1
|
Shen J, Zhu Y, Zhang S, Lyu S, Lyu C, Feng Z, Hoyle DL, Wang ZZ, Cheng T. Vitronectin-activated αvβ3 and αvβ5 integrin signalling specifies haematopoietic fate in human pluripotent stem cells. Cell Prolif 2021; 54:e13012. [PMID: 33656760 PMCID: PMC8016644 DOI: 10.1111/cpr.13012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Vitronectin (VTN) has been widely used for the maintenance and expansion of human pluripotent stem cells (hPSCs) as feeder-free conditions. However, the effect of VTN on hPSC differentiation remains unclear. Here, we investigated the role of VTN in early haematopoietic development of hPSCs. MATERIALS AND METHODS A chemically defined monolayer system was applied to study the role of different matrix or basement membrane proteins in haematopoietic development of hPSCs. The role of integrin signalling in VTN-mediated haematopoietic differentiation was investigated by integrin antagonists. Finally, small interfering RNA was used to knock down integrin gene expression in differentiated cells. RESULTS We found that the haematopoietic differentiation of hPSCs on VTN was far more efficient than that on Matrigel that is also often used for hPSC culture. VTN promoted the fate determination of endothelial-haematopoietic lineage during mesoderm development to generate haemogenic endothelium (HE). Moreover, we demonstrated that the signals through αvβ3 and αvβ5 integrins were required for VTN-promoted haematopoietic differentiation. Blocking αvβ3 and αvβ5 integrins by the integrin antagonists impaired the development of HE, but not endothelial-to-haematopoietic transition (EHT). Finally, both αvβ3 and αvβ5 were confirmed acting synergistically for early haematopoietic differentiation by knockdown the expression of αv, β3 or β5. CONCLUSION The established VTN-based monolayer system of haematopoietic differentiation of hPSCs presents a valuable platform for further investigating niche signals involved in human haematopoietic development.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Yaoyao Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Shuo Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Shuzhen Lyu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Cuicui Lyu
- Department of Hematology, the First Central Hospital of Tianjin, Tianjin, China
| | - Zicen Feng
- Center of Reproductive Medicine, Tianjin Central Hospital of Gynaecology and Obstetrics, Tianjin, China
| | - Dixie L Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Tianjin Key Laboratory of Blood Cell Therapy and Technology, Tianjin, China
| |
Collapse
|
2
|
Nurcombe V, Ling L, Hondermarck H, Cool SM, Smith RAA. Bringing Heparan Sulfate Glycomics Together with Proteomics for the Design of Novel Therapeutics: A Historical Perspective. Proteomics 2019; 19:e1800466. [PMID: 31197945 DOI: 10.1002/pmic.201800466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Indexed: 01/29/2023]
Abstract
Increasing knowledge of how peptides bind saccharides, and of how saccharides bind peptides, is starting to revolutionize understanding of cell-extracellular matrix relationships. Here, a historical perspective is taken of the relationship between heparan sulfate glycosaminoglycans and how they interact with peptide growth factors in order to both drive and modulate signaling through the appropriate cognate receptors. Such knowledge is guiding the preparation of targeted sugar mimetics that will impact the treatment of many different kinds of diseases, including cancer.
Collapse
Affiliation(s)
- Victor Nurcombe
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, 138648, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University-Imperial College London, 636921, Singapore
| | - Ling Ling
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, 138648, Singapore
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, 2308, Australia
| | - Simon M Cool
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, 138648, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Raymond A A Smith
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, 138648, Singapore
| |
Collapse
|