1
|
Cohen DJ, Berger MB, Deng J, Jacobs TW, Boyan BD, Schwartz Z. Non-Canonical Wnt16 and microRNA-145 Mediate the Response of Human Bone Marrow Stromal Cells to Additively Manufactured Porous 3-Dimensional Biomimetic Titanium-Aluminum-Vanadium Constructs. Cells 2025; 14:211. [PMID: 39937002 PMCID: PMC11816670 DOI: 10.3390/cells14030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Metal 3D printing is increasingly being used to manufacture titanium-aluminum-vanadium (Ti6Al4V) implants. In vitro studies using 2D substrates demonstrate that the osteoblastic differentiation of bone marrow stromal cells (MSCs) on Ti6Al4V surfaces, with a microscale/nanoscale surface topography that mimics an osteoclast resorption pit, involves non-canonical Wnt signaling; Wnt3a is downregulated and Wnt5a is upregulated, leading to the local production of BMP2 and semaphorin 3A (sema3A). In this study, it was examined whether the regulation of MSCs in a 3D environment occurs by a similar mechanism. Human MSCs from two different donors were cultured for 7, 14, or 21 days on porous (3D) or solid (2D) constructs fabricated by powder-bed laser fusion. mRNA and secretion of osteoblast markers, as well as factors that enhance peri-implant osteogenesis, were analyzed, with a primary focus on the Wnt family, sema3A, and microRNA-145 (miR-145) signaling pathways. MSCs exhibited greater production of osteocalcin, latent and active TGFβ1, sema3A, and Wnt16 on the 3D constructs compared to 2D, both of which had similar microscale/nanoscale surface modifications. Wnt3a was reduced on 2D constructs as a function of time; Wnt11 and Wnt5a remained elevated in the 3D and 2D cultures. To better understand the role of Wnt16, cultures were treated with rhWnt16; endogenous Wnt16 was blocked using an antibody. Wnt16 promoted proliferation and inhibited osteoblast differentiation, potentially by reducing production of BMP2 and BMP4. Wnt16 expression was reduced by exogenous Wnt16 in 3D cells. Addition of the anti-Wnt16 antibody to the cultures reversed the effects of exogenous Wnt16, indicating an autocrine mechanism. Wnt16 increased miR-145-5p, suggesting a potential feedback mechanism. The miR-145-5p mimic increased Wnt16 production and inhibited sema3A in a 3D porous substrate-specific manner. Wnt16 did not affect sema3A production, but it was reduced by miR-145-5p mimic on the 3D constructs and stimulated by miR-145-5p inhibitor. Media from 7-, 14-, and 21-day cultures of MSCs grown on 3D constructs inhibited osteoclast activity to a greater extent than media from the 2D cultures. The findings present a significant step towards understanding the complex molecular interplay that occurs in 3D Ti6Al4V constructs fabricated by additive manufacturing. In addition to enhancing osteogenesis, the 3D porous biomimetic structure inhibits osteoclast activities, indicating its role in modulating bone remodeling processes. Our data suggest that the pathway mediated by sema3A/Wnt16/miR145-5p was enhanced by the 3D surface and contributes to bone regeneration in the 3D implants. This comprehensive exploration contributes valuable insights to guide future strategies in implant design, customization, and ultimately aims at improving clinical outcomes and successful osseointegration.
Collapse
Affiliation(s)
- David. J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (D.J.C.); (M.B.B.); (J.D.); (T.W.J.); (B.D.B.)
| | - Michael B. Berger
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (D.J.C.); (M.B.B.); (J.D.); (T.W.J.); (B.D.B.)
| | - Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (D.J.C.); (M.B.B.); (J.D.); (T.W.J.); (B.D.B.)
| | - Thomas W. Jacobs
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (D.J.C.); (M.B.B.); (J.D.); (T.W.J.); (B.D.B.)
| | - Barbara D. Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (D.J.C.); (M.B.B.); (J.D.); (T.W.J.); (B.D.B.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (D.J.C.); (M.B.B.); (J.D.); (T.W.J.); (B.D.B.)
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Gzik-Zroska B, Joszko K, Piątek A, Wolański W, Kawlewska E, Szarek A, Kajzer W, Stradomski G. The Influence of Hot Isostatic Pressing on the Mechanical Properties of Ti-6Al-4V Samples Printed Using the LENS Method. MATERIALS (BASEL, SWITZERLAND) 2025; 18:612. [PMID: 39942278 PMCID: PMC11818564 DOI: 10.3390/ma18030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
The aim of this work was to assess the influence of the parameters of the hot isostatic pressing (HIP) process and the direction of printing of Ti-6Al-4V samples made using the laser-engineered net shaping (LENS) method on strength properties. The tests were carried out using a static testing machine and a digital image correlation system. Samples before and after the HIP process were tested. The HIP process was carried out at a temperature of 1150 °C, a heating time of 240 min and various pressure values of 500, 1000 and 1500 bar. Based on the comparative analysis of the test results, it has been shown that the ability to adjust the parameters of the HIP process has a significant impact on the final mechanical properties of the samples.
Collapse
Affiliation(s)
- Bożena Gzik-Zroska
- Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland;
| | - Kamil Joszko
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (K.J.); (W.W.); (E.K.)
| | - Agata Piątek
- SKN “Biokreatywni”, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland;
| | - Wojciech Wolański
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (K.J.); (W.W.); (E.K.)
| | - Edyta Kawlewska
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (K.J.); (W.W.); (E.K.)
| | - Arkadiusz Szarek
- Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42-200 Częstochowa, Poland;
| | - Wojciech Kajzer
- Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland;
| | - Grzegorz Stradomski
- Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 42-201 Częstochowa, Poland;
| |
Collapse
|
3
|
Bernadi-Forteza A, Mallon M, Velasco-Gallego C, Cubo-Mateo N. A Systematic Review on the Generation of Organic Structures through Additive Manufacturing Techniques. Polymers (Basel) 2024; 16:2027. [PMID: 39065345 PMCID: PMC11280941 DOI: 10.3390/polym16142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Additive manufacturing (AM) has emerged as a transformative technology in the fabrication of intricate structures, offering unparalleled adaptability in crafting complex geometries. Particularly noteworthy is its burgeoning significance within the realm of medical prosthetics, owing to its capacity to seamlessly replicate anatomical forms utilizing biocompatible materials. Notably, the fabrication of porous architectures stands as a cornerstone in orthopaedic prosthetic development and bone tissue engineering. Porous constructs crafted via AM exhibit meticulously adjustable pore dimensions, shapes, and porosity levels, thus rendering AM indispensable in their production. This systematic review ventures to furnish a comprehensive examination of extant research endeavours centred on the generation of porous scaffolds through additive manufacturing modalities. Its primary aim is to delineate variances among distinct techniques, materials, and structural typologies employed, with the overarching objective of scrutinizing the cutting-edge methodologies in engineering self-supported stochastic printable porous frameworks via AM, specifically for bone scaffold fabrication. Findings show that most of the structures analysed correspond to lattice structures. However, there is a strong tendency to use organic structures generated by mathematical models and printed using powder bed fusion techniques. However, no work has been found that proposes a self-supporting design for organic structures.
Collapse
Affiliation(s)
- Alex Bernadi-Forteza
- Research Group ARIES, Higher Polytechnic School, Nebrija University, 28040 Madrid, Spain; (C.V.-G.); (N.C.-M.)
| | - Michael Mallon
- European Space Research and Technology Centre, European Space Agency, 2201 AZ Noordwijk, The Netherlands;
| | - Christian Velasco-Gallego
- Research Group ARIES, Higher Polytechnic School, Nebrija University, 28040 Madrid, Spain; (C.V.-G.); (N.C.-M.)
| | - Nieves Cubo-Mateo
- Research Group ARIES, Higher Polytechnic School, Nebrija University, 28040 Madrid, Spain; (C.V.-G.); (N.C.-M.)
| |
Collapse
|
4
|
Berger MB, Cohen DJ, Deng J, Srivas P, Boyan BD, Sandhage KH, Schwartz Z. Internal surface modification of additively manufactured macroporous TiAl6V4 biomimetic implants via a calciothermic reaction-based process and osteogenic in vivo responses. J Biomed Mater Res B Appl Biomater 2024; 112:e35322. [PMID: 37737450 DOI: 10.1002/jbm.b.35322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Three-dimensional macroporous titanium-aluminum-vanadium (TiAl6V4) implants produced by additive manufacturing (AM) can be grit blasted (GB) to yield microtextured exterior surfaces, with additional micro/nano-scale surface features provided by subsequent acid etching (AE). However, the line-of-sight nature of GB causes the topography of exterior GB + AE-modified surfaces to differ from internal GB-inaccessible surfaces. Previous in vitro studies using dense TiAl6V4 substrates indicated that a nonline-of-sight, calciothermic-reaction (CaR)-based process provided homogeneous osteogenic nanotextures on GB + AE surfaces, suggesting it could be used to achieve a homogeneous nanotopography on external and internal surfaces of macroporous AM constructs. Macroporous TiAl6V4 (3D) constructs were produced by direct laser melting and modified by GB + AE, with the CaR process then applied to 50% of constructs (3DCaR). The CaR process yielded nanoporous/nanorough internal surfaces throughout the macroporous constructs. Skeletally mature, male Sprague-Dawley rats were implanted with these constructs using a cranial on-lay model. Prior to implantation, a Cu++-free click hydrogel was applied to half of the constructs (3D + H, 3DCaR + H) to act as a challenge to osseointegration. Osseointegration was compared between the four implant groups (3D, 3DCaR, 3D + H, 3DCaR + H) at 4w. 3D + H implants exhibited lower bone volume (BV) and percent bone ingrowth (%BI) than the 3D implants. In contrast, osseointegrated 3DCaR + H implants had similar BV and %BI as the 3DCaR implants. Implant pull-off forces correlated with these results. In vitro analyses indicated that human bone marrow stromal cells (MSCs) exhibited enhanced production of osteoblast differentiation markers and factors associated with osteogenesis when grown on CaR-modified 3D substrates relative to control (TCPS) substrates. This work confirms that the CaR process provides osteogenic nanotextures on internal surfaces of macroporous 3D implants, and suggests that CaR-modified surfaces can promote osseointegration in cases where osteogenesis is impaired.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jingyao Deng
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pavan Srivas
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Kenneth H Sandhage
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Hijazi KM, Dixon SJ, Armstrong JE, Rizkalla AS. Titanium Alloy Implants with Lattice Structures for Mandibular Reconstruction. MATERIALS (BASEL, SWITZERLAND) 2023; 17:140. [PMID: 38203994 PMCID: PMC10779528 DOI: 10.3390/ma17010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
In recent years, the field of mandibular reconstruction has made great strides in terms of hardware innovations and their clinical applications. There has been considerable interest in using computer-aided design, finite element modelling, and additive manufacturing techniques to build patient-specific surgical implants. Moreover, lattice implants can mimic mandibular bone's mechanical and structural properties. This article reviews current approaches for mandibular reconstruction, their applications, and their drawbacks. Then, we discuss the potential of mandibular devices with lattice structures, their development and applications, and the challenges for their use in clinical settings.
Collapse
Affiliation(s)
- Khaled M. Hijazi
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
| | - S. Jeffrey Dixon
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jerrold E. Armstrong
- Division of Oral and Maxillofacial Surgery, Department of Otolaryngology Head and Neck Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Amin S. Rizkalla
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
6
|
Berger MB, Cohen DJ, Snyder K, Sions J, Boyan BD, Schwartz Z. Bone marrow stromal cells are sensitive to discrete surface alterations in build and post-build modifications of bioinspired Ti6Al4V 3D-printed in vitro testing constructs. J Biomed Mater Res B Appl Biomater 2023; 111:829-845. [PMID: 36372947 DOI: 10.1002/jbm.b.35194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/13/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Current standards in bone-facing implant fabrication by metal 3D (M3D) printing require post-manufacturing modifications to create distinct surface properties and create implant microenvironments that promote osseointegration. However, the biological consequences of build parameters and surface modifications are not well understood. This study evaluated the relative contributions of build parameters and post-manufacturing modification techniques to cell responses that impact osseointegration in vivo. Biomimetic testing constructs were created by using a M3D printer with standard titanium-aluminum-vanadium (Ti6Al4V) print parameters. These constructs were treated by either grit-blasting and acid-etching (GB + AE) or GB + AE followed by hot isostatic pressure (HIP) (GB + AE, HIP). Next, nine constructs were created by using a M3D printer with three build parameters: (1) standard, (2) increased hatch spacing, and (3) no infill, and additional contour trace. Each build type was further processed by either GB + AE, or HIP, or a combination of HIP treatment followed by GB + AE (GB + AE, HIP). Resulting constructs were assessed by SEM, micro-CT, optical profilometry, XPS, and mechanical compression. Cellular response was determined by culturing human bone marrow stromal cells (MSCs) for 7 days. Surface topography differed depending on processing method; HIP created micro-/nano-ridge like structures and GB + AE created micro-pits and nano-scale texture. Micro-CT showed decreases in closed pore number and closed porosity after HIP treatment in the third build parameter constructs. Compressive moduli were similar for all constructs. All constructs exhibited ability to differentiate MSCs into osteoblasts. MSCs responded best to micro-/nano-structures created by final post-processing by GB + AE, increasing OCN, OPG, VEGFA, latent TGFβ1, IL4, and IL10. Collectively these data demonstrate that M3D-printed constructs can be readily manufactured with distinct architectures based on the print parameters and post-build modifications. MSCs are sensitive to discrete surface topographical differences that may not show up in qualitative assessments of surface properties and respond by altering local factor production. These factors are vital for osseointegration after implant insertion, especially in patients with compromised bone qualities.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kyle Snyder
- Commonwealth Center for Advanced Manufacturing, Virginia, USA
| | - John Sions
- Commonwealth Center for Advanced Manufacturing, Virginia, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|