1
|
Verma M, Khan MIK, Kadumuri RV, Chakrapani B, Awasthi S, Mahesh A, Govindaraju G, Chavali PL, Rajavelu A, Chavali S, Dhayalan A. PRMT3 interacts with ALDH1A1 and regulates gene-expression by inhibiting retinoic acid signaling. Commun Biol 2021; 4:109. [PMID: 33495566 PMCID: PMC7835222 DOI: 10.1038/s42003-020-01644-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Protein arginine methyltransferase 3 (PRMT3) regulates protein functions by introducing asymmetric dimethylation marks at the arginine residues in proteins. However, very little is known about the interaction partners of PRMT3 and their functional outcomes. Using yeast-two hybrid screening, we identified Retinal dehydrogenase 1 (ALDH1A1) as a potential interaction partner of PRMT3 and confirmed this interaction using different methods. ALDH1A1 regulates variety of cellular processes by catalyzing the conversion of retinaldehyde to retinoic acid. By molecular docking and site-directed mutagenesis, we identified the specific residues in the catalytic domain of PRMT3 that facilitate interaction with the C-terminal region of ALDH1A1. PRMT3 inhibits the enzymatic activity of ALDH1A1 and negatively regulates the expression of retinoic acid responsive genes in a methyltransferase activity independent manner. Our findings show that in addition to regulating protein functions by introducing methylation modifications, PRMT3 could also regulate global gene expression through protein-protein interactions. Here, the authors demonstrate that protein arginine methyltransferase 3 (PRMT3) interacts with and inhibits the retinal dehydrogenase ALDH1A1, negatively regulating the expression of retinoic acid responsive genes. This study shows that PRMT3 affects diverse biological processes not only by globally regulating protein function through methylation but also by regulating gene expression.
Collapse
Affiliation(s)
- Mamta Verma
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Baskar Chakrapani
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Gayathri Govindaraju
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695014, India
| | - Pavithra L Chavali
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Arumugam Rajavelu
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695014, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|