1
|
Mohan N, Bosco K, Peter A, Abhitha K, Bhat SG. Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review. Arch Microbiol 2024; 206:443. [PMID: 39443305 DOI: 10.1007/s00203-024-04168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.
Collapse
Affiliation(s)
- Nivedya Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - Kiran Bosco
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Center for Infectious Diseases and Microbiology, Westmead, NSW, Australia
| | - Anmiya Peter
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - K Abhitha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India.
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
2
|
Gao M, Wang Y, Zhuang H, Zhu Y, Chen N, Teng T. Insights into the Preparation of and Evaluation of the Bactericidal Effects of Phage-Based Hydrogels. Int J Mol Sci 2024; 25:9472. [PMID: 39273419 PMCID: PMC11394800 DOI: 10.3390/ijms25179472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The rise of antibiotic-resistant strains demands new alternatives in antibacterial treatment. Bacteriophages, with their precise host specificity and ability to target and eliminate bacteria safely, present a valuable option. Meanwhile, hydrogels, known for their excellent biodegradability and biocompatibility, serve as ideal carriers for bacteriophages. The combination of bacteriophages and hydrogels ensures heightened phage activity, concentration, controlled release, and strong antibacterial properties, making it a promising avenue for antibacterial treatment. This article provides a comprehensive review of different crosslinking methods for phage hydrogels, focusing on their application in treating infections caused by various drug-resistant bacteria and highlighting their effective antibacterial properties and controlled release capabilities.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hanyue Zhuang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanxia Zhu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Na Chen
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Wang B, Du L, Dong B, Kou E, Wang L, Zhu Y. Current Knowledge and Perspectives of Phage Therapy for Combating Refractory Wound Infections. Int J Mol Sci 2024; 25:5465. [PMID: 38791502 PMCID: PMC11122179 DOI: 10.3390/ijms25105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Wound infection is one of the most important factors affecting wound healing, so its effective control is critical to promote the process of wound healing. However, with the increasing prevalence of multi-drug-resistant (MDR) bacterial strains, the prevention and treatment of wound infections are now more challenging, imposing heavy medical and financial burdens on patients. Furthermore, the diminishing effectiveness of conventional antimicrobials and the declining research on new antibiotics necessitate the urgent exploration of alternative treatments for wound infections. Recently, phage therapy has been revitalized as a promising strategy to address the challenges posed by bacterial infections in the era of antibiotic resistance. The use of phage therapy in treating infectious diseases has demonstrated positive results. This review provides an overview of the mechanisms, characteristics, and delivery methods of phage therapy for combating pathogenic bacteria. Then, we focus on the clinical application of various phage therapies in managing refractory wound infections, such as diabetic foot infections, as well as traumatic, surgical, and burn wound infections. Additionally, an analysis of the potential obstacles and challenges of phage therapy in clinical practice is presented, along with corresponding strategies for addressing these issues. This review serves to enhance our understanding of phage therapy and provides innovative avenues for addressing refractory infections in wound healing.
Collapse
Affiliation(s)
- Bo Wang
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Lin Du
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Baiping Dong
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Erwen Kou
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Liangzhe Wang
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
4
|
Li Y, Li XM, Duan HY, Yang KD, Ye JF. Advances and optimization strategies in bacteriophage therapy for treating inflammatory bowel disease. Front Immunol 2024; 15:1398652. [PMID: 38779682 PMCID: PMC11109441 DOI: 10.3389/fimmu.2024.1398652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In the advancement of Inflammatory Bowel Disease (IBD) treatment, existing therapeutic methods exhibit limitations; they do not offer a complete cure for IBD and can trigger adverse side effects. Consequently, the exploration of novel therapies and multifaceted treatment strategies provides patients with a broader range of options. Within the framework of IBD, gut microbiota plays a pivotal role in disease onset through diverse mechanisms. Bacteriophages, as natural microbial regulators, demonstrate remarkable specificity by accurately identifying and eliminating specific pathogens, thus holding therapeutic promise. Although clinical trials have affirmed the safety of phage therapy, its efficacy is prone to external influences during storage and transport, which may affect its infectivity and regulatory roles within the microbiota. Improving the stability and precise dosage control of bacteriophages-ensuring robustness in storage and transport, consistent dosing, and targeted delivery to infection sites-is crucial. This review thoroughly explores the latest developments in IBD treatment and its inherent challenges, focusing on the interaction between the microbiota and bacteriophages. It highlights bacteriophages' potential as microbiome modulators in IBD treatment, offering detailed insights into research on bacteriophage encapsulation and targeted delivery mechanisms. Particular attention is paid to the functionality of various carrier systems, especially regarding their protective properties and ability for colon-specific delivery. This review aims to provide a theoretical foundation for using bacteriophages as microbiome modulators in IBD treatment, paving the way for enhanced regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Bai H, Borjihan Q, Li Z, Qin P, Cheng J, Xiao D, Dong A. Phage-Based antibacterial hydrogels for bacterial targeting and Ablation: Progress and perspective. Eur J Pharm Biopharm 2024; 198:114258. [PMID: 38479561 DOI: 10.1016/j.ejpb.2024.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
The emergence of drug-resistant bacteria makes antibiotics inadequate to treat bacterial infections, which is now a global problem. Phage as a virus with specific recognition ability can effectively kill the bacteria, which is an efficacious antibacterial material to replace antibiotics. Phage-based hydrogels have good biocompatibility and antibacterial effect at the site of infection. Phage hydrogels have remarkable antibacterial effects on targeted bacteria because of their specific targeted bactericidal ability, but there are few reports and reviews on phage hydrogels. This paper discusses the construction method of phage-based antibacterial hydrogels (PAGs), summarizes the advantages related to PAGs and their applications in the direction of wound healing, treating bone bacterial infections, gastrointestinal infection treatment and other application, and finally gives an outlook on the development and research of PAGs.
Collapse
Affiliation(s)
- Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Qinggele Borjihan
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, PR China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Peiran Qin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jingli Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
6
|
Liu Y, Zhang Y, Yao W, Chen P, Cao Y, Shan M, Yu S, Zhang L, Bao B, Cheng FF. Recent Advances in Topical Hemostatic Materials. ACS APPLIED BIO MATERIALS 2024; 7:1362-1380. [PMID: 38373393 DOI: 10.1021/acsabm.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Untimely or improper treatment of traumatic bleeding may cause secondary injuries and even death. The traditional hemostatic modes can no longer meet requirements of coping with complicated bleeding emergencies. With scientific and technological advancements, a variety of topical hemostatic materials have been investigated involving inorganic, biological, polysaccharide, and carbon-based hemostatic materials. These materials have their respective merits and defects. In this work, the application and mechanism of the major hemostatic materials, especially some hemostatic nanomaterials with excellent adhesion, good biocompatibility, low toxicity, and high adsorption capacity, are summarized. In the future, it is the prospect to develop multifunctional hemostatic materials with hemostasis and antibacterial and anti-inflammatory properties for promoting wound healing.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yi Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Li Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Fang-Fang Cheng
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
7
|
Costa MJ, Pastrana LM, Teixeira JA, Sillankorva SM, Cerqueira MA. Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses 2023; 15:1271. [PMID: 37376571 DOI: 10.3390/v15061271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, one-third of all food produced worldwide is wasted or lost, and bacterial contamination is one of the main reasons. Moreover, foodborne diseases are a severe problem, causing more than 420,000 deaths and nearly 600 million illnesses yearly, demanding more attention to food safety. Thus, new solutions need to be explored to tackle these problems. A possible solution for bacterial contamination is using bacteriophages (phages), which are harmless to humans; these natural viruses can be used to prevent or reduce food contamination by foodborne pathogens. In this regard, several studies showed the effectiveness of phages against bacteria. However, when used in their free form, phages can lose infectivity, decreasing the application in foods. To overcome this problem, new delivery systems are being studied to incorporate phages and ensure prolonged activity and controlled release in food systems. This review focuses on the existent and new phage delivery systems applied in the food industry to promote food safety. Initially, an overview of phages, their main advantages, and challenges is presented, followed by the different delivery systems, focused in methodologies, and biomaterials that can be used. In the end, examples of phage applications in foods are disclosed and future perspectives are approached.
Collapse
Affiliation(s)
- Maria J Costa
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Sanna M Sillankorva
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
8
|
Kielholz T, Rohde F, Jung N, Windbergs M. Bacteriophage-loaded functional nanofibers for treatment of P. aeruginosa and S. aureus wound infections. Sci Rep 2023; 13:8330. [PMID: 37221194 DOI: 10.1038/s41598-023-35364-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
The increasing incidence of infected skin wounds poses a major challenge in clinical practice, especially when conventional antibiotic therapy fails. In this context, bacteriophages emerged as promising alternatives for the treatment of antibiotic-resistant bacteria. However, clinical implementation remains hampered by the lack of efficient delivery approaches to infected wound tissue. In this study, bacteriophage-loaded electrospun fiber mats were successfully developed as next-generation wound dressings for the treatment of infected wounds. We employed a coaxial electrospinning approach, creating fibers with a protective polymer shell, enveloping bacteriophages in the core while maintaining their antimicrobial activity. The novel fibers exhibited a reproducible fiber diameter range and morphology, while the mechanical fiber properties were ideal for application onto wounds. Further, immediate release kinetics for the phages were confirmed as well as the biocompatibility of the fibers with human skin cells. Antimicrobial activity was demonstrated against Staphylococcus aureus and Pseudomonas aeruginosa and the core/shell formulation maintained the bacteriophage activity for 4 weeks when stored at - 20 °C. Based on these promising characteristics, our approach holds great potential as a platform technology for the encapsulation of bioactive bacteriophages to enable the translation of phage therapy into clinical application.
Collapse
Affiliation(s)
- Tobias Kielholz
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Felix Rohde
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Anyaegbunam NJ, Anekpo CC, Anyaegbunam ZKG, Doowuese Y, Chinaka CB, Odo OJ, Sharndama HC, Okeke OP, Mba IE. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiol Res 2022; 264:127155. [PMID: 35969943 DOI: 10.1016/j.micres.2022.127155] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022]
Abstract
Phage therapy was implemented almost a century ago but was subsequently abandoned when antibiotics emerged. However, the rapid emergence of drug-resistant, which has brought to the limelight situation reminiscent of the pre-antibiotic era, coupled with the unavailability of new drugs, has triggered the quest for an alternative therapeutic approach, and this has led to the rebirth of phage-derived therapy. Phages are viruses that infect and replicate in bacterial cells. Phage therapy, especially phage-derived proteins, is being given considerable attention among scientists as an antimicrobial agent. They are used alone or in combination with other biomaterials for improved biological activity. Over the years, much has been learned about the genetics and diversity of bacteriophages. Phage cocktails are currently being exploited for treating several infectious diseases as preliminary studies involving animal models and clinical trials show promising therapeutic efficacy. However, despite its numerous advantages, this approach has several challenges and unaddressed limitations. Addressing these issues requires lots of creativity and innovative ideas from interdisciplinary fields. However, with all available indications, phage therapy could hold the solution in this era of increasing antibiotic resistance. This review discussed the potential use of phages and phage-derived proteins in treating drug-resistant bacterial infections. Finally, we highlight the progress, challenges, and knowledge gaps and evaluate key questions requiring prompt attention for the full clinical application of phage therapy.
Collapse
Affiliation(s)
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat (ENT), College of Medicine, Enugu state University of Science and Technology, Enugu, Nigeria
| | - Zikora Kizito Glory Anyaegbunam
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka, Nigeria; Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | | | | | | | | | | |
Collapse
|
10
|
Amini N, Milan PB, Sarmadi VH, Derakhshanmehr B, Hivechi A, Khodaei F, Hamidi M, Ashraf S, Larijani G, Rezapour A. Microorganism-derived biological macromolecules for tissue engineering. Front Med 2022; 16:358-377. [PMID: 35687278 DOI: 10.1007/s11684-021-0903-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022]
Abstract
According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.
Collapse
Affiliation(s)
- Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran. .,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran. .,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Bahareh Derakhshanmehr
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ahmad Hivechi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fateme Khodaei
- Burn Research Center, Department of Plastic and Reconstructive Surgery, Iran University of Medical Sciences, Tehran, 1591639675, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, 4477166595, Iran
| | - Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Alireza Rezapour
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, 3715835155, Iran. .,Department of Tissue Engineering and Regenerative Medicine, School of Medicine, Qom University of Medical Sciences, Qom, 3715835155, Iran.
| |
Collapse
|
11
|
Liu ZH, Chiang MT, Lin HY. Lytic Bacteriophage as a Biomaterial to Prevent Biofilm Formation and Promote Neural Growth. Tissue Eng Regen Med 2022; 19:987-1000. [PMID: 35648339 DOI: 10.1007/s13770-022-00462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although non-lytic filamentous bacteriophages have been made into biomaterial to guide tissue growth, they had limited ability to prevent bacterial infection. In this work a lytic bacteriophage was used to make an antibacterial biomaterial for neural tissue repair. METHODS Lytic phages were chemically bound to the surface of a chitosan film through glutaraldehyde crosslinking. After the chemical reaction, the contact angle of the sample surface and the remaining lytic potential of the phages were measured. The numbers of bacteria on the samples were measured and examined under scanning electron microscopy. Transmission electron microscopy (TEM) was used to observe the phages and phage-infected bacteria. A neuroblast cell line was cultured on the samples to evaluate the sample's biocompatibility. RESULTS The phages conjugated to the chitosan film preserved their lytic potential and reduced 68% of bacterial growth on the sample surface at 120 min (p < 0.001). The phage-linked surface had a significantly higher contact angle than that of the control chitosan (p < 0.05). After 120 min a bacterial biofilm appeared on the control chitosan, while the phage-linked sample effectively prevented biofilm formation. The TEM images demonstrated that the phage attached and lysed the bacteria on the phage-linked sample at 120 min. The phage-linked sample significantly promoted the neuroblast cell attachment (p < 0.05) and proliferation (p < 0.01). The neuroblast on the phage-linked sample demonstrated more cell extensions after day 1. CONCLUSION The purified lytic phages were proven to be a highly bioactive nanomaterial. The phage-chitosan composite material not only promoted neural cell proliferation but also effectively prevent bacterial growth, a major cause of implant failure and removal.
Collapse
Affiliation(s)
- Zi-Hao Liu
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, 3, Zhongxiao E Rd, Taipei, 106, Taiwan
| | - Ming-Tse Chiang
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, 3, Zhongxiao E Rd, Taipei, 106, Taiwan
| | - Hsin-Yi Lin
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, 3, Zhongxiao E Rd, Taipei, 106, Taiwan.
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, 3, Zhongxiao E Rd, Taipei, 106, Taiwan.
| |
Collapse
|
12
|
Kotturi H, Lopez-Davis C, Nikfarjam S, Kedy C, Byrne M, Barot V, Khandaker M. Incorporation of Mycobacteriophage Fulbright into Polycaprolactone Electrospun Nanofiber Wound Dressing. Polymers (Basel) 2022; 14:1948. [PMID: 35631831 PMCID: PMC9143337 DOI: 10.3390/polym14101948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 02/04/2023] Open
Abstract
The Genus Mycobacterium includes pathogens known to cause disease in mammals such as tuberculosis (Mycobacterium tuberculosis) and skin infections (M. abscessus). M. smegmatis is a model bacterium that can cause opportunistic infections in human tissues and, rarely, a respiratory disease. Due to the emergence of multidrug-resistant bacteria, phage therapy is potentially an alternative way of treating these bacterial infections. As bacteriophages are specific to their bacterial host, it ensures that the normal flora is unharmed. Fulbright is a mycobacteriophage that infects the host bacteria M. smegmatis. The main goal of this study is to incorporate Mycobacteriophage Fulbright into a polycaprolactone (PCL) nanofiber and test its antimicrobial effect against the host bacteria, M. smegmatis. Stability tests conducted over 7 days showed that the phage titer does not decrease when in contact with PCL, making it a promising vehicle for phage delivery. Antimicrobial assays showed that PCL_Fulbright effectively reduces bacterial concentration after 24 h of contact. In addition, when stored at -20 °C, the phage remains viable for up to eleven months in the fiber. Fulbright addition on the nanofibrous mats resulted in an increase in water uptake and decrease in the mechanical properties (strength and Young's modulus) of the membranes, indicating that the presence of phage Fulbright can greatly enhance the physical and mechanical properties of the PCL. Cytotoxicity assays showed that PCL_Fulbright is not cytotoxic to Balbc/3T3 mouse embryo fibroblast cell lines; thus, phage-incorporated PCL is a promising alternative to antibiotics in treating skin infections.
Collapse
Affiliation(s)
- Hari Kotturi
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Charmaine Lopez-Davis
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Sadegh Nikfarjam
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Cameron Kedy
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Micah Byrne
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Vishal Barot
- Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034, USA;
| | - Morshed Khandaker
- Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034, USA;
| |
Collapse
|
13
|
Kalelkar PP, Riddick M, García AJ. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. NATURE REVIEWS. MATERIALS 2022; 7:39-54. [PMID: 35330939 PMCID: PMC8938918 DOI: 10.1038/s41578-021-00362-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED The rise in antibiotic-resistant bacteria, including strains that are resistant to last-resort antibiotics, and the limited ability of antibiotics to eradicate biofilms, have necessitated the development of alternative antibacterial therapeutics. Antibacterial biomaterials, such as polycationic polymers, and biomaterial-assisted delivery of non-antibiotic therapeutics, such as bacteriophages, antimicrobial peptides and antimicrobial enzymes, have improved our ability to treat antibiotic-resistant and recurring infections. Biomaterials not only allow targeted delivery of multiple agents, but also sustained release at the infection site, thereby reducing potential systemic adverse effects. In this Review, we discuss biomaterial-based non-antibiotic antibacterial therapies for the treatment of community- and hospital-acquired infectious diseases, with a focus in in vivo results. We highlight the translational potential of different biomaterial-based strategies, and provide a perspective on the challenges associated with their clinical translation. Finally, we discuss the future scope of biomaterial-assisted antibacterial therapies. WEB SUMMARY The development of antibiotic tolerance and resistance has demanded the search for alternative antibacterial therapies. This Review discusses antibacterial biomaterials and biomaterial-assisted delivery of non-antibiotic therapeutics for the treatment of bacterial infectious diseases, with a focus on clinical translation.
Collapse
Affiliation(s)
- Pranav P. Kalelkar
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Milan Riddick
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Pinto AM, Silva MD, Pastrana LM, Bañobre-López M, Sillankorva S. The clinical path to deliver encapsulated phages and lysins. FEMS Microbiol Rev 2021; 45:6204673. [PMID: 33784387 DOI: 10.1093/femsre/fuab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The global emergence of multidrug-resistant pathogens is shaping the current dogma regarding the use of antibiotherapy. Many bacteria have evolved to become resistant to conventional antibiotherapy, representing a health and economic burden for those afflicted. The search for alternative and complementary therapeutic approaches has intensified and revived phage therapy. In recent decades, the exogenous use of lysins, encoded in phage genomes, has shown encouraging effectiveness. These two antimicrobial agents reduce bacterial populations; however, many barriers challenge their prompt delivery at the infection site. Encapsulation in delivery vehicles provides targeted therapy with a controlled compound delivery, surpassing chemical, physical and immunological barriers that can inactivate and eliminate them. This review explores phages and lysins' current use to resolve bacterial infections in the respiratory, digestive, and integumentary systems. We also highlight the different challenges they face in each of the three systems and discuss the advances towards a more expansive use of delivery vehicles.
Collapse
Affiliation(s)
- Ana Mafalda Pinto
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.,INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Maria Daniela Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.,INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Lorenzo M Pastrana
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Manuel Bañobre-López
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| |
Collapse
|
15
|
Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J Control Release 2021; 331:154-163. [DOI: 10.1016/j.jconrel.2021.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
16
|
Akhmetova A, Heinz A. Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges. Pharmaceutics 2020; 13:E4. [PMID: 33374930 PMCID: PMC7821923 DOI: 10.3390/pharmaceutics13010004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023] Open
Abstract
With the growth of the aging population worldwide, chronic wounds represent an increasing burden to healthcare systems. Wound healing is complex and not only affected by the patient's physiological conditions, but also by bacterial infections and inflammation, which delay wound closure and re-epithelialization. In recent years, there has been a growing interest for electrospun polymeric wound dressings with fiber diameters in the nano- and micrometer range. Such wound dressings display a number of properties, which support and accelerate wound healing. For instance, they provide physical and mechanical protection, exhibit a high surface area, allow gas exchange, are cytocompatible and biodegradable, resemble the structure of the native extracellular matrix, and deliver antibacterial agents locally into the wound. This review paper gives an overview on cytocompatible and biodegradable fibrous wound dressings obtained by electrospinning proteins and peptides of animal and plant origin in recent years. Focus is placed on the requirements for the fabrication of such drug delivery systems by electrospinning as well as their wound healing properties and therapeutic potential. Moreover, the incorporation of antimicrobial agents into the fibers or their attachment onto the fiber surface as well as their antimicrobial activity are discussed.
Collapse
Affiliation(s)
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| |
Collapse
|
17
|
Bioactive multi-engineered hydrogel offers simultaneous promise against antibiotic resistance and wound damage. Int J Biol Macromol 2020; 164:4466-4474. [DOI: 10.1016/j.ijbiomac.2020.08.247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
|
18
|
Paczesny J, Bielec K. Application of Bacteriophages in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1944. [PMID: 33003494 PMCID: PMC7601235 DOI: 10.3390/nano10101944] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Bacteriophages (phages for short) are viruses, which have bacteria as hosts. The single phage body virion, is a colloidal particle, often possessing a dipole moment. As such, phages were used as perfectly monodisperse systems to study various physicochemical phenomena (e.g., transport or sedimentation in complex fluids), or in the material science (e.g., as scaffolds). Nevertheless, phages also execute the life cycle to multiply and produce progeny virions. Upon completion of the life cycle of phages, the host cells are usually destroyed. Natural abilities to bind to and kill bacteria were a starting point for utilizing phages in phage therapies (i.e., medical treatments that use phages to fight bacterial infections) and for bacteria detection. Numerous applications of phages became possible thanks to phage display-a method connecting the phenotype and genotype, which allows for selecting specific peptides or proteins with affinity to a given target. Here, we review the application of bacteriophages in nanoscience, emphasizing bio-related applications, material science, soft matter research, and physical chemistry.
Collapse
Affiliation(s)
- Jan Paczesny
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | | |
Collapse
|
19
|
Pinto AM, Cerqueira MA, Bañobre-Lópes M, Pastrana LM, Sillankorva S. Bacteriophages for Chronic Wound Treatment: from Traditional to Novel Delivery Systems. Viruses 2020; 12:E235. [PMID: 32093349 PMCID: PMC7077204 DOI: 10.3390/v12020235] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment and management of chronic wounds presents a massive financial burden for global health care systems, with significant and disturbing consequences for the patients affected. These wounds remain challenging to treat, reduce the patients' life quality, and are responsible for a high percentage of limb amputations and many premature deaths. The presence of bacterial biofilms hampers chronic wound therapy due to the high tolerance of biofilm cells to many first- and second-line antibiotics. Due to the appearance of antibiotic-resistant and multidrug-resistant pathogens in these types of wounds, the research for alternative and complementary therapeutic approaches has increased. Bacteriophage (phage) therapy, discovered in the early 1900s, has been revived in the last few decades due to its antibacterial efficacy against antibiotic-resistant clinical isolates. Its use in the treatment of non-healing wounds has shown promising outcomes. In this review, we focus on the societal problems of chronic wounds, describe both the history and ongoing clinical trials of chronic wound-related treatments, and also outline experiments carried out for efficacy evaluation with different phage-host systems using in vitro, ex vivo, and in vivo animal models. We also describe the modern and most recent delivery systems developed for the incorporation of phages for species-targeted antibacterial control while protecting them upon exposure to harsh conditions, increasing the shelf life and facilitating storage of phage-based products. In this review, we also highlight the advances in phage therapy regulation.
Collapse
Affiliation(s)
- Ana M. Pinto
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel A. Cerqueira
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| | - Manuel Bañobre-Lópes
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| | - Lorenzo M. Pastrana
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| | - Sanna Sillankorva
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| |
Collapse
|
20
|
Shlezinger M, Friedman M, Houri-Haddad Y, Hazan R, Beyth N. Phages in a thermoreversible sustained-release formulation targeting E. faecalis in vitro and in vivo. PLoS One 2019; 14:e0219599. [PMID: 31291645 PMCID: PMC6620107 DOI: 10.1371/journal.pone.0219599] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction Enterococcus faecalis is a key pathogen recovered from root canals when conventional treatment fails. Phage therapy has generated new interest in combating pathogens. A sustained-release formulation using specific phages against E. faecalis may offer an alternative approach. Objectives To evaluate the efficacy of anti-E. faecalis phages formulated in a thermo- sustained-release system against E. faecalis in vitro and in vivo. Methods EFDG1 and EFLK1 phages were formulated with poloxamer P407. Gelation time, phage survival, activity and toxicity were evaluated. Lytic activity was evaluated in vitro against E. faecalis at various growth phases, including anti-biofilm activity. Methods included viable bacterial count (CFU/mL), biofilm biomass determination and electron microscopy (live/dead staining). Further evaluation included infected incisors in an in vivo rat model. Anti-E. faecalis phage-cocktail suspension and sustained-release phage formulation were evaluated by viable bacterial count (CFU/mL), histology, scanning electron microscopy (SEM) and 16S genome sequencing of the microbiota of the root canal. Results Gelation time for clinical use was established. Low toxicity and a high phage survival rate were recorded. Sustained-release phages reduced E. faecalis in logarithmic (4 logs), stationary (3 logs) and biofilm (4 logs) growth phases. Prolonged anti-biofilm activity of 88% and 95% reduction in biomass and viable counts, respectively, was recorded. Reduction of intracanal viable bacterial counts was observed (99% of enterococci) also seen in SEM. Phage treatment increased Proteobacteria and decreased Firmicutes. Histology showed reduced periapical inflammation and improved healing following phage treatment. Conclusion Poloxamer P407 formulated with phages has an effective and long-lasting effect in vitro and in vivo targeting E. faecalis.
Collapse
Affiliation(s)
- Mor Shlezinger
- Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
- Faculty of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Michael Friedman
- Department of Pharmaceutics, The Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ronen Hazan
- Faculty of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Nurit Beyth
- Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
21
|
Antimicrobial Activity of Poly(ester urea) Electrospun Fibers Loaded with Bacteriophages. FIBERS 2018. [DOI: 10.3390/fib6020033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
He Y, Jin Y, Wang X, Yao S, Li Y, Wu Q, Ma G, Cui F, Liu H. An Antimicrobial Peptide-Loaded Gelatin/Chitosan Nanofibrous Membrane Fabricated by Sequential Layer-by-Layer Electrospinning and Electrospraying Techniques. NANOMATERIALS 2018; 8:nano8050327. [PMID: 29758001 PMCID: PMC5977341 DOI: 10.3390/nano8050327] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/22/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Guided bone regeneration (GBR) technique is widely used in the treatment of bone defects caused by peri-implantitis, periodontal disease, etc. However, the GBR membranes commonly used in clinical treatments currently have no antibacterial activity. Therefore, in this study, sequential layer-by-layer electrospinning and electrospraying techniques were utilized to prepare a gelatin (Gln) and chitosan (CS) composite GBR membrane containing hydroxyapatite nanoparticles (nHAp) and antimicrobial peptide (Pac-525)-loaded PLGA microspheres (AMP@PLGA-MS), which was supposed to have osteogenic and antibacterial activities. The scanning electron microscope (SEM) observation showed that the morphology of the nanofibers and microspheres could be successfully produced. The diameters of the electrospun fibers with and without nHAp were 359 ± 174 nm and 409 ± 197 nm, respectively, and the mechanical properties of the membrane were measured according to the tensile stress-strain curve. Both the involvement of nHAp and the chemical crosslinking were able to enhance their tensile strength. In vitro cell culture of rat bone marrow mesenchymal stem cells (rBMSCs) indicated that the Gln/CS composite membrane had an ideal biocompatibility with good cell adhesion, spreading, and proliferation. In addition, the Gln/CS membrane containing nHAp could promote osteogenic differentiation of rBMSCs. Furthermore, according to the in vitro drug release assay and antibacterial experiments, the composite GBR membrane containing AMP@PLGA-MS exhibited a long-term sustained release of Pac-525, which had bactericidal activity within one week and antibacterial activity for up to one month against two kinds of bacteria, S. aureus and E. coli. Our results suggest that the antimicrobial peptide-loaded Gln/CS composite membrane (AMP@PLGA-MS@Gln/CS/nHAp) has a great promise in bone generation-related applications for the unique functions of guiding bone regeneration and inhibiting bacterial infection as well.
Collapse
Affiliation(s)
- Yuzhu He
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Yahui Jin
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou 310018, China.
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Shenglian Yao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuanyuan Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
| | - Fuzhai Cui
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Huiying Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|