1
|
Liu J, Ruan J, Yin J, Ou P, Yang H. Fabrication of multilevel porous structure networks on Nb-Ta-Ti alloy scaffolds and the effects of surface characteristics on behaviors of MC3T3-E1 cells. Biomed Mater 2022; 17. [PMID: 36327451 DOI: 10.1088/1748-605x/ac9ffd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Porous Nb-25Ta-25Ti alloys (60% porosity and 100-600 μm pore size) for bone implant applications were manufactured combining impregnation and sintering methods. Surfaces with porous micro-nanostructured networks on Nb-Ta-Ti alloys were successfully modified by various surface pre-treatments (acid etching, alkali-heat treatment and annealing treatment). Surface characteristics and Ca-P layer deposition behaviors of the multilevel structured porous Nb-Ta-Ti alloys were investigated by conducting various tests, including x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray, atomic force microscopy and optical contact angle measurement. In particular, bulk Nb-Ta-Ti alloys were also used as mutual control. The results demonstrated that the porous alloy exhibited a unique multilevel porous structure with macro-networks and micro-pits after pre-treatments. The surface passive TiO2/Nb2O5/Ta2O5layers on Nb-Ta-Ti alloys were partially dissolved by the corrosive attack of hydroxyl ions during alkali heat treatment. In addition, subsequent annealing treatment increased the density of the gel layers formed during alkali heat treatment. After immersion in SBF for 14 d, a continuous relatively uniform apatite layer was formed on the multilevel structured surfaces. Moreover, the mechanism of surface mineralization can be construed as electrostatic interactions between substrates and ions. Furthermore,in vitrocell culture showed that Nb-Ta-Ti alloys had a good biocompatibility and the multilevel porous structure could enhance the cellular behaviors including: cell adhesion and spreading.
Collapse
Affiliation(s)
- Jue Liu
- Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Jian Yin
- Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
| | - Pinghua Ou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China.,Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China
| | - Hailin Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
2
|
Ou P, Zhang T, Wang J, Li C, Shao C, Ruan J. Microstructure, mechanical properties and osseointegration ability of Ta-20Zr alloy used as dental implant material. Biomed Mater 2022; 17:045003. [PMID: 35477054 DOI: 10.1088/1748-605x/ac6b05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/27/2022] [Indexed: 11/12/2022]
Abstract
The aim of this study was to evaluate the application prospect of a tantalum (Ta) and zirconium (Zr) alloy as a dental implant material. The Ta-20Zr (wt.%) alloy was prepared by powder metallurgy, and its microstructure and mechanical properties were analyzed by standard techniques. The effect of Ta-20Zr alloy on inflammation, bone remodeling and osseointegration was analyzed in rat and rabbit models by biochemical, histological and imaging tests. The Ta-20Zr alloy showed excellent mechanical compatibility with the bone tissue on account of similar elastic modulus (49.2 GPa), thereby avoiding the 'stress shielding effect'. Furthermore, Ta-20Zr alloy enhanced the inflammatory response by promoting secretion of interleukin-6 (IL-6) and IL-10, and facilitated the balance between the M1/M2 macrophage phenotypes. Finally, Ta-20Zr also showed excellent osseointegration and osteogenic ability without any systemic side effects, making it an ideal dental implant material.
Collapse
Affiliation(s)
- Pinghua Ou
- Department of Stomatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Taomei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Jianying Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Cui Li
- Department of Stomatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Chunsheng Shao
- Department of Stomatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, People's Republic of China
| |
Collapse
|
3
|
Wang X, Ning B, Pei X. Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2021; 208:112055. [PMID: 34438295 DOI: 10.1016/j.colsurfb.2021.112055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Implant-associated infections and aseptic loosening are some of the main reasons for implant failure. Therefore, there is an urgent need to improve the osseointegration and antibacterial capabilities of implant materials. In recent years, a large number of breakthroughs in the biological application of tantalum and its derivatives have been achieved. Owing to their corrosion resistance, biocompatibility, osseointegration ability, and antibacterial properties, they have shown considerable potential in orthopedic and dental implant applications. In this review, we provide the latest progress and achievements in the research on osseointegration and antibacterial properties of tantalum as well as its derivatives, and summarize the surface modification methods to enhance their osseointegration and antibacterial properties.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Ning
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Ou P, Liu J, Hao C, He R, Chang L, Ruan J. Cytocompatibility, stability and osteogenic activity of powder metallurgy Ta-xZr alloys as dental implant materials. J Biomater Appl 2020; 35:790-798. [PMID: 32854569 DOI: 10.1177/0885328220948033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tantalum (Ta) and zirconium (Zr) alloys were found to had low elastic modulus and similar biomechanical characteristics as the human bone. However, the biocompatibility and osteogenic potential of Ta-xZr alloyswith different proportions (20, 30, 40 and 50% Zr by atom) remains to be investigated. In this study, the biocompatibility of Ta-xZr alloys and commercially pure titanium (cpTi) was evaluated in vitro by cell counting kit-8 assay. The adhesion of MG63 osteoblasts to the surface of the alloys was observed by fluorescence microscopy, and their morphology was analyzed by scanning electron microscopy (SEM). The expressions of alkaline phosphatase (ALP), Ki67, osteocalcin (OC), collagen-I (Col-I) and Integrin β1 mRNA in the cultured cells were determined by RT-PCR. As a result, Ta-xZr (x = 20, 30, 40 and 50 at%) alloys were non-toxic and supported proliferation of the MG63 cells. The osteoblasts adhered to the Ta-xZr alloys, and subsequently spread and proliferated rapidly. Furthermore, the cells grown on Ta-20Zr and Ta-30Zr expressed high levels of ALP, Col I and OC, indicating that the Ta-xZr alloys can induce osteogenesis. In conclusion, Ta-xZr alloys promoted the adhesion, proliferation and osteogenic differentiation of MG63 cells. The Ta-xZr composites with a higher proportion of Ta exhibited superior osteogenic activity, and Ta-30Zr is therefore a promising alternative for Ti implants.
Collapse
Affiliation(s)
- Pinghua Ou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China.,Department of Stomatology, The Third Xiangya Hospital Central South University, Changsha, PR China
| | - Jue Liu
- Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha, PR China
| | - Cong Hao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, PR China
| | - Rengui He
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Lin Chang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| |
Collapse
|
5
|
Voltrova B, Jarolimova P, Hybasek V, Blahnova VH, Sepitka J, Sovkova V, Matějka R, Daniel M, Fojt J, Filova E. In vitro evaluation of a novel nanostructured Ti-36Nb-6Ta alloy for orthopedic applications. Nanomedicine (Lond) 2020; 15:1843-1859. [PMID: 32752935 DOI: 10.2217/nnm-2020-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the impact of a nanostructured surface created on β-titanium alloy, Ti-36Nb-6Ta, on the growth and differentiation of human mesenchymal stem cells. Materials & methods: The nanotubes, with average diameters 18, 36 and 46 nm, were prepared by anodic oxidation. Morphology, hydrophilicity and mechanical properties of the nanotube layers were characterized. The biocompatibility and osteogenic potential of the nanostructured surfaces were established using various in vitro assays, scanning electron microscopy and confocal microscopy. Results: The nanotubes lowered elastic modulus close to that of bone, positively influenced cell adhesion, improved ALP activity, synthesis of type I collagen and osteocalcin expression, but diminished early cell proliferation. Conclusion: Nanostructured Ti-36Nb-6Ta with nanotube diameters 36 nm was the most promising material for bone implantation.
Collapse
Affiliation(s)
- Barbora Voltrova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 2038/6, 128 00, Prague, Czech Republic
| | - Petra Jarolimova
- Department of Metals & Corrosion Engineering, University of Chemistry & Technology, Technická 5, 166 29, Prague, Czech Republic
| | - Vojtech Hybasek
- Department of Metals & Corrosion Engineering, University of Chemistry & Technology, Technická 5, 166 29, Prague, Czech Republic
| | - Veronika Hefka Blahnova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Josef Sepitka
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| | - Vera Sovkova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Roman Matějka
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Náměstí Sítná 3105, 272 01, Kladno, Czech Republic
| | - Matej Daniel
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| | - Jaroslav Fojt
- Department of Metals & Corrosion Engineering, University of Chemistry & Technology, Technická 5, 166 29, Prague, Czech Republic
| | - Eva Filova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|
6
|
The progress on physicochemical properties and biocompatibility of tantalum-based metal bone implants. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2480-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|