated that longer post-OVX periods led to greater changes in bone mineral density (β = − 0.104, P = 0.017). However, the rats’ age at OVX was not linked to bone microstructure change. Conclusions Using meta-regression and sensitivity analysis techniques, heterogeneity across the micro CT studies of OVX-induced osteoporosis was found. The major factors of heterogeneity were the region of interest and post-OVX period. Our assessment can assist in designing experiments to maximize the usefulness of OVX rat model.
Collapse
Affiliation(s)
- Jeong-Hee Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea.
| | - Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Young Hyun Kim
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Bulgan Battulga
- School of Dentistry, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
18
|
Dereka X, Calciolari E, Donos N, Mardas N. Osseointegration in osteoporotic-like condition: A systematic review of preclinical studies. J Periodontal Res 2018; 53:933-940. [PMID: 29845622 DOI: 10.1111/jre.12566] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Osteoporosis is one of the most common skeletal disorders affecting a significant percentage of people worldwide. Research data suggested that systemic diseases such as osteoporosis could act as risk factors for osseointegration, jeopardizing the healing process and thus the predictability of dental implant success on compromised patients. It is well accepted that preclinical studies in animal models reproducing the osteoporotic condition are one of the most important stages in the research of new biomaterials and therapeutic modalities. The aim of this systematic review was to investigate whether osteoporosis compromises dental implant osseointegration in experimental osteoporotic-like conditions. A 3-stage systematic literature research was conducted in MEDLINE via OVID and EMBASE up to and including March 2017. Experimental studies reporting on dental implant osseointegration on different osteoporotic animal models were assessed. The studies had to report on the percentage of bone-to-implant contact (%BIC) as the primary outcome. ARRIVE guidelines for reporting on animal research were applied to evaluate the methodological quality and risk of bias of the studies. Fifty-seven studies met the inclusion criteria and were assessed qualitatively. The most adopted animal model was the rat. A variability of %BIC values was observed, ranging from 30% to 99% and from 26% to 94% for the healthy and osteoporotic group, respectively. The great majority (47) of the included studies concluded that estrogen deficiency significantly affects BIC values, 9 studies stated that it was not possible to observe statistical differences in BIC between ovariectomized and healthy groups and 1 study did not provide a comparison between the healthy and osteoporotic group. Owing to the great heterogeneity in implant surface, study design, observation time-points, site of implant placement and reported outcomes, a meta-analysis could not be performed. An overall high risk of bias was observed, owing to the limited information on animal housing and husbandry, baseline characteristics and health status, ethical statement and allocation to the experimental groups provided. Although the available studies seem to suggest a lower osseointegration in osteoporotic-like conditions, no robust conclusions can be drawn due to the great heterogeneity and overall low quality of the available studies. Future studies with emphasis on minimizing the possible sources of bias and evaluating osseointegration of dental implants placed into jawbones instead of long bones are warranted.
Collapse
Affiliation(s)
- X Dereka
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - E Calciolari
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - N Donos
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - N Mardas
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| |
Collapse
|
19
|
Liu F, Wang Z, Liu F, Xu J, Liu Q, Yin K, Lan J. MicroRNA-29a-3p enhances dental implant osseointegration of hyperlipidemic rats via suppressing dishevelled 2 and frizzled 4. Cell Biosci 2018; 8:55. [PMID: 30386554 PMCID: PMC6203977 DOI: 10.1186/s13578-018-0254-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Fine osseointegration is the basis of long-term survival of implant. In our previous study, we observed a strong correlation between hyperlipidemia and compromised osseointegration. MicroRNA-29a-3p (miR-29a-3p) has been discovered to participate in bone marrow mesenchymal stem cells (BMSCs) differentiation. However, the role and the underlying mechanisms of hyperlipidemia and miR-29a-3p in osseointegration still remain obscure. Results In peri-implant bone tissues of hyperlipidemia rats, bone mass, mineralization and bone trabecula formation were weakened. Alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2), and miR-29a-3p expression were reduced. While in normal rats, implant-bone interfaces were filled with dense new bone and ALP, Runx2 and miR-29a-3p were up-regulated. Overexpressed miR-29a-3p can reverse the adverse effect of hyperlipidemia on osseointegration. Implants were tightly integrated with the surrounding dense new bone tissues, and ALP as well as Runx2 mRNAs were enhanced in miR-29a-3p overexpressed and hyperlipidemia rats, while little peri-implant bone tissue existed, ALP and Runx2 deregulated on miR-29a-3p inhibited rats. Dishevelled 2 (Dvl2) mRNA was declined in peri-implant bone tissue of high-fat (HF) group than normal group, while frizzled 4 (Fzd4) mRNA declined on day 5 and increased from day 10 to day 20 after implantation in hyperlipidemia rats than in normal rats. Next, BMSCs were cultured under HF or normal medium in vitro. In the HF group, ALP activity and mineralization, ALP and Runx2 mRNAs and proteins expression, and miR-29a-3p expression were suppressed, while adipogenesis was increased, as a result, cytoskeletons were sparse and disordered compared to control group. However, when miR-29a-3p was overexpressed in BMSCs, ALP activity, ALP, Runx2, Dvl2 and Fzd4 mRNAs and proteins expressions were up-regulated. As miR-29a-3p was inhibited in BMSCs, the reverse results were obtained. In addition, promoter assay revealed that miR-29a-3p can directly suppress Wnt/β-catenin pathway related Dvl2 and Fzd4 through binding to their 3'-UTR. Conclusions MiR-29a-3p facilitated implant osseointegration via targeting Wnt/β-catenin pathway-related Dvl2 and Fzd4. MiR-29a-3p/Dvl2/Fzd4 may serve as a promising therapeutic target for hyperlipidemia osseointegration.
Collapse
Affiliation(s)
- Fei Liu
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China
| | - Zhifeng Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,3Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, 250000 China
| | - Fangfang Liu
- Department of Implantology, Stomatological Hospital of Nanyang, Nanyang, 473000 China
| | - Jinzhao Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,3Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, 250000 China
| | - Qibo Liu
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China
| | - Kaifeng Yin
- 4Department of Orthodontics, Herman Ostrow School of Dentistry, Los Angeles, CA 90089 USA.,5Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Los Angeles, 90033 USA
| | - Jing Lan
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,7Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, China
| |
Collapse
|
20
|
Li X, Xue W, Cao Y, Long Y, Xie M. Effect of lycopene on titanium implant osseointegration in ovariectomized rats. J Orthop Surg Res 2018; 13:237. [PMID: 30223885 PMCID: PMC6142359 DOI: 10.1186/s13018-018-0944-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Background Lycopene prevents bone loss in osteopenic models. However, the role of lycopene in the success rate of dental implants under osteopenic conditions remains unknown. The aim of this study was to evaluate whether lycopene prevents delayed implant osseointegration in an ovariectomized (OVX) rat model. Methods Thirty female Sprague-Dawley rats were randomly divided into the following groups: OVX with vehicle (OVX group), OVX with lycopene (OVX + lycopene group) and sham-operated with vehicle (sham group). Twelve weeks after ovariectomy or sham operation, titanium implants were placed into the distal metaphysis of the bilateral femurs of each rat. These rats were subsequently gavaged with lycopene (50 mg/kg/day) or vehicle. After 12 weeks of gavage, all rats were sacrificed, and specimens were harvested. Sample osseointegration was evaluated by biomechanical testing, 3D micro-computed tomography (micro-CT) analysis and histomorphometric analysis. Results Compared with the OVX group, the OVX + lycopene group showed a 69.3% increase in the maximum push-out force (p < 0.01). Micro-CT data for the femurs in the OVX + lycopene group showed significantly higher bone volume, trabecular thickness and less trabecular space than did those in the OVX group. The bone area (BA) around the implant and bone contact (BC) with the implant were increased by 72.3% (p < 0.01) and 51.4% (p < 0.01) in the OVX + lycopene group, respectively, compared with those in the OVX group. There was no significant difference in the mechanical test, micro-CT scanning and histomorphometric data between the OVX + lycopene and sham groups (p > 0.05). Conclusions Lycopene improved implant osseointegration, fixation and bone formation under osteopenic conditions, suggesting that lycopene is a promising therapeutic agent to prevent delayed implant osseointegration and bone loss under osteopenic conditions.
Collapse
Affiliation(s)
- Xiaojie Li
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10th Shuangyong Road, Nanning, 530021, China.
| | - Wenli Xue
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10th Shuangyong Road, Nanning, 530021, China
| | - Yong Cao
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10th Shuangyong Road, Nanning, 530021, China
| | - Yanming Long
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10th Shuangyong Road, Nanning, 530021, China
| | - Mengsheng Xie
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10th Shuangyong Road, Nanning, 530021, China
| |
Collapse
|
21
|
Zhao H, Huang Y, Zhang W, Guo Q, Cui W, Sun Z, Eglin D, Liu L, Pan G, Shi Q. Mussel-Inspired Peptide Coatings on Titanium Implant to Improve Osseointegration in Osteoporotic Condition. ACS Biomater Sci Eng 2018; 4:2505-2515. [PMID: 33435114 DOI: 10.1021/acsbiomaterials.8b00261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Huan Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Yingkang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Wen Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Qianping Guo
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Wenguo Cui
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Zhiyong Sun
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, 7270, Switzerland
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, 199 Renai Road, Suzhou, 215123, China
| |
Collapse
|
22
|
Li Z, Müller R, Ruffoni D. Bone remodeling and mechanobiology around implants: Insights from small animal imaging. J Orthop Res 2018; 36:584-593. [PMID: 28975660 DOI: 10.1002/jor.23758] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/27/2017] [Indexed: 02/04/2023]
Abstract
Anchorage of orthopedic implants depends on the interfacial bonding between the implant and the host bone as well as on the mass and microstructure of peri-implant bone, with all these factors being continuously regulated by the biological process of bone (re)modeling. In osteoporotic bone, implant integration may be jeopardized not only by lower peri-implant bone quality but also by reduced intrinsic regeneration ability. The first aim of this review is to provide a critical overview of the influence of osteoporosis on bone regeneration post-implantation. Mechanical stimulation can trigger bone formation and inhibit bone resorption; thus, judicious administration of mechanical loading can be used as an effective non-pharmacological treatment to enhance implant anchorage. Our second aim is to report recent achievements on the application of external mechanical stimulation to improve the quantity of peri-implant bone. The review focuses on peri-implant bone changes in osteoporotic conditions and following mechanical loading, prevalently using small animals and in vivo monitoring approaches. We intend to demonstrate the necessity to reveal new biological information on peri-implant bone mechanobiology to better target implant anchorage and fracture fixation in osteoporotic conditions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:584-593, 2018.
Collapse
Affiliation(s)
- Zihui Li
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Davide Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospaceand Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|